Entropy production
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Entropy, as defined by Clausius, is the true cornerstonewlfilegum thermodynamics. Its statistical interpre-
tation by Boltzmann is the key to our microscopic undersitagpadf equilibrium. Since then many other concepts
of entropy have appeared in physics and mathematics butafdhem has significantly contributed to our under-
standing of nonequilibrium. However, a notion of entropgdgarction (rate) has emerged from recent developments
in classical and quantum statistical mechanics of noniegiuiin steady states. Taking this notion seriously, it does
not seems possible to define the entropy of a nonequilibrigady states [R3]. As argued in [G], if such an en-
tropy exists then it is most likely to take the valdec because a system in such a state loses entropy at a constant
rate.

The purpose of this article is to introduce the notion of @myrproduction for nonequilibrium steady states of
a small quantum system in contact with thermal reservoiis siall make free use of the concepts and notation of
[NESS in quantum statistical mechanics].

1 Relative entropy

If p, p’ are density matrices their relative entropy is defined, m@gy with the relative entropy of two probability
measures, by

Ent(p'|p) = tr(p'(log p —log p')).

It has been generalized by Araki to arbitrary states on a veunhann algebra [Al, A2]. To describe the general
definition we need to introduce the notion of relative modolgerator.

Let Mt be a von Neumann algebra acting on the Hilbert sgdand ¥, ® € H two unit vectors. Denote by
sy the support of the stat¢(A4) = (¥|AY), i.e., the orthogonal projection on the closureBf¥ (see [Tomita-
Takesaki theory]). Sincd, B € 9t and AV = BV implies Asy = Bsy, formula

AV D Q — sgA* D,

defines a closable antilinear operator on the dense sub3pdce (9M¥)+ c H. Denote bySe|y its closure. The
self-adjoint operato gy = SE\@S@N’ is called relative modular operator of the pé&ir?d.

Definition 1 Letw be amodularstate on the”*-algebra®. Denote by(H, «, ¥,,) the inducedSNSrepreseita-
tion and by its natural cone. For anyw-normal stater on O let ®,, be its unique vector representativeiy
(Theorem 13 in [Tomita-Takesaki theory]). The entropy dfades- relative tow is defined by

_J (W, |log Ay, v, ¥,), ifvisw-normal
Ent(vw) = { —00 otherwise

Remark. 1. We have restricted the above definition to moduldor simplicity. To obtain a completely general
definition it suffices to pass tostandardepresentation of thenvelopingvon Neumannalgebra®,, if s, < s,
and to seEnt(v|w) = —oco otherwise.




2. We use the notatioRnt( - |- ) of [BR2], [OP] which differs by sign and ordering of the argemnts from the
original notation in [A1, A2].

The most important properties of relative entropy for ourpgoses are
1. Ent(v|w) < 0 with equality if and only ifv = w.
2. For anyC € R the set of state§v | Ent(v|w) > C'} is a weak« compact subset of the foliur’,,.
3. Ent(v o 7|w o 7) = Ent(v|w) for anyx-automorphismr.

The reader should consult [OP] for a more exhaustive listdmidiled discussions.

2 The entropy balance equation

The change in relative entropy due to the action of an irr@utomorphism is given by the following result (see
[JP1)).

Theorem 2 Letw be a modular state on the*-algebra®. Denote by, the infinitesimal generator of itnodular
group. For any unitaryU' € O setry(A) = U* AU. Then the following holds

Ent(v o 7y|w) = Ent(vjw) —iv (U*4,(0)),
for any stater on O and any unitaryU' € Dom(4,,).

Using Property 3 of the relative entropy, a direct applimanf this theorem téocal perturbation of a quantum
dynamical system (see section 5 in [Quantum dynamical s\sjeyields

Corollary 3 Let(O, r) be aC*- or W*-dynamical system equipped with a modular invariant stat®enote by
d., the generator of the modular group ©f For any local perturbationr, induced byt = V* € Dom(d,,) one
has

Ent(v o 74 |w) = Bnt(v]w) — /O Vo s (0,(V))ds. )

Remark. In the case of a time dependent local perturbalign) such thatt — V' (¢) andt — 6, (V(t)) are
continuous in the natural topology 6f, Theorem 2 yields

Ent(v o5t |w) = Ent(v|w) — / vory “(0,(V(u)))ds.

To our knowledge, this formula was first obtained in [OHI] &irr, 3)-KMS statew. In this special cas&é, = — 30
whered is the infinitesimal generator of

Assume thatvy € X (7v,w), i.e., thatw, is a NESS of the perturbed dynamics (see [NESS in quantum
statistical mechanics]). Then there exists atpet> co such that

ta
wy(A) =lim i/ wo Ty (A)ds.
0

The entropy balance formula (1) and property 1 yield

Ent(w o 7 |w)

S — w0V )),

0 < —lim

from which, given the following definition, the next proptisn follows.



Definition 4 1. We define the entropy production observable of the locdig®ation V' relative to the reference
statew by o(w, V) = §,(V).
2. The entropy production rate of a NESS € ¥ (1v,w) iISEp(wy) = wy (o(w, V)).

Proposition 5 The entropy production rate of a NESS is non-negative.

For quantum spin systems our definition formally agrees Witielle’s proposal [R1], [R2]. It is also closely
related to the definition of entropy production used in [LS].

3 Thermodynamic interpretation

Let us consider the case of a small syst8nwith a finite dimensional algebr@,, coupled to several infinitely
extended reservoirR, . .., Ras. We will use freely the notation of [NESS in quantum statistimechanics].

Denote by, the generator of! = 7t|o_ for0 < a < M. SinceQ, is finite dimensional one has = i[Hs, -]
for some HamiltoniarHHs. Observables describing the energy fluxes out of the ressrgan be obtained in the
following way. The total energy of the system is the sum ofehergy of each reservoir, of the enetffy of the
small system and of the interaction enefigy Since the total energy is conserved, the rate at which tesygrof
the reservoirs decreases under the coupled dynamics is

iTa(HS+V):TtV< > 6 H5+V)+1[HS+VH5+V) ( > 65 )

1<j<M 1<j<M

Noting thatd; (V') = §;(V;) € Op ® O;, we can identify®; = §,(V') with the energy flux out of reservoR ;.
Suppose now that each reservai is initially at thermal equilibrium at inverse temperatutg the system

S being in an arbitraryy-invariant faithful state. From the observation in the gaaah following Theorem 2 in

[NESS in quantum statistical mechanics], we conclude tegenerator of the modular group of the initial state

w takes the form
> B0 +HilK, -],
1<j<M
for someK € O, such that,(K) = 0for0 < a < M. It follows that the entropy production observable is

S B (V) HiE V== Y 89 K),

1<j<M 1<j<M

wheredy = )", +i[V, -] is the generator ofy . It is important to realize that the second term in the rigiridh
side of this identity is a total derivative. Consequently,dontribution to entropy production remains uniformly

bounded in time .
/0 o V)ds=— 3 5 / &;)ds + (rf () — K).

1<j<M
In particular, sincev; € X, (7v,w) is Ty-invariant, this boundary term does not contribute to thteogay produc-
tion rate of the NESS, and we can write

Z Bj wi(®;)

1<G<M

which is the familiar phenomenological expression (Eqdir{fINonequilibrium steady states]).
A similar interpretation is possible in the case of time dejant perturbations, see [OHI].



For classical, thermostated systems used in the constnuctimicrocanonical NESS, entropy production is
usually defined as the local rate of phase space contragt{sae [G], [NESS in classical statistical mechanics]).
If ¢* denotes the phase space flow anithe reference measure (typically, this is just Lebesghe) t

u(f) = u(f 0 8") = p(fels oo™ %),
A simple calculation shows that, ifis absolutely continuous with respectiipthen
ot
Ent(l/t“l) = Ent(y\,u) 7/ V(Oz o QI)S) ds.
0

Comparison with Equ. (1) shows perfect agreement with Diedmi4 (see [P] for a completely parallel treatment
of the classical and quantum cases).

4  Strict positivity of entropy production
We have seen th@ip(w;) > 0 for a NESSw,. One expects more, nameBp(w,) > 0. Strict positivity of
entropy production is a delicate dynamical problem. It latexl to the singularity of the NESS with respect to the

reference state, as indicated by the following result (IP3

Theorem 6 If w, € ¥ (7, w) isw-normal, thenEp(wy ) = 0. Moreover, if

sup
>0

/Ol {wory(o(w,V)) —wi(o(w,V))} ds| < oo,

thenEp(w;.) = 0 implies thatw, is w-normal.

Strict positivity of entropy production has been proved muaber of models. We refer to the original articles
[LS], [JP2], [FMU], [AS]. Its genericity has been studied[iP4].
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