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Abstract. We give results on the absence of singular continuous spectrum of the one-particle
Hamiltonian underlying the electronic black box model.

1 Introduction and Main Results

We consider a quantum system S with finite dimensional Hilbert space HS coupled to a left and a right
reservoir with Hilbert spaces H`, Hr respectively. The Hilbert space of the compound system is given
by

H := H` ⊕HS ⊕Hr .

It carries a free dynamics given by the non-interacting Hamiltonian

H0 := H` +HS +Hr,

where Hj is a self-adjoint operator on Hj , for j = `, S, r. The coupling between system and reservoirs
is modelled as follows. Let χ`/r ∈ H`/r, δ`/r ∈ HS , be distinguished non-zero vectors. The full
Hamiltonian is then defined as

Hλ,ν := H0 + λ [(χ`, · ) δ` + (δ`, · )χ`] + ν [(χr, · ) δr + (δr, · )χr] , (1.1)

where λ, ν ∈ R are control parameters. In the present article we address the question of when the
singular continuous spectrum σsc(Hλ,ν) is empty.



The fermionic second quantization of the Hamiltonian (1.1) leads to the simplest nontrivial example of
the electronic black box model, which has been one of the basic paradigms in the recent developments
in non-equilibrium statistical mechanics (see [AJJP1, AJPP2, JKP, N] for references and additional in-
formation). The motivation for this article comes from the fact that the absence of singular continu-
ous spectrum is crucial for the rigorous derivation of the Landauer-Büttiker formula in transport theory
[AJPP2, N].

It is not hard to see that the cyclic space spanned by (χ`, χr, δ`, δr) and H0 agrees with the one spanned
by the same vectors and Hλ,ν . Since Hλ,ν = H0 on the orthogonal complement of this cyclic space, for
our purposes we may assume without loss of generality that (χ`, χr, δ`, δr) is a cyclic family for H0.

Before formulating our main results we gather the following general facts about the connection between
boundary values of analytic functions and the spectral measure µ(λ,ν)

ϕ of Hλ,ν and ϕ (see, e.g., [J]). In
what follows the quantifier a.e. stands for almost every with respect to Lebesgue measure L on R.

The Borel transform of µ(λ,ν)
ϕ ,

Gλ,ν (ϕ,ϕ, z) :=
∫

R

dµ
(λ,ν)
ϕ (E)
E − z

,

where z ∈ C\R and ϕ = χ`/r, δ`/r, has the following properties:

1. The limit
Gλ,ν(ϕ,ϕ,E + i0) := lim

ε↘0
Gλ,ν (ϕ,ϕ,E + iε) ,

exists for a.e. E ∈ R. Moreover, Gλ,ν(ϕ,ϕ,E + i0) is finite and non-zero for a.e. E ∈ R.

2. The absolutely continuous part of µ(λ,ν)
ϕ satisfies

dµ(λ,ν)
ϕ,ac (E) =

1
π

ImGλ,ν(ϕ,ϕ,E + i0)dE .

3. The singular part of µ(λ,ν)
ϕ is concentrated on the set

{E ∈ R | lim
ε↘0

ImGλ,ν(ϕ,ϕ,E + iε) =∞} .

The connection with spectral theory is established by the spectral theorem through the formula

Gλ,ν(ϕ,ϕ, z) = (ϕ, (Hλ,ν − z)−1 ϕ) .

More generally, we write

Gλ,ν(ϕ,ψ, z) =
(
ϕ, (Hλ,ν − z)−1ψ

)
with ϕ,ψ = χ`/r, δ`/r.

2



Throughout this article we shall assume that

G0(δ`, δr, E) = (δ`, (HS − E)−1δr) 6≡ 0 (1.2)

(double zero indices will be written as a single index, e.g. G0,0 = G0, µ(0,0)
ϕ = µ

(0)
ϕ , etc.). An equivalent

formulation of (1.2) is that the cyclic spaces spanned by δ`/r and HS are not orthogonal and hence
that the system S does not trivially decouple into two non-interacting subsystems. The case where
G0(δ`, δr, E) ≡ 0 is simpler and can be treated by the same techniques. However this case has no
relevance for applications to non-equilibrium statistical mechanics that motivated the present work.

To be able to formulate our hypotheses we define

M0 :=
{
E ∈ R |G0(χ`/r, χ`/r, E + i0) is finite and non-zero

}
.

In view of Property 1, L(Mc
0) = 0 (Ac denotes the complement of a set A). We also define

M`/r :=
{
E ∈M0 | 0 < ImG0(χ`/r, χ`/r, E + i0) <∞

}
.

The setM` ∪Mr is an essential support of the absolutely continuous spectrum of Hλ,ν for all λ, ν ∈
R (to avoid confusion we recall that the essential support of a.c. spectrum is usually defined as an
equivalence class of Borel sets with respect to the relation B1 ∼ B2 ⇔ L((B1 \B2)∪ (B2 \B1)) = 0).

To fix notation we also recall that the projection-valued measure corresponding to Hλ,ν has a unique
decomposition into absolutely continuous, pure point, and singular continuous part,

1B [Hλ,ν ] = 1ac
B [Hλ,ν ] + 1pp

B [Hλ,ν ] + 1sc
B [Hλ,ν ] ,

where B ⊂ R is a Borel set. Our first result reads as follows:

Theorem 1.1 Let B ⊂ R be a Borel set such that

(M` ∪Mr)
c ∩B

is countable. Then 1sc
B [Hλ,ν ] = 0 for all λ, ν.

Theorem 1.1 has a relatively short proof and can be generalized in various ways via an application of the
Feshbach method (see [BFS, DJ]). In the stated form however it contrasts instructively our main result,
which has a considerably more technical proof.

Theorem 1.2 Let B ⊂ R be a Borel set such that

L ((M` ∪Mr)
c ∩B) = 0.

Then 1sc
B [Hλ,ν ] = 0 for a.e. λ, ν.

Remark. This result can be viewed as an extension of the Simon-Wolff theorems [SW, J, JKP] to the
electronic black box Hamiltonian setting.

Since Hλ,ν−H0 is compact it follows from Weyl’s theorem that σ(Hλ,ν)\σ(H0) is countable and hence
1sc
σ(H0)c [Hλ,ν ] = 0. Thus we may formulate as a direct consequence of Theorems 1.1 and 1.2:
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Corollary 1.3 (1) If (M` ∪Mr)
c ∩ σ(H0) is countable, then σsc(Hλ,ν) = ∅ for all λ, ν.

(2) If L((M` ∪Mr)
c ∩ σ(H0)) = 0, then σsc(Hλ,ν) = ∅ for a.e. λ, ν.

The key ingredient for the proof of Theorem 1.2 and our principal technical result concerns spectral
averaging for rank two perturbations. Let µ(κ)

ϕ be a Borel measure on R defined by

µ(κ)
ϕ (B) :=

∫
R
µ(κ,κ′)
ϕ (B) dκ′,

where κ = ν and κ′ = λ if ϕ = χ`, δ`, and κ = λ and κ′ = ν if ϕ = χr, δr.

Theorem 1.4 (Spectral averaging) There is a finite set N ⊂ R, independent of λ, ν, such that for a.e.
κ, µ(κ)

ϕ �R\N is absolutely continuous with respect to L �R\N .

Remark 1. Spectral averaging for rank one perturbations is a classical result that has been known for a
long time and refers to the following surprising fact. Given any self-operator A0 on a Hilbert space H
and a unit vector ψ ∈ H, the spectral measure µ(λ)

ψ for Aλ := A0 + λ(ψ, ·)ψ averages to the Lebesgue
measure:

µψ(B) =
∫

R
µ

(λ)
ψ (B)dλ = L(B) .

The proof of rank one spectral averaging is simple and can be found in many places in the literature (see,
e.g., [J, S]).
Remark 2. The set N need not be empty. Let

H` = Hr = L2([−2,−1] ∪ [1, 2], dx)

and H` = Hr be the operator of multiplication by the variable x, χ` = χr = 1 (1(x) = 1), and let
HS = C, HS = 0, δ` = δr = δ = 1. Note that (δ, χ`, χr) is a cyclic family for H0 and that Theorem 1.4
holds for Hλ,ν . Let

ψλ,ν :=
(
−λ
x

)
⊕ 1⊕

(
−ν
x

)
.

Then ψλ,ν ∈ H and Hλ,νψλ,ν = 0 for all λ, ν. The vector ψλ,ν is orthogonal to the cyclic subspace
spanned by Hλ,ν and (χ`, χr) and so µ(λ,ν)

δ ({0}) > 0 for all λ, ν. This implies

µ
(λ)
δ ({0}) = µ

(ν)
δ ({0}) > 0,

for all λ, ν and the averaged measures µ(κ)
δ are not absolutely continuous with respect to L.

Remark 3. With an additional argument one can show that N ⊂ σ(HS).

As we have already remarked, Theorem 1.1 can be generalized in many ways by application of standard
techniques centered around the Feshbach formula. This is not the case with Theorem 1.2. Our proof
is essentially restricted to the simplest example (1.1) of the electronic black box Hamiltonian and many
interesting questions remain open.

Acknowledgment. The research of V.J. was partly supported by NSERC.
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2 Proofs

2.1 Basic formulas

Lemma 2.1 For z ∈ C\R,

Gλ,ν(δ`, δ`, z) =
1

D(z)

[(
1−ν2G0(χr, χr, z)G0(δr, δr, z)

)
G0(δ`, δ`, z)+ν2G0(χr, χr, z)G0(δ`, δr, z)G0(δr, δ`, z)

]
,

and

Gλ,ν(χ`, χ`, z) =
1

D(z)
[
G0(χ`, χ`, z)(1− ν2G0(χr, χr, z)G0(δr, δr, z))

]
,

where

D(z) = (1− ν2G0(χr, χr, z)G0(δr, δr, z))(1− λ2G0(χ`, χ`, z)G0(δ`, δ`, z))

− ν2λ2G0(χr, χr, z)G0(χ`, χ`, z)G0(δ`, δr, z)G0(δr, δ`, z) .

Proof. The second resolvent identity

(Hλ,ν − z)−1 = (H0 − z)−1 − (Hλ,ν − z)−1(Hλ,ν −H0)(H0 − z)−1

leads to the system of equations

Gλ,ν(δ`, δ`, z) = G0(δ`, δ`, z)− [λGλ,ν(δ`, χ`, z)G0(δ`, δ`, z) + νGλ,ν(δ`, χr, z)G0(δr, δ`, z)],

Gλ,ν(δ`, χ`, z) = −λGλ,ν(δ`, δ`, z)G0(χ`, χ`, z),

Gλ,ν(δ`, χr, z) = −νGλ,ν(δ`, δr, z)G0(χr, χr, z),

Gλ,ν(δ`, δr, z) = G0(δ`, δr, z)− [λGλ,ν(δ`, χ`, z)G0(δ`, δr, z) + νGλ,ν(δ`, χr, z)G0(δr, δr, z)].

Solving the system one derives the formula for Gλ,ν(δ`, δ`, z). Similarly,

Gλ,ν(χ`, χ`, z) = G0(χ`, χ`, z)− λGλ,ν(χ`, δ`, z)G0(χ`, χ`, z),

Gλ,ν(χ`, δ`, z) = −νGλ,ν(χ`, χr, z)G0(δr, δ`, z)− λGλ,ν(χ`, χ`, z)G0(δ`, δ`, z),

Gλ,ν(χ`, χr, z) = −νGλ,ν(χ`, δr, z)G0(χr, χr, z),

Gλ,ν(χ`, δr, z) = −νGλ,ν(χ`, χr, z)G0(δr, δr, z)− λGλ,ν(χ`, χ`, z)G0(δ`, δr, z),

and the formula for Gλ,ν(χ`, χ`, z) follows. 2
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2.2 Proof of Theorem 1.1

Let

S := {E ∈ R |G0(δ`, δr, E) = 0}.

The Condition (1.2) ensures that S is a finite set. Recall also our standing assumption that (χ`, χr, δ`, δr)
is a cyclic family for H0 and hence for Hλ,ν for all λ, ν. Thus, to prove Theorem 1.1 it suffices to show
that for E ∈ (M` ∪Mr)\(σ(HS) ∪ S) and ϕ = χ`/r, δ`/r, the limits

lim
ε↘0

ImGλ,ν(ϕ,ϕ,E + iε) (2.3)

exist and are finite for all λ, ν.

If λ = ν = 0 there is nothing to prove and hence we may assume that at least one of the parameters
is non-zero. By symmetry it suffices to consider the cases ϕ = χ`, δ`. Finally, it follows from the
definition ofM`/r and Lemma 2.1 that it suffices to show that for E ∈ (M` ∪Mr)\(σ(HS) ∪ S) we
have D(E) 6= 0, where

D(E) = (1− ν2G0(χr, χr, E + i0)G0(δr, δr, E))(1− λ2G0(χ`, χ`, E)G0(δ`, δ`, E))

− ν2λ2G0(χr, χr, E + i0)G0(χ`, χ`, E + i0)G0(δ`, δr, E)G0(δr, δ`, E).

We argue by contradiction. Suppose that D(E) = 0 for some E ∈ (M` ∪ Mr)\(σ(HS) ∪ S). Set
a = G0(δ`, δ`, E), b = G0(δr, δr, E), d = G0(δ`, δ`, E)G0(δr, δr, E) − G0(δ`, δr, E)G0(δ`, δr, E).
Since

G0(δ`, δr, E)G0(δr, δ`, E) = |G0(δ`, δr, E)|2,
the numbers a, b, d are real. We also set l = G0(χ`, χ`, E + i0), r = G0(χr, χr, E + i0). Then the
relation D(E) = 0 can be written as

1− λ2al − ν2br + λ2ν2drl = 0,

or equivalently, as
1− ν2br = λ2l(a− ν2dr). (2.4)

Multiplying both sides of (2.4) with a− ν2dr yields

a− ν2dr − ν2bar + ν4bd|r|2 = λ2l|a− ν2dr|2.

Taking imaginary parts we derive

ν2dImr − ν2baImr = λ2Iml|a− ν2dr|2.

The last equation is equivalent to

− ν2|G0(δ`, δr, E)|2ImG0(χr, χr, E + i0) = λ2ImG0(χ`, χ`, E + i0)|a− ν2dG0(χr, χr, E + i0)|2 .
(2.5)

By symmetry we obtain in addition

− λ2|G0(δ`, δr, E)|2ImG0(χ`, χ`, E + i0) = ν2ImG0(χr, χr, E + i0)|b− λ2dG0(χ`, χ`, E + i0)|2 .
(2.6)

The right hand sides of Equations (2.5, 2.6) are non-negative, whereas at least one of the left hand sides
is strictly negative which is a contradiction. 2
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2.3 Proof of Theorem 1.2

It suffices to show that, for a.e. λ, ν, 1A [Hλ,ν ]ϕ = 0 for the Lebesgue zero setA := (M`∪Mr)c∩B\N
and ϕ = δ`/r, χ`/r. This however follows from Theorem 1.4 since for a.e. κ (κ = ν and κ′ = λ if
ϕ = χ`, δ`; κ = λ and κ′ = ν if ϕ = χr, δr) we have

0 = µ(κ)
ϕ (A) =

∫
R

µ(κ,κ′)
ϕ (A)dκ′ =

∫
R

‖1A
[
Hκ,κ′

]
ϕ‖2dκ′.

2.4 Proof of Theorem 1.4

Throughout the proof we shall omit standard measurability arguments (they can be found, for example,
in the lecture notes [J]).

We start with some preliminaries. By the symmetry ` ↔ r it is sufficient to consider the case κ = ν,
ϕ = χ`, δ`. The singular part of µ(λ,ν)

ϕ , denoted µ(λ,ν)
ϕ,sing, is concentrated on the set

Sϕ(Hλ,ν) :=
{
E ∈ R

∣∣ lim
ε↘0

ImGλ,ν(ϕ,ϕ,E + iε) =∞
}
.

The Poisson transform of the averaged spectral measure µ(ν)
ϕ can be computed by the residue theorem,

P (ν)
ϕ (E + iε) :=

∫
R

ImGλ,ν (ϕ,ϕ,E + iε) dλ

=
∫

R
Im
[

G0,ν (ϕ,ϕ,E + iε)
1− λ2G0,ν (ϕ,ϕ,E + iε)G0,ν (ψ,ψ,E + iε)

]
dλ

= Im

(
iπ

√
G0,ν (ϕ,ϕ,E + iε)
G0,ν (ψ,ψ,E + iε)

)
≥ 0, (2.7)

where the last inequality in (2.7) fixes the branch of the square root and ϕ,ψ ∈ {χ`, δ`}, ϕ 6= ψ. The
singular part µ(ν)

ϕ,sing of the averaged spectral measure is concentrated on the set

S
(ν)
ϕ :=

{
E ∈ R

∣∣ lim
ε↘0

P (ν)
ϕ (E + iε) =∞

}
. (2.8)

Since
µ

(ν)
ϕ,sing ≤

∫
R
µ

(λ,ν)
ϕ,singdλ,

we have
S

(ν)
ϕ ⊂

⋃
λ∈R\{0}

Sϕ (Hλ,ν) . (2.9)

We also introduce the sets

C
(ν)
ϕ,ψ :=

{
E ∈ R

∣∣ lim
ε↘0
|G0,ν (ϕ,ϕ,E + iε)| =∞, lim

ε↘0
G0,ν (ψ,ψ,E + iε) = 0

}
(2.10)

for ϕ,ψ ∈ {χ`, δ`}, ϕ 6= ψ. Clearly, L(C(ν)
ϕ,ψ) = 0.
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Lemma 2.2
S(ν)
ϕ ⊂ C

(ν)
ϕ,ψ.

Remark. Since G0,ν(χ`, χ`, E + iε) = G0(χ`, χ`, E + iε), we have in particular

S(ν)
χ`
⊂
{
E ∈ R

∣∣ lim
ε↘0
|G0 (χ`, χ`, E + iε)| =∞

}
,

S(ν)
δ`
⊂
{
E ∈ R

∣∣ lim
ε↘0

G0 (χ`, χ`, ϕ,E + iε) = 0
}
.

Proof. Let E ∈ S(ν)
ϕ . Set

v (ε) := G0,ν (ϕ,ϕ,E + iε) , w (ε) := G0,ν (ψ,ψ,E + iε) ,

and note that

Gλ,ν (ϕ,ϕ,E + iε) =
v(ε)

1− λ2v(ε)w(ε)
.

By (2.9), E ∈ Sϕ (Hλ,ν) for some λ 6= 0 and limε↘0 ImGλ,ν (ϕ,ϕ,E + iε) =∞ is equivalent to

lim
ε↘0

Im
1

1
v(ε) − λ2w (ε)

=∞.

Since for any z ∈ C, ∣∣∣∣Im1
z

∣∣∣∣ =
∣∣∣∣−Imz
|z|2

∣∣∣∣ ≤ 1
|Imz|

,

we observe that
∣∣Imz−1

∣∣→∞ implies Imz → 0 and hence also Rez → 0. This leads to

1
v (ε)

− λ2w (ε) =: h (ε)→ 0, (2.11)

as ε→ 0.

Suppose that supn |v (εn) | <∞ along some sequence εn ↓ 0. Since

v (ε)
w (ε)

=
λ2v (ε)2

1− v (ε)h (ε)
,

we have (recall (2.8))

∞ = lim
n→∞

∣∣∣∣∣Re

(√
v (εn)
w (εn)

)∣∣∣∣∣ ≤ lim sup
n→∞

√∣∣∣∣ v (εn)
w (εn)

∣∣∣∣ = |λ| lim sup
n→∞

|v (εn)| <∞,

which is a contradiction. Hence limε↘0 |v (ε)| =∞. This fact and (2.11) yield that

lim
ε↘0

w(ε) = 0.
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2

For E ∈ R \ σ(HS) we set

d(E) = G0(δ`, δ`, E)G0(δr, δr, E)−G0(δ`, δr, E)G0(δr, δ`, E).

Let

N :=
{
E ∈ R \ σ(HS)

∣∣G0(δ`, δ`, E)G0(δr, δr, E)G0(δ`, δr, E)d(E) = 0
}
∪ σ(HS).

The set N is finite.

Lemma 2.3 (1) C(0)
ϕ,ψ ⊂ N .

(2) For ν 6= 0,

C
(ν)
χ`,δ`
\N =

{
E ∈ R

∣∣ lim
ε↘0
|G0(χ`, χ`, E + iε)| =∞, lim

ε↘0
G0(χr, χr, E + iε) =

G0(δ`, δ`, E)
ν2d(E)

}
.

(3) For ν 6= 0,

C
(ν)
δ`,χ`
\N =

{
E ∈ R

∣∣ lim
ε↘0
|G0(χ`, χ`, E + iε)| = 0, lim

ε↘0
G0(χr, χr, E + iε) =

1
ν2G0(δr, δr, E)

}
.

Proof. We will deal with the case ϕ = χ`, ψ = δ`, the other case is similar. Note that

G0,ν(χ`, χ`, E + iε) = G0(χ`, χ`, E + iε),

and that by Lemma 2.1,

G0,ν(δ`, δ`, E+iε) = G0 (δ`, δ`, E + iε)+ν2G0 (χr, χr, E + iε)G0 (δ`, δr, E + iε)G0 (δr, δ`, E + iε)
1− ν2G0 (χr, χr, E + iε)G0 (δr, δr, E + iε)

.

Part (1) is now obvious and simple algebra yields Part (2). 2

We are now ready to complete the proof of Theorem 1.4. We shall deal with the case ϕ = χ`. The
argument is identical in the case ϕ = δ`.

Let
Ων := C

(ν)
χ`,δ`
\N .

By Lemma 2.2, the singular part of µ(ν)
χ` �R\N , is concentrated on Ων . Our strategy is to show that

1Ων [Hλ,ν ] = 0 (2.12)

for a.e. λ, ν. This implies the statement since

µ(ν)
χ`

(Ων) =
∫

R
‖1Ων [Hλ,ν ]χ`‖2dλ.
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Let

A := {E ∈ R
∣∣ lim
ε↘0
|G0(χ`, χ`, E+iε)| =∞, lim

ε↘0
G0(χr, χr, E+iε) exists and is finite and non-zero}.

L(A) = 0 and by Lemma 2.3, Ων ⊂ A for all ν. We claim that for all λ,

µ(λ)
χr (A) =

∫
R
µ(λ,ν)
χr (A)dν = 0,

µ
(λ)
δr

(A) =
∫

R
µ

(λ,ν)
δr

(A)dν = 0.

(2.13)

To establish these relations, define C(λ)
ϕ,ψ by (2.10) with λ replacing ν and ϕ,ψ ∈ {χr, δr}, ϕ 6= ψ. By

Lemma 2.2 and the remark after it, the singular parts of the measures µ(λ)
χr , µ(λ)

δr
are concentrated on the

set

A′ =
{
E ∈ R

∣∣ lim
ε↘0
|G0(χr, χr, E + iε)| =∞

}
∪
{
E ∈ R

∣∣ lim
ε↘0

G0(χr, χr, E + iε) = 0
}
.

Since A ∩A′ = ∅, the relations (2.13) follow. As a consequence of (2.13), for a given λ we have

1Ων [Hλ,ν ]δr = 1Ων [Hλ,ν ]χr = 0 for a.e. ν.

It follows that for a.e. ν
Hλ,νψ = Hλ,0ψ

where ψ ∈ Ran 1Ων∩[−M,M ] [Hλ,ν ] and M > 0. An application of the functional calculus gives that for
a.e. ν and for any bounded Borel function f ,

f(Hλ,ν) � Ran 1Ων [Hλ,ν ] = f(Hλ,0) � Ran 1Ων [Hλ,ν ] .

In particular, for a.e. ν and all ψ ∈ Ran 1Ων [Hλ,ν ],

ψ = 1Ων (Hλ,0)ψ.

Note that
Hλ,0 = hλ ⊕Hr,

where
hλ := H` +HS + λ [(χ`, · ) δ` + (δ`, · )χ`]

acts onH` ⊕HS . Lemma 2.3 (1) implies that for all ν∫
R
µ(λ,0)
χ`

(Ων)dλ =
∫

R
µ

(λ,0)
δ`

(Ων)dλ = 0.

Since hλ = HS on the orthogonal complement (in H` ⊕ HS) of the cyclic space spanned by hλ and
(χ`, δ`), we derive that

1Ων (hλ) = 0 for a.e. λ.
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The singular part of the spectral measure of Hr and χr is concentrated on the set{
E ∈ R

∣∣ lim
ε↘0

ImG0(χr, χr, E + iε) =∞
}
,

and so 1Ων (Hr) = 0. Hence, for a.e λ, ν and any ψ ∈ Ran 1Ων [Hλ,ν ],

ψ = 1Ων (Hλ,0)ψ = 0,

and (2.12) follows.
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