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Abstract

We study a class of dissipative PDE’s perturbed by a bounded random kick force.
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obtained by the restriction of solutions to integer times has a unique stationary
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stract result on large-time asymptotic for generalised Markov semigroups.
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0 Introduction

This paper is devoted to the large deviations principle (LDP) for a class of
dissipative PDE’s perturbed by a smooth random force. The large-time asymp-
totics of solutions for the problem in question is well understood, and we refer
the reader to the articles [13, 20, 12, 3] for the first results in this direction and
to the book [22] for further references and a detailed description of the behaviour
of solutions as time goes to infinity. In particular, it is known that if the noise is
sufficiently non-degenerate, then the Markov process associated with the problem
has a unique stationary distribution, which attracts exponentially the law of all so-
lutions. Moreover, the law of iterated logarithm and the central limit theorem hold
for Hölder-continuous functionals calculated on trajectories and give some infor-
mation about fluctuations of their time averages around the mean value. Our aim
now is to investigate the probabilities of deviations of order one from the mean
value.

Let us describe in more detail the main result of this paper on the example of
the Navier–Stokes system. More precisely, we consider the following problem in a
bounded domain1 D⊂ R2 with a C2-smooth boundary ∂D:

u̇−ν∆u+ 〈u,∇〉u+∇p = η(t,x), divu = 0, u
∣∣
∂D= 0,(0.1)

u(0,x) = u0(x),(0.2)

where ν > 0 is the kinematic viscosity, u = (u1(t,x),u2(t,x)) is the velocity field of
the fluid, p = p(t,x) is the pressure, and η is a random external force. We assume
that η(t,x) is a random kick force of the form

η(t,x) =
+∞

∑
k=1

δ (t− k)ηk(x),(0.3)

where δ is the Dirac measure concentrated at zero, and ηk are independent identi-
cally distributed (i.i.d.) random variables defined on a probability space (Ω,F ,P)
that take values in L2(D,R2) and satisfy

(0.4) P{‖ηk‖L2 ≤ b}= 1

for some b <+∞. Problem (0.1), (0.2) is well posed in the space

(0.5) H = {u ∈ L2(D,R2) : divu = 0 in D,〈u,nnn〉= 0 on ∂D},
where nnn stands for the outside unit normal to ∂D. The restrictions of solutions
for (0.1), (0.2) to integer times form a Markov chain in H. As is well known (see
Chapter 3 of the book [22] and the references therein), this process is ergodic un-
der rather general hypotheses on ηk. More precisely, suppose that there exists an
increasing sequence of finite-dimensional subspaces HN ⊂ H such that the law of
the projection of ηk to HN is absolutely continuous with respect to the Lebesgue

1 All the results of this paper remain true for periodic boundary conditions, in which case we
assume in addition that the mean values of the velocity field and of the external force are zero.
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measure, and its support contains the origin. Let P(H) be the set of all Borel
probability measures on H endowed with topology of weak convergence. Then the
Markov chain in question possesses a unique stationary measure µ ∈P(H), which
is exponentially mixing in the sense that the law of any solution of (0.1) with a de-
terministic initial condition converges to µ exponentially fast in the Kantorovich–
Wasserstein metric. We wish to investigate the probabilities of large deviations of
the occupation measures from µ . More precisely, let

(0.6) ζ
ω
k =

1
k

k−1

∑
j=0

δv j , k ≥ 1,

be a sequence of random probability measures in P(H), where {v j} denotes a
stationary trajectory of the Markov chain. The following theorem is a simplified
version of the main result of this paper (see Theorem 1.3).

Theorem A. Under the above hypotheses, the sequence {ζk} satisfies a LDP. More
precisely, there is a lower semicontinuous mapping I : P(H)→ [0,+∞] which is
equal to +∞ outside a compact subset such that
(0.7)

− inf
λ∈Γ̇

I(λ )≤ liminf
k→∞

1
k

logP{ζk ∈ Γ} ≤ limsup
k→∞

1
k

logP{ζk ∈ Γ} ≤ − inf
λ∈Γ

I(λ ),

where Γ⊂P(H) is an arbitrary Borel subset, and Γ̇ and Γ denote its interior and
closure, respectively.

For instance, if f : H → Rm is a continuous mapping and B ⊂ Rm is a Borel
subset, then taking Γ = {σ ∈P(H) :

∫
H f dσ ∈ B} in inequality (0.7), we get (see

Section 1.2 for a precise statement)

exp(−c− k). P
{

1
k

k−1

∑
j=0

f (v j) ∈ B
}
. exp(−c+ k) as k→ ∞,

where c± = c±( f ,B) ≥ 0 are some constants (not depending on k) that can be
expressed in terms of the rate function I.

Let us mention that the LDP is well understood for finite-dimensional diffusions
and for Markov processes with compact phase space, provided that the randomness
is sufficiently non-degenerate and ensures mixing in the total variation norm. This
type of results were first obtained by Donsker and Varadhan [11] and later extended
by many others. A detailed account of the main achievements can be found in the
books [15, 10, 9].

In the context of randomly forced PDE’s, the problem of large deviations was
studied in a number of papers. Most of them, however, are devoted to studying
PDE’s with vanishing random perturbation and provide estimates for the probabil-
ities of deviations from solutions of the limiting deterministic equations. We refer
the reader to the papers [14, 25, 26, 6, 4, 5, 27, 7] and the references therein for
various results of this type, including the asymptotics of stationary distributions
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when the amplitude of the perturbation goes to zero. To the best of our knowledge,
the only papers devoted to large deviations from a stationary distribution in the
case of stochastic PDE’s are those by Gourcy [18, 17]. Using a general result due
to Wu [29], he established the LDP for occupation measures of stochastic Burgers
and Navier–Stokes equations, provided that the random force is white in time and
sufficiently irregular in the space variables. The present paper gives a first result
on large deviations from a stationary distribution for PDE’s with a smooth random
perturbation.

Let us note that, in Gourcy’s papers [18, 17], the set of measures is endowed
with the τ-topology which is generated by the duality with respect to bounded
Borel functions (and is much stronger than the weak topology used in our paper).
This enables one to apply the LDP to physically relevant observables that are not
continuous on the energy space. Under our assumptions, the LDP is not likely
to hold for the τ-topology. However, the results established in this paper can be
applied to derive the LDP for functionals that are continuous on higher Sobolev
spaces. Furthermore, using the Dawson–Gärtner theorem [8], we establish the
following result on large deviations in the space of trajectories (also called process
level LDP). Let us denote by HHH the space of sequences uuu = (u j, j≥ 0) with u j ∈H
and endow it with the Tikhonov topology. Given a stationary trajectory vvv = {v j}
for the Markov chain associated with (0.1), we define the sequence of occupation
measures

(0.8) ζζζ
ω

k =
1
k

k−1

∑
j=0

δvvv j ,

where we set vvv j = (vi, i≥ j).

Theorem B. Let us assume that the above-mentioned hypotheses are satisfied.
Then the LDP holds for ζζζ k with a rate function III : P(HHH)→ [0,+∞] vanishing
outside a compact subset.

In conclusion, let us mention that the LDP discussed above remains valid in the
case of unbounded perturbations; this question will be addressed in a subsequent
publication. We also remark that this paper is a first step of a research program
whose aim is to develop a large deviation theory for dissipative PDE’s with ran-
dom perturbation and to justify the Gallavotti–Cohen fluctuation principle for some
relevant functionals; cf. [16].

The paper is organised as follows. In Section 1 we introduce the model, state
our results, describe applications, and outline the schemes of the proofs. Section 2
deals with the large-time asymptotics of generalised Markov semigroups. A cen-
tral technical part of the proof is the verification of uniform Feller property for a
suitable family of semigroups. This verification is based on a coupling argument
and is carried out in Section 3. The proofs of the main results are given in Sec-
tions 4 and 5. Finally, three auxiliary results used in the main text are recalled in
the Appendix.
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Notation
Let Z be the set of integers, let Z+ be the set of non-negative integers, and

let X be a Polish space with a metric dX(u,v). We denote by Xk the direct product
of k copies of X , by XXX = XZ+ the space of sequences (uk,k ∈ Z+) with uk ∈ X ,
and by BX(a,d) the closed ball of radius d > 0 centered at a ∈ X . If a = 0, we
write BX(d). The distribution of a random variable ξ is denoted by D(ξ ) and the
indicator function of a set C by IC.

Lp(D) and Hs(D) denote the Lebesgue and Sobolev spaces in a domain D ⊂ Rn.
We use the same notation for spaces of scalar and vector valued functions. The
corresponding norms are denoted by ‖ · ‖Lp and ‖ · ‖s, respectively.

Cb(X) is the space of bounded continuous functions f : X → R endowed with the
natural norm ‖ f‖∞ = supX | f | and C+(X) is the set of strictly positive functions
f ∈Cb(X).

Lb(X) stands for the space of functions f ∈Cb(X) such that

‖ f‖L := ‖ f‖∞ + sup
0<dX (u,v)≤1

| f (u)− f (v)|
dX(u,v)

< ∞.

In the case of a compact metric space, we shall drop the subscript b and write C(X)
and L(X).

B(X) denotes the Borel σ -algebra on X , M (X) the vector space of signed Borel
measures on X with finite total mass, M+(X) the cone of non-negative measures
µ ∈M (X), and P(X) the set of Borel probability measures on X . The vector
space M (X) is endowed with the total variation norm

‖µ‖var := sup
Γ∈B(X)

|µ(Γ)|= 1
2

sup
f ∈Cb(X)
‖ f‖∞ ≤ 1

∣∣∣∣∫X
f dµ

∣∣∣∣.
When dealing with M+(X), we also use the Kantorovich–Wasserstein (also called
dual-Lipschitz) metric defined by

‖µ1−µ2‖∗L := sup
f ∈ Lb(X)
‖ f‖L ≤ 1

∣∣∣∣∫X
f dµ1−

∫
X

f dµ2

∣∣∣∣, µ1,µ2 ∈M+(X).

The topology defined by the Kantorovich–Wasserstein distance coincides with that
of weak convergence. We shall write µn ⇀ µ to denote the weak convergence
of {µn} to µ .

For an integrable function f : X → R and a measure µ ∈M (X), we set

〈 f ,µ〉=
∫

X
f (u)µ(du), ‖ f‖µ =

∫
X
| f (u)|µ(du).
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Given a function f : X → R, we denote by f+ and f− its positive and negative
parts, respectively:

f+ =
1
2
(| f |+ f ), f− =

1
2
(| f |− f ).

1 The model and the results

1.1 The model
In this section, we describe a class of discrete-time stochastic systems for which

we shall prove the LDP. Let H be a real separable Hilbert space with a scalar
product (·, ·) and the corresponding norm ‖ · ‖ and let S : H → H be a continuous
mapping. We consider the random dynamical system

(1.1) uk = S(uk−1)+ηk, k ≥ 1,

where {ηk} is a sequence of independent identically distributed (i.i.d.) random
variables in H. System (1.1) defines a homogeneous family of Markov chains,
and we denote by Pk(u,Γ) its transition function and by Pk : Cb(H)→Cb(H) and
P∗k : P(H)→P(H) the corresponding Markov operators. We shall assume that S
satisfies the following three conditions (which are stronger version of those intro-
duced in [20]; see also Section 3.2.1 in [22]).

(A) Regularity and stability. The mapping S : H → H is continuous. More-
over, for any R > r > 0 there are positive constants C =C(R) and a = a(R,r)< 1
and an integer n0 = n0(R,r)≥ 1 such that

‖S(u1)−S(u2)‖ ≤C(R)‖u1−u2‖ for u1,u2 ∈ BH(R),(1.2)

‖Sn(u)‖ ≤max{a‖u‖,r} for u ∈ BH(R), n≥ n0,(1.3)

where Sn is the nth iteration of S.

Let us denote by K the support of the law for η1 and assume that it is a compact
subset in H. Given a closed subset B⊂ H, define the sequence of sets

A0(B) = B, Ak(B) = S(Ak−1(B))+K , k ≥ 1,

and denote by A (B) the closure in H of the union of Ak(B). We shall call A (B)
the domain of attainability from B.

(B) Dissipativity. There is ρ > 0 and a non-decreasing integer-valued function
k0 = k0(R) such that

(1.4) Ak(BH(R))⊂ BH(ρ) for R≥ 0, k ≥ k0(R).

(C) Squeezing. There is an orthonormal basis {e j} in H such that, for all R > 0
and u1,u2 ∈ BH(R),

(1.5) ‖(I−PN)(S(u1)−S(u2))‖ ≤ γN(R)‖u1−u2‖,
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where PN : H→H denotes the orthogonal projection on the linear span of e1, . . . ,eN ,
and {γN(R)} is a decreasing sequence of positive numbers converging to zero as
N→ ∞.

As for the sequence {ηk}, we assume that it satisfies the following hypothesis:

(D) Structure of the noise. The random variable ηk has the form

ηk =
∞

∑
j=1

b jξ jke j,(1.6)

where {e j} is the orthonormal basis entering (C), b j ≥ 0 are constants such that

(1.7) B :=
∞

∑
j=1

b2
j < ∞,

and ξ jk are independent scalar random variables. Moreover, the law of ξ jk is ab-
solutely continuous with respect to the Lebesgue measure, and the corresponding
density p j(r) is a continuously differentiable function such that p j(0) > 0 and
supp p j ⊂ [−1,1].

Recall that a measure µ ∈P(H) is said to be stationary for (1.1) if P∗1µ = µ .
A proof of the following theorem can be found in Chapter 3 of [22].

Theorem 1.1. Suppose that Conditions (A)–(D) are fulfilled and that 2

(1.8) b j 6= 0 for all j ≥ 1.

Then there is a unique stationary measure µ ∈P(H). Moreover, there are con-
stants C > 0 and α > 0 such that, for any λ ∈P(H), we have

(1.9) ‖P∗kλ −µ‖∗L ≤Ce−αk
(

1+
∫

H
‖u‖λ (du)

)
, k ≥ 0.

We conclude this subsection by a simple remark on the support of the stationary
distribution µ . Let us denote by A = A ({0}) the domain of attainability from
zero. Since A is an invariant subset for (1.1), it carries a stationary measure. Since
the stationary measure is unique, we must have supp µ ⊂ A . On the other hand,
inequality (1.3) and the inclusion 0 ∈ suppD(η1) imply that Pk(u,BH(r)) > 0 for
any u ∈A , r > 0, and k� 1. Combining this fact with the Kolmogorov–Chapman
relation, one easily proves that supp µ = A .

2 Theorem 1.1 remains valid if finitely many b j are non-zero. However, the main results of this
paper on LDP will be proved under the stronger condition (1.8).
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1.2 The results
Before formulating the main results of this paper, we recall some standard def-

initions from the theory of large deviations (e.g., see Chapter 6 in [9]). Let X
be a Polish space and let P(X) be the space of probability measures on X en-
dowed with the topology of weak convergence (generated by the Kantorovich–
Wasserstein distance). Recall that a random probability measure on X is defined as
a measurable mapping from a probability space (Ω,F ,P) to P(X). A mapping
I : P(X)→ [0,+∞] is called a rate function if it is lower semicontinuous, and a rate
function I is said to be good if the level set {σ ∈P(X) : I(σ)≤ α} is compact for
any α ∈ [0,+∞). For a measurable set Λ⊂P(X), we write I(Λ) = infσ∈Λ I(σ).

Definition 1.2. Let {ζk = ζ ω
k ,k ≥ 1} be a sequence of random probability mea-

sures on A . We shall say that {ζk} satisfies the LDP with a rate function I if the
following two properties are satisfied.

UPPER BOUND.: For any closed subset F ⊂P(X), we have

limsup
k→∞

1
k

logP{ζk ∈ F} ≤ −I(F).(1.10)

LOWER BOUND.: For any open subset G⊂P(X), we have

liminf
k→∞

1
k

logP{ζk ∈ G} ≥ −I(G).(1.11)

We now consider the family of Markov chains defined by (1.1). To an arbitrary
random variable u0 in H, which we always assume to be independent of {ηk}, one
associates a family of occupation measures by the formula

ζk :=
1
k

k−1

∑
n=0

δun ,(1.12)

where δu stands for the Dirac measure concentrated at u. Recall that A denotes
the domain of attainability from zero (see the end of Section 1.1). It is a compact
subset of H, invariant under the random dynamics defined by (1.1). Note that if the
support of D(u0) is contained in A , then ζk is also supported by A . The following
theorem is the main result of this paper.

Theorem 1.3. Let Hypotheses (A)–(D) and Condition (1.8) be fulfilled and let u0
be an arbitrary random variable in H whose law is supported by A . Then the
family {ζk,k ≥ 1} of random probability measures on A satisfies the LDP with a
good rate function I defined by

I(σ) = sup
V∈C(A )

(
〈V,σ〉−Q(V )

)
, σ ∈P(A ),(1.13)

where Q(V ) is a 1-Lipschitz convex function such that Q(C) = C for any C ∈ R.
Furthermore, the function Q can be written as the limit (1.40), which exists for any
V ∈C(A ) and does not depend on the initial point u0.
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Note that the lower semi-continuity of I is built in its definition, while the fact
that I is a good rate function follows from the compactness of P(A ) in the weak
topology. Choosing suitable open and closed sets in the LDP for occupation mea-
sures, we obtain the asymptotics of the time-averages for various functionals of
trajectories of (1.1). For instance, let f : A →Rm be a continuous mapping and let
Γ⊂ Rm be a Borel set. Define

FΓ = {σ ∈P(A ) : 〈 f ,σ〉 ∈ Γ}, GΓ = {σ ∈P(A ) : 〈 f ,σ〉 ∈ Γ̇},
where Γ and Γ̇ denote the closure and interior of Γ, respectively. In view of the
LDP, we have

limsup
k→∞

1
k

logP
{

1
k

k−1

∑
n=0

f (un) ∈ Γ

}
≤−I(FΓ),(1.14)

liminf
k→∞

1
k

logP
{

1
k

k−1

∑
n=0

f (un) ∈ Γ

}
≥−I(GΓ).(1.15)

Theorem 1.3 provides the LDP for the occupation measures (1.12). Some fur-
ther analysis combined with the Dawson–Gärtner theorem enables one to derive
a process level LDP for trajectories of (1.1) issued from A . Namely, denote
by HHH = HZ+ the direct product of countably many copies of H and, given a trajec-
tory {uk} for (1.1), define a sequence of random probability measures on HHH by the
relation

(1.16) ζζζ k =
1
k

k−1

∑
n=0

δuuun , k ≥ 1,

where we set uuun = (uk,k ≥ n).

Theorem 1.4. Let the hypotheses of Theorem 1.3 be fulfilled and let u0 be an
arbitrary random variable in H whose law is supported by A . Then the family
of random probability measures {ζζζ k,k ≥ 1} satisfies the LDP with a good rate
function III : P(HHH)→ [0,+∞], which is equal to +∞ outside a compact subset.

1.3 Applications
Two-dimensional Navier–Stokes system

Let us consider the Navier–Stokes system (0.1) in which η(t,x) is a random
kick force of the form (0.3). We assume that the kicks {ηk} form a sequence of
i.i.d. random variables in the space H (see (0.5)). Normalising the solutions of (0.1)
to be right continuous and denoting uk = u(k,x), we see that any solution of (0.1)
satisfies relation (1.1) in which S stands for the time-1 shift along trajectories of the
homogeneous Navier–Stokes system (e.g., see Section 2.3 in [22]). We claim that
Theorems 1.3 and 1.4 can be applied to (1.1) with the above choice of S, provided
that we restrict our consideration to trajectories lying in A = A ({0}). Indeed, the
differentiability of the flow map for the Navier–Stokes system is well known (e.g.,
see Section 7.5 in [1]), and all other properties entering Conditions (A) and (B)
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are checked in [20]. Furthermore, the squeezing property (C) is satisfied for any
choice of an orthonormal basis {e j} in H (cf. proof of Proposition 1.6 below). We
thus obtain the following result.

Proposition 1.5. Let the random variables {ηk} satisfy Condition (D) with b j 6= 0
for all j≥ 1, let u0 be an arbitrary H-valued random variable which is independent
of {ηk} and whose law is supported by A , and let {uk} be the corresponding
trajectory of (1.1). Then the occupation measures ζk and ζζζ k defined by (1.12) and
(1.16) satisfy the LDP with good rate functions.

In particular, taking for u0 a random variable distributed according to the sta-
tionary measure µ , we obtain Theorems A and B of the Introduction. Furthermore,
in view of the discussion after Theorem 1.3, we have an LDP for the time-averages
of continuous functionals f : H→Rm calculated on trajectories of (1.1). This result
is applicable, for instance, to the energy functional f (u) = 1

2
∫

D |u(x)|2dx.
To treat other physically relevant observables, such as the enstrophy or the cor-

relation tensor, we need to change the phase space of the problem, making it more
regular. More precisely, let us define the space

U = H ∩H1
0 (D)∩H2(D)

(where Hs(D) denotes the usual Sobolev space of order s) and endow it with the
usual scalar product in H2. Since the flow-map for the Navier–Stokes system pre-
serves the H2-regularity, system (1.1) can be studied in the space U , provided that
the random kicks also belong to U . We have the following result.

Proposition 1.6. Let {ηk} be a sequence of i.i.d. random variables in U of the
form (1.6), in which {e j} is an orthonormal basis in U, and {b j} and {ξ jk} are the
same as in Condition (D). Assume that b j 6= 0 for all j ≥ 1. Then the LDP holds
for the occupation measures ζk and ζζζ k of any trajectory whose initial state u0 is a
U-valued random variable with range in A .

For instance, one can take for an initial state any function u0 ∈U or a random
variable u0 distributed according to the stationary measure. Furthermore, rela-
tions (1.14) and (1.15) hold for the functional f : U → R6 defined by

f (u) =
(

1
2

∫
D
|u(x)|2dx,

1
2

∫
D
|(∇⊗u)(x)|2dx,ui(x1)u j(x2),1≤ i, j ≤ 2

)
,

where u = (u1,u2), and x1,x2 ∈ D are given points.

Proof of Proposition 1.6. We shall check that Conditions (A)–(D) of Section 1.1
(with H replaced by U) are fulfilled. The validity of (D) follows from the hy-
potheses of the proposition. The facts that, for any T > 0, the time-T shift along
trajectories is uniformly Lipschitz continuous on bounded subsets of U and is con-
tinuously differentiable in the Fréchet sense are proved in Chapter 7 of [1]. Let us
prove (1.3). It is well known that (see the proof of Theorem 6.2 of Chapter 1 in [1])

‖S(u)‖ ≤ q‖u‖, ‖S(u)‖2 ≤C‖u‖,
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where q < 1 and C > 0 are some constants, u ∈ H in the first inequality, and u ∈
BH(1) in the second. Combining these two estimates we see that for any R > 0 we
can find n1 = n1(R)≥ 1 such that

‖Sn+1(u)‖2 ≤Cqn‖u‖ for u ∈ BH(R), n≥ n1.

This inequality immediately implies (1.3).

We now establish the dissipativity property (B). We know that this property
holds in the space H. Thus, we can find ρ1 > 0 such that, for any R > 0 and a
sufficiently large integer k1(R)≥ 1, we have

Ak(BU(R))⊂ BH(ρ1) for k ≥ k1(R).

Since the mapping S is continuous from H to U , it follows that

Ak+1(BU(R))⊂ S(BH(ρ1))+K for k ≥ k1(R).

Choosing ρ > 0 such that S(BH(ρ1))+K ⊂ BU(ρ), we obtain (1.4) with H =U
and k0(R) = k1(R)+1.

It remains to prove the squeezing property (C). Let ui(t), i = 1,2, be two so-
lutions of the homogeneous Navier–Stokes system, which we write as a non-local
PDE in the space H:

(1.17) ∂tu+νLu+B(u) = 0.

Here L = −Π∆, B(u) = B(u,u), B(u,v) = Π(〈u,∇〉v), and Π is the orthogonal
projection in L2(D,R2) onto H. We wish to show that, if the initial conditions
ui0 = ui(0) belong to the ball BU(R) and {e j} is an orthonormal basis in U , then∥∥(I−PN)

(
u1(1)−u2(1)

)∥∥
2 ≤ γN(R)‖u10−u20‖2,

where γN(R) depends only on the basis {e j} and goes to zero as N→ ∞. A simple
compactness argument implies that this inequality will hold if we prove that

(1.18) ‖u1(1)−u2(1)‖3 ≤C(R)‖u10−u20‖2 for u10,u20 ∈ BU(R).

The proof of this inequality is carried out by standard methods (e.g., see [1]),
and we confine ourselves to outlining the main steps. We shall denote by Ci(R)
unessential positive constants depending only on R.

Step 1. It suffices to prove that

‖u1(1)−u2(1)‖2 ≤C1(R)‖u10−u20‖2,(1.19)

‖u̇1(1)− u̇2(1)‖1 ≤C2(R)‖u10−u20‖2(1.20)

for u10,u20 ∈ BU(R), where v̇ = ∂tv. Set u = u1−u2 and note that (1.17) implies

νLu(1) =−u̇(1)−B
(
u1(1),u(1)

)
−B
(
u(1),u2(1)

)
.

Since ui(1), i = 1,2 are bounded in H2 (see Theorem 6.2 in [1]) and the bilinear
mapping (u,v) 7→ B(u,v) is continuous from U to H1, we see that

ν ‖Lu(1)‖1 ≤ ‖u̇(1)‖1 +C3(R)‖u(1)‖2.
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Recalling that L−1 is continuous from H1
0 ∩H to H3 and using inequalities (1.19)

and (1.20), we obtain the required estimate (1.18).

Step 2. To prove (1.19) and (1.20), we first show that

(1.21) sup
0≤t≤1

(
‖u̇(t)‖2 +

∫ t

0
‖u̇(s)‖2

1ds
)
≤C4(R)‖u10−u20‖2.

Differentiating (1.17) in time, we derive the following equation for u̇ = u̇1− u̇2:

(1.22) ∂t u̇+νLu̇+B(u̇1,u)+B(u1, u̇)+B(u̇,u2)+B(u, u̇2) = 0.

Taking the L2-scalar product with 2u̇ and performing some standard transforma-
tions, we obtain

∂t‖u̇‖2 +ν‖u̇‖2
1 ≤C5‖u2‖2

1‖u̇‖2 +C5‖u‖1‖u‖
(
‖u̇1‖1‖u̇1‖+‖u̇2‖1‖u̇2‖

)
.

Applying the Gronwall and Cauchy–Schwarz inequalities and using the fact that u̇i
belong to a bounded set in L∞(0,1;H)∩L2(0,1;H1), we derive

(1.23) ‖u̇(t)‖2 +ν

∫ t

0
‖u̇(s)‖2

1ds≤C6(R)
(
‖u̇(0)‖2 +‖u‖L∞(Jt ;H)‖u‖L2(Jt ;H1)

)
,

where Jt = (0, t). It follows from (1.17) that (cf. Step 1)

‖u̇(0)‖ ≤C7(R)‖u(0)‖2.

Furthermore, it is well known that

(1.24) sup
0≤t≤1

(
‖u(t)‖2 + t ‖u(t)‖2

1 +
∫ t

0
‖u(s)‖2

1 ds
)
≤C8(R)‖u(0)‖2.

Combining these two inequalities with (1.23), we obtain (1.21).

Step 3. We now derive (1.19). To this end, note that

(1.25) νLu(1) = g :=−∂tu(1)−B(u1(1),u(1))−B(u(1),u2(1)).

Using the continuity properties of B and inequalities (1.21) and (1.24) one easily
obtains

‖g‖ ≤ ‖∂tu(1)‖+C9(R)‖u(1)‖1 ≤C10(R)‖u(0)‖2.

Combining this with (1.25) and the continuity of L−1 from H to H2, we ob-
tain (1.19).

Step 4. It remains to prove (1.20). To this end, we take the L2-scalar product
of (1.22) with 2tLu̇. After some standard transformations, we derive

(1.26) ∂t
(
t‖u̇‖2

1
)
−‖u̇‖2

1 +2νt ‖u̇‖2
2 = q(t),

where we set q(t)=−2t
(
B(u̇1,u)+B(u1, u̇)+B(u̇,u2)+B(u, u̇2),Lu̇

)
. Well-known

estimates for the bilinear term B imply that

(1.27) |q(t)| ≤ νt ‖u̇‖2
2 +C11t q1(t),
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where

q1(t) = ‖u̇1‖‖u̇1‖1‖u‖1‖u‖2 +‖u1‖2‖u1‖2
2‖u̇‖2

+‖u2‖1‖u2‖2‖u̇‖‖u̇‖1 +‖u̇2‖2
1‖u‖‖u‖2.

Integrating (1.26) in time and using (1.27), we obtain

(1.28) t ‖u̇‖2
1 +ν

∫ t

0
s‖u̇‖2

2 ds≤
∫ t

0
‖u̇‖2

1 ds+C11

∫ t

0
sq1(s)ds.

The first integral on the right-hand side can be estimated with the help of (1.21).
We now bound each term of the second integral:∫ t

0
s‖u̇1‖‖u̇1‖1‖u‖1‖u‖2ds≤C12(R)

(∫ t

0
‖u(s)‖2

2 ds
)1/2

sup
0≤s≤t

‖u(s)‖1,

∫ t

0
s‖u1‖2‖u1‖2

2‖u̇‖2ds≤C13(R)
(∫ t

0
‖u̇(s)‖2 ds

)1/2

,

∫ t

0
s‖u2‖1‖u2‖2‖u̇‖‖u̇‖1ds≤C14(R)

(∫ t

0
‖u̇(s)‖2

1 ds
)1/2

sup
0≤s≤t

‖u̇(s)‖,

∫ t

0
s‖u̇2‖2

1‖u‖‖u‖2ds≤C15(R)
(∫ t

0
‖u(s)‖2

2 ds
)1/2

sup
0≤s≤t

‖u(s)‖,

where 0≤ t ≤ 1, and we used the fact that the functions ui and u̇i belong to bounded
sets in the spaces L∞(J1,H2) and L∞(J1,L2)∩L2(J1,H1), respectively. On the other
hand, it is well known that

sup
0≤t≤1

(
‖u(t)‖2

1 +
∫ t

0
‖u(s)‖2

2 ds
)
≤C17(R)‖u(0)‖2

1.

Combining these estimates with (1.28), (1.24), and (1.21), we obtain (1.20). This
completes the proof of Proposition 1.6. �

Complex Ginzburg–Landau equation
Let us consider a complex Ginzburg–Landau (CGL) equation perturbed by a

random kick force:

(1.29) ∂tu− (ν + i)∆u+ ia|u|2u = η(t,x), x ∈ D, u
∣∣
∂D = 0.

Here a > 0 is a parameter, D ⊂ R3 is a bounded domain with C2-smooth bound-
ary ∂D, u = u(t,x) is a complex-valued unknown function, and η is an external
force of the form (0.3), where {ηk} is a sequence of i.i.d. random variables in the
complex space H1

0 (D). It is well known that the Cauchy problem for (1.29) is well
posed in H1

0 (D) (see [21]), that is, for any u0 ∈H1
0 (D), problem (1.29) has a unique

solution such that

(1.30) u(0,x) = u0(x).
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Let us assume that the random kicks entering (1.29) have the form

ηk(x) =
∞

∑
j=1

b j(ξ
1
jk + iξ 2

jk)e j,

where {e j} is an orthonormal basis in H1
0 (D) consisting of the real eigenfunctions

of the Dirichlet Laplacian, {b j} ⊂ R is a sequence satisfying (1.7), and ξ i
jk are

independent real-valued random variables whose laws possess the properties stated
in Condition (D) of Section 1.1. We denote by A ⊂ H1

0 (D) the set of attainability
from zero. The following result is an analogue of Propositions 1.5 and 1.6 for the
case of the CGL equation.

Proposition 1.7. In addition to the above hypotheses, assume that b j 6= 0 for all
j ≥ 1. Then the LDP holds for the occupation measures (1.12) and (1.16) of the
trajectories whose initial state is an H1

0 -valued random variable with range in A .

Proof. We endow the space H1
0 = H1

0 (D) with the scalar product

(u1,u2)1 = Re
∫

D
∇u1(x) ·∇u2(x)dx

and regard it as a real Hilbert space. Let S : H1
0 →H1

0 be the time-1 shift along tra-
jectories of the problem (1.29) with η ≡ 0. The required results will be established
if we check that the stochastic system (1.1) considered in the space H = H1

0 pos-
sesses properties (A)–(D). Regularity of the mapping S and its Lipschitz continuity
on bounded subsets are standard, and (D) is satisfied in view of the hypotheses of
the proposition. Thus, it remains to check (1.3)–(1.5).

Step 1. Let us introduce the following continuous functionals on H1
0 :

H0(u) =
1
2

∫
D
|u(x)|2dx, H1(u) =

∫
D

(1
2
|∇u(x)|2 + a

4
|u(x)|4

)
dx.

It is well known 3 that if u(t) is a solution of (1.29) and η is a locally integrable
function of time with range in H1

0 , then

d
dt

H0(u) =−ν ‖∇u‖2 +(u,η),

(1.31)

d
dt

H1(u) =−ν ‖∆u‖2−2aν(|u|2, |∇u|2)+aν(u2,(∇u)2)+(−∆u+a|u|2u,η),

(1.32)

where (·, ·) and ‖ · ‖ stand for the real L2-scalar product and the corresponding
norm:

(u1,u2) = Re
∫

D
u1(x) ū2(x)dx, ‖u‖2 = (u,u).

3 For instance, see Section 2.2 in [21] for the more complicated case of a white noise force.
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Using the inequalities

‖∆u‖2 ≥ α1‖∇u‖2, |(u2,(∇u)2)| ≤ (|u|2, |∇u|2), (|u|2, |∇u|2)≥ c
∫

D
|u|4dx,

where α1 > 0 is the first eigenvalue of the Dirichlet Laplacian, we derive from (1.32)
the inequality

(1.33)
d
dt

H1(u(t))≤−δH1(u(t))−
ν

2
‖∆u‖2 +(−∆u+a|u|2u,η),

where δ > 0 depends only on a, ν , and α1. Taking η ≡ 0 and applying the Gronwall
inequality, we see that

H1(u(t))≤ e−δ tH1(u(0)), t ≥ 0.

It follows that if u0 ∈ BH1
0
(R), then

‖Sn(u0)‖1 ≤
(
2H1(u(n))

)1/2 ≤
(
2e−δnH1(u0)

)1/2 ≤C1Re−δn/2‖u0‖1,

where we used the inequality

(1.34) H1(v)≤C‖v‖4
1, v ∈ H1

0 ,

following immediately from the continuity of the embedding of H1
0 ⊂ L4. The

above estimate for ‖Sn(u0)‖1 implies (1.3).

Step 2. We now prove the dissipativity property (1.4). To this end, we first
establish a bound for the L2-norm. It follows from (1.31) that, for any ε > 0, the
function ϕε(t) = (H0(u(t))+ ε)1/2 satisfies the inequality

ϕ
′
ε(t)≤−να1ϕε(t)+ 1√

2
‖η(t)‖+να1

√
ε.

Applying the Gronwall inequality and passing to the limit ε → 0, we obtain

(1.35) ‖u(t)‖ ≤ e−να1t‖u0‖+
∫ t

0
e−να1(t−s)‖η(s)‖ds.

Now note that if
∫

J ‖η(s)‖ds≤ b0 for any interval J ⊂ R+ of length 1, then∫ t

0
e−να1(t−s)‖η(s)‖ds≤ b0

1− e−να1
for t ≥ 0.

Combining this with (1.35), we see that

(1.36) ‖u(k)‖ ≤ e−να1k‖u0‖+
b0

1− e−να1
, k ≥ 0.

This inequality, established in the case of locally time-integrable functions η(t),
remains true for kick forces of the form (0.3) with L2 bounded functions ηk. In
particular, (1.4) holds with H = L2(D).

We now use the regularising property of the homogeneous CGL equation to
prove (1.4) with H = H1

0 . Namely, if we show that the mapping S : u0 7→ u(1)
from L2 to H1

0 is bounded on bounded subsets, then (1.36) will obviously imply
the existence of a universal constant ρ > 0 satisfying (1.4) with H = H1

0 . To prove
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the boundedness of S, let us fix a solution u of (1.29), define a function ψ(t) =
t
√

H1(u(t)), and calculate its derivative. It follows from (1.32) and (1.34) that4

ψ
′(t) =

√
H1 +

t√
H1

d
dt

H1 ≤
√

C‖u(t)‖2
1.

Furthermore, integrating relation (1.31) with η ≡ 0, we see that

‖u(t)‖2 +2ν

∫ t

0
‖u(s)‖2

1ds≤ ‖u0‖2.

Combining these two relations, we obtain

(1.37) ‖u(t)‖1 ≤
√

2H1(u(t)) =

√
2

t
ψ(t)≤

√
2C
t

∫ t

0
‖u‖2

1ds≤ C2

νt
‖u0‖2.

The boundedness of S from L2 to H1
0 is a straightforward consequence of this in-

equality.

Step 3. It remains to establish the squeezing property (1.5), in which PN is the
orthogonal projection in H1

0 (endowed with the scalar product (·, ·)1) to the vector
span of {e j, ie j, j = 1, . . . ,N}. Let us set QN = I−PN . By hypothesis, we have
‖e j‖1 = 1, hence it follows that

‖e j‖=
1
√

α j
, j ≥ 1,

where α j is the eigenvalue of the Dirichlet Laplacian corresponding to the eigen-
function e j. Using this relation, it is straightforward to check that {√α j e j} is an
orthonormal basis in L2 and that the norm of QN regarded as an operator in L2 is
equal to 1.

Now let u1,u2 be two solutions of (1.29) corresponding to initial data u10,u20 ∈
BH1

0
(R). Applying QN to (1.29) and setting w = QN(u1−u2), we derive the equa-

tion
ẇ− (ν + i)∆w+ iaQN

(
|u1|2u1−|u2|2u2

)
= 0.

It follows that

∂t‖w‖2
1 = 2Re

∫
D

∇ẇ ·∇w̄dx =−2Re
∫

D
ẇ∆w̄dx

=−2
(
(ν + i)∆w− iaQN(|u1|2u1−|u2|2u2),∆w̄

)
≤−2ν ‖∆w‖2 +a

∥∥|u1|2u1−|u2|2u2
∥∥‖∆w‖,(1.38)

where we used the fact that the norm of QN is equal to 1. Using the Hölder in-
equality and the continuity of the embedding H1

0 ⊂ L6, we derive∥∥|u1|2u1−|u2|2u2
∥∥≤C3

(
‖u1‖1 +‖u2‖1

)2 ‖w‖1.

4 A rigorous derivation of (1.37) can be carried out by the simple argument used to estab-
lish (1.35).
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Substituting this into (1.38) and using the Poincaré inequality ‖∆w‖2 ≥ αN‖w‖2
1,

we obtain

(1.39) ∂t‖w‖2
1 ≤−

(
ναN−C4(‖u1‖1 +‖u2‖1)

4)‖w‖2
1.

Since u10,u20 ∈ BH1
0
(R) and the resolving operator for the CGL is bounded on

bounded subsets, we can find C5(R) such that

‖ui(t)‖1 ≤C5(R) for 0≤ t ≤ 1, i = 1,2.

Combining this with (1.39) and the Gronwall inequality, we derive

‖w(t)‖2
1 ≤ exp

(
−ναNt +C4

∫ t

0
(‖u1‖1 +‖u2‖1)

4ds
)
‖w(0)‖2

1

≤ exp
(
−ναNt +C6(R) t

)
‖w(0)‖2

1.

Since QN is an orthogonal projection in H1
0 , we have ‖w(0)‖1 ≤ ‖u10 − u20‖1.

Substituting this into the above estimate and taking t = 1, we obtain

‖u1(1)−u2(1)‖1 ≤ γN(R)‖u10−u20‖1, γ
2
N(R) = exp

(
−ναN +C6(R)

)
.

This completes the proof of (1.5) and Proposition 1.7 follows. �

1.4 Scheme of the proof of Theorem 1.3
Along with ζk, let us consider “shifted” occupation measures defined as

ζ̂k =
1
k

k

∑
n=1

δun .

The sequences {ζk} and {ζ̂k} are exponentially equivalent (see Lemma A.2), and
therefore, by Theorem 4.2.13 of [9], it suffices to prove the LDP for ζ̂k. The proof
of this property is based on an abstract result established by Kifer [19]. For the
reader’s convenience, its statement is recalled in the Appendix (see Theorem A.1).
We shall prove that the following two properties hold.

Property 1: The existence of a limit.: For any V ∈C(A ), the limit

Q(V ) = lim
k→+∞

1
k

logE exp
( k

∑
n=1

V (un)

)
.(1.40)

exists and does not depend on the initial condition u0.

The function Q(V ) is convex and 1-Lipschitz, and we denote by I : M (A )→ R+

its Legendre transform; see (A.2). It is well known that

Q(V ) = sup
σ∈P(A )

(
〈V,σ〉− I(σ)

)
;

see Lemma 2.2 in [2] and Theorem 2.2.15 in [10]. In view of the compactness
of P(A ), for any V ∈ C(A ) the supremum in the above relation is attained at
some point σV ∈P(A ). Any such point is called an equilibrium state.
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Property 2: Uniqueness of the equilibrium state.: There is a dense vector
space V ⊂C(A ) such that, for any V ∈ V , there exists unique σV satisfy-
ing:

Q(V ) = 〈V,σV 〉− I(σV ).(1.41)

According to Kifer’s theorem, the first of the above properties implies the LD
upper bound for ζ̂k, while the second is sufficient for the LD lower bound. The
proofs of these two properties are related to the large-time behaviour of a gen-
eralised Markov semigroup associated with uk. More precisely, given a function
V ∈C(A ), we consider the semigroup

(1.42) PV
k f (u) := Eu f (uk)exp

( k

∑
n=1

V (un)

)
, f ∈C(A ),

where the subscript u means that we consider the trajectory of (1.1) starting from
u ∈ H. The dual semigroup is denoted by PV∗

k : P(A )→P(A ). We construct
explicitly a dense vector space V ⊂C(A ) such that, for any V ∈ V , the semigroup
PV

k is uniformly Feller and uniformly irreducible (see Section 2 for the definition of
these concepts). Then, by an abstract result proved in Section 2, there is a number
λV > 0, a function hV ∈C+(A ), and a measure µV ∈P(A ) satisfying

(1.43) PV
1 hV = λV hV , PV∗

1 µV = λV µV ,

such that for any f ∈C(A ) and ν ∈P(A ) we have

λ
−k
V PV

k f → 〈 f ,µV 〉hV in C(A ) as k→+∞,(1.44)

λ
−k
V PV∗

k ν ⇀ 〈hV ,ν〉µV in M+(A ) as k→+∞.(1.45)

Taking f = 1 in (1.44), one gets immediately the existence of the limit (1.40) for
V ∈ V and any initial function u0 whose law is supported by A . Then, by a simple
approximation argument, we prove the existence of the limit for any V ∈C(A ).

To establish the uniqueness of σV ∈P(A ) satisfying (1.41), we first show
that any equilibrium state σV is a stationary measure for the dual of the following
Markov semigroup:

(1.46) S V
k g := λ

−k
V h−1

V PV
k (ghV ), g ∈C(A ).

We then deduce the uniqueness of stationary measure for S V
k from convergence (1.45),

showing that σV (du) = hV (u)µV (du).

The crucial point in the realisation of the above scheme is the verification of the
uniform Feller property for the semigroup {PV

k }. This verification is based on a
coupling argument and is carried out in Section 3.
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1.5 Scheme of the proof of Theorem 1.4
Let pm : HHH → Hm be the projection that maps a sequence (u j, j ∈ Z+) to the

vector (u j,0 ≤ j ≤ m− 1). It is straightforward to check that if {uk,k ≥ 0} is a
trajectory for (1.1), then the image of ζζζ k (see (1.16)) under pm coincides with the
random probability measure

(1.47) ζ
m
k =

1
k

k−1

∑
n=0

δuuum
n
, k ≥ 1,

where uuum
n = (un, . . . ,un+m−1). It follows from the Dawson–Gärtner theorem (see

Theorem A.3 in the Appendix) that to prove Theorem 1.4 it suffices to show that for
any integer m≥ 1, the LDP holds for ζ m

k with a good rate function Im : P(Hm)→
[0,+∞]. The proof of this fact is very similar to the proof of Theorem 1.3 and the
argument is outlined in Section 5. To formulate the result precisely, let A (m) be
the set of vectors (u1, . . . ,um) ∈ Hm such that u1 ∈ A and uk = S(uk−1)+ηk for
2≤ k≤m, where ηk ∈K . Note that if a trajectory {uk} for (1.1) is such that u0 is
an A -valued random variable, then the measures ζ m

k are concentrated on A (m). In
Section 5 we prove

Theorem 1.8. Under the conditions of Theorem 1.3, let u0 be a random variable
in H whose law is supported by A . Then the family {ζ m

k ,k ≥ 1} regarded as a
sequence of random probability measures on A (m) satisfies the LDP with a good
rate function Im : P(A (m))→ [0,+∞]. Moreover, Im can be written as

Im(σ) = sup
V∈C(A (m))

(
〈V,σ〉−Qm(V )

)
, σ ∈P(A (m)),(1.48)

where Qm : C(A (m))→ R is a 1-Lipschitz convex function such that Qm(C) = C
for any C ∈ R.

This result immediately implies that ζ m
k , as measures on Hm, satisfy the LDP. To

see this, extend the rate function Im constructed in Theorem 1.8 to the space P(Hm)

by setting Im(σ) = +∞ for any measure σ ∈P(Hm) satisfying σ(A (m)) < 1.
Then, recalling that ζ m

k are supported on A (m) if so is the the initial measure D(u0),
we check that the LD upper and lower bounds hold for the family {ζ m

k ,k ≥ 1} re-
garded as random probability measures on Hm.

1.6 Uniform large deviations principle
The arguments of the proofs of Theorems 1.3 and 1.4 enable one to obtain a

uniform LDP for the families {ζk} and {ζζζ k}, which depend on the initial point.
More precisely, let us denote by ζk(u) the occupation measure (1.12) for the tra-
jectory issued from a deterministic point u ∈A and define ζζζ k(u) in a similar way.
The definition of the uniform LDP is recalled in the Appendix (see Section A.3).
We have the following result.
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Theorem 1.9. Let Hypotheses (A)–(D) and Condition (1.8) be satisfied. Then the
uniform LDP holds for the families {ζk(u),u ∈ A } and {ζζζ k(u),u ∈ A } with the
good rate functions I and III defined in Theorems 1.3 and 1.4, respectively.

Sketch of the proof. Let us define the set Θ := N×A and introduce an order rela-
tion ≺ on it by the following rule: if θi = (ki,ui) ∈ Θ for i = 1,2, then θ1 ≺ θ2 if
and only if k1≤ k2. Then (Θ,≺) is a directed set. Defining r(θ) = k, we apply The-
orem A.1 to the family ζθ = ζk(u) indexed by θ = (k,u) ∈ Θ. The scheme of the
proof described above for Theorem 1.3 applies equally well in this case, and using
the fact that the convergence in (1.40) is uniform with respect to the determinis-
tic initial condition u0 ∈A , we get the existence of limit (A.1) and uniqueness of
equilibrium measure. Thus, we have the LDP

(1.49) −I(Γ̇)≤ liminf
θ∈Θ

1
k

logP{ζθ ∈ Γ} ≤ limsup
θ∈Θ

1
k

logP{ζθ ∈ Γ} ≤ −I(Γ).

Now notice that the middle terms in this inequality can be written as

liminf
θ∈Θ

1
k

logP{ζθ ∈ Γ}= liminf
k→+∞

1
k

inf
u∈A

logP{ζk(u) ∈ Γ},

limsup
θ∈Θ

1
k

logP{ζθ ∈ Γ}= limsup
k→+∞

1
k

sup
u∈A

logP{ζk(u) ∈ Γ}.

Substituting these relations into (1.49), we obtain the uniform LDP for ζk(u).

To establish the uniform LDP for ζζζ k(u), we apply Theorem A.4. We thus need
the uniform LDP for the projected measures ζ m

k = ζ m
k (u) defined in Section 1.5.

The latter can be obtained by modifying the proof of Theorem 1.8 exactly in the
same way as we did above to get the uniform LDP for ζk(u). �

2 Large-time asymptotics for generalised Markov semigroups

In this section, we prove a general result on the large-time behaviour of trajec-
tories for a class of dual semigroups. This type of results were established earlier
for Markov semigroups satisfying a uniform Feller and an irreducibility proper-
ties; see [24, 28, 20, 23, 22]. The main theorem of this section is a generalisation
of Theorem 4.2 in [20] and has independent interest.

Let X be a compact metric space, let M+(X) be the space of non-negative
Borel measures on X endowed with the topology of weak convergence, and let
{P(u, ·),u ∈ X} ⊂M+(X) be a family satisfying the following condition:

FELLER PROPERTY.: The function u 7→ P(u, ·) from X to M+(X) is contin-
uous and non-vanishing.

In this case, we shall say that P(u,Γ) is a generalised Markov kernel. One obvious
consequence of the Feller property is the inequality

C−1 ≤ P(u,X)≤C for all u ∈ X .



LARGE DEVIATIONS FOR DISSIPATIVE PDE’S WITH RANDOM KICKS 21

Define the operators

P f (u) =
∫

X
P(u,dv) f (v), P∗µ(Γ) =

∫
X

P(u,Γ)µ(du)

and denote Pk =Pk and P∗k = (P∗)k. It is easy to see that

Pk f (u) =
∫

X
Pk(u,dv) f (v), P∗k µ(Γ) =

∫
X

Pk(u,Γ)µ(du),

where Pk(u,Γ) is defined by the relations P0(u, ·) = δu, P1(u, ·) = P(u, ·), and

Pk(u, ·) =
∫

X
Pk−1(u,dv)P(v, ·), k ≥ 2.

To simplify the notation, the sup-norm on C(X) is denoted in this section by ‖ · ‖.
Let 1 be the function on X identically equal to 1. Recall that a family C ⊂C(X)
is called determining if any two measures µ,ν ∈M+(X) satisfying the relation
〈 f ,µ〉= 〈 f ,ν〉 for all f ∈ C coincide. In this section we prove:

Theorem 2.1. Let P(u,Γ) be a generalised Markov kernel satisfying the following
conditions.

UNIFORM FELLER PROPERTY.: There is a determining family C ⊂ C+(X)
of non-zero functions such that 1 ∈ C and, for any f ∈ C , the sequence
{‖Pk f‖−1Pk f ,k ≥ 0} is uniformly equicontinuous.

UNIFORM IRREDUCIBILITY.: For any r > 0 there is an integer m≥ 1 and a
constant p > 0 such that

(2.1) Pm(u,B(û,r))≥ p for all u, û ∈ X .

Then there is a constant λ > 0, a unique measure µ ∈P(X) whose support co-
incides with X, and a unique h ∈ C+(X) satisfying 〈h,µ〉 = 1, such that for any
f ∈C(X) and ν ∈M+(X) we have

Ph = λh, P∗µ = λ µ,(2.2)

λ
−kPk f → 〈 f ,µ〉h in C(X) as k→ ∞,(2.3)

λ
−kP∗kν ⇀ 〈h,ν〉µ as k→ ∞.(2.4)

Proof. Note that the uniqueness of h and µ is an immediate consequence of the
normalisation and relations (2.2)–(2.4). We split the proof in four steps.

Step 1. We first prove the existence of a measure satisfying the second relation
in (2.2). To this end, let F : P(X)→P(X) be a map defined by

F(µ) = (P∗µ(X))−1P∗µ.

The Feller property implies that this map is well defined and continuous in the
weak topology. Since P(X) is a convex compact set, by the Leray–Schauder
theorem, the mapping F has a fixed point µ ∈P(X). We thus obtain the second
relation in (2.2) with λ =P∗µ(X). In what follows, we may assume without loss
of generality that λ = 1; otherwise, we can replace P(u,Γ) by λ−1P(u,Γ).
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Step 2. Let us prove that, for any f ∈ C , we have

(2.5) C−1
f ≤ ‖Pk f‖ ≤C f for all k ≥ 1,

where C f > 1 is a constant not depending on k. Indeed, suppose that there is a
sequence k j→ ∞ such that

(2.6) ‖Pk j f‖+‖Pk j f‖−1→+∞ as j→ ∞.

In view of the uniform Feller property, we can assume that

‖Pk j f‖−1Pk j f → g in C(X) as j→ ∞,

where g ∈ C(X) is a function whose norm is equal to 1. Integrating with respect
to µ and using the invariance of µ , we derive

(2.7) ‖Pk j f‖−1〈 f ,µ〉 → 〈g,µ〉 as j→ ∞.

The uniform irreducibility implies that for any û ∈ X and r > 0 we have

µ
(
B(û,r)

)
=
∫

X
Pm
(
u,B(û,r)

)
µ(du)≥ p µ(X)> 0.

Hence, supp µ = X , and since f ,g ∈ C+(X) are non-zero functions, we have that
〈 f ,µ〉> 0 and 〈g,µ〉> 0. It now follows from (2.7) that the sequence ‖Pk j f‖ has
a finite positive limit, and therefore (2.6) cannot hold.

Step 3. Let us prove the existence of h ∈ C+(X) satisfying the first relation
in (2.2) with λ = 1. Let f ∈C be an arbitrary function. The uniform Feller property
and inequality (2.5) imply that the sequence Pk f is uniformly equicontinuous. It
follows that so is the sequence

fk =
1
k

k−1

∑
l=0

Pl f .

Let h be a limit point for { fk}. It is straightforward to see that h≥ 0 and P1h = h.
Furthermore, since 〈 fk,µ〉 = 〈 f ,µ〉 > 0, we see that h is non-zero. Multiplying h
by a constant, we can assume that 〈h,µ〉= 1. It remains to prove that h(u)> 0 for
all u ∈ X . Indeed, let û ∈ X be any point at which h is positive. Then there is r > 0
such that h(v)≥ r for v ∈ B(û,r). It follows that, for any u ∈ X , we have

h(u) =Pmh(u) =
∫

X
Pm(u,dv)h(v)≥

∫
B(û,r)

Pm(u,dv)h(v)

≥ rPm
(
u,B(û,r)

)
≥ rp > 0,

where m≥ 1 is the integer from (2.1).

Step 4. We now establish convergence (2.3) and (2.4) with λ = 1. To this end,
we first note that (2.4) is an immediate consequence of (2.3). Furthermore, the
right-hand inequality in (2.5) with f = 1 implies that the norms of the operators Pk
are bounded by C1 for all k ≥ 1. Since the linear span of a determining family is
dense in C(X), it suffices to establish (2.3) for any f ∈ C .
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Let us fix an arbitrary f ∈ C and define the function g = f −〈 f ,µ〉h. We need
to prove that Pkg→ 0 in C(X). Since {Pkg,k ≥ 0} is uniformly equicontinuous
and the norms of Pk are bounded, the required assertion will be established if we
prove that any sequence of integers ni→∞ contains a subsequence {k j} ⊂ {ni} for
which

(2.8) ‖gk j‖µ → 0 as j→ ∞,

where we set gk = Pkg. Since 〈gk,µ〉 = 0 for k ≥ 0, convergence (2.8) certainly
holds for any subsequence {k j} such that ‖g+k j

‖ → 0 or ‖g−k j
‖ → 0 as j→ ∞. Let

us assume that there is no subsequence satisfying this property. Then there exist
sequences {u±i } ⊂ X and a constant α > 0 such that

(2.9) g̃+i (u
+
i ) = max

u∈X
g̃+i (u)≥ α, g̃−i (u

−
i ) = max

u∈X
g̃−i (u)≥ α,

where we set g̃i = gki . Since g̃±i are uniformly equicontinuous, we can find r > 0
not depending on i such that

(2.10) g̃±i (u)≥
1
2

g̃±i (u
±
i ) for u ∈ B(u±i ,r).

Let m and p be the constants arising in the uniform irreducibility condition. Then (2.10)
and (2.5) imply

Pmg̃±i (u) =
∫

X
Pm(u,dv)g̃±i (v)≤C1g̃±i (u

±
i ),

Pmg̃±i (u)≥
∫

B(u±i ,r)
Pm(u,dv)g̃±i (v)≥ pg̃±i (u

±
i )/2,

and it follows that

(2.11) sup
u∈X

Pmg̃±i (u)≤ Ag inf
u∈X

Pmg̃±i (u),

where Ag = 2C1/p > 1 (so that 0 < 1−A−1
g < 1). In particular, due to the station-

arity of µ , we have

Pmg̃±i (u)≥ A−1
g ‖Pmg̃±i ‖ ≥ A−1

g ‖Pmg̃±i ‖µ = A−1
g ‖g̃±i ‖µ .

Using this inequality, we now write

‖Pmg̃i‖µ =
∫

X
|Pm(g̃+i − g̃−i )|dµ

=
∫

X

∣∣(Pmg̃+i −A−1
g ‖g̃+i ‖µ)− (Pmg̃−i −A−1

g ‖g̃−i ‖µ)
∣∣dµ

≤
∫

X

∣∣Pmg̃+i −A−1
g ‖g̃+i ‖µ

∣∣dµ +
∫

X

∣∣Pmg̃−i −A−1
g ‖g̃−i ‖µ

∣∣dµ

=
∫

X
Pm(g̃+i + g̃−i )dµ−A−1

g
(
‖g̃+i ‖µ +‖g̃−i ‖µ

)
= (1−A−1

g )‖g̃i‖µ .(2.12)
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Furthermore, for any f ∈C(X) and k ≥ 1, we have

‖Pk f‖µ = 〈|Pk f |,µ〉 ≤ 〈Pk| f |,µ〉= 〈| f |,µ〉= ‖ f‖µ .

It follows that the sequence {‖Pkg‖µ} is non-increasing. Combining this property
with (2.12), we see that if nl ≥ ni +m, then

(2.13) ‖gnl‖µ ≤ (1−A−1
g )‖gni‖µ .

Let us choose a subsequence {k j} ⊂ {ni} such that k j+1 ≥ k j +m. Then (2.13)
implies that

‖gk j‖µ = ‖Pk j g‖µ ≤ (1−A−1
g ) j‖g‖µ for j ≥ 0,

where k0 = 0. This proves convergence (2.8) and completes the proof of the theo-
rem. �

3 The uniform Feller property

We shall use freely the notation introduced in Subsection 1.1 (we recall, in
particular, that {e j} is the orthonormal basis introduced in Condition (C), PN is
the orthogonal projection onto HN = span{e1, . . . ,eN}, and A = A ({0}) is the
domain of attainability from zero). Let V be the set of functions V ∈ C(A ) for
which there is an integer N ≥ 1 and a function F ∈C(HN) such that

(3.1) V (u) = F(PNu) for u ∈A .

It is easy to see that V is a dense subspace in C(A ) containing the constant func-
tions. In particular, the intersection C = V ∩C+(A ) is a determining family
for P(A ).

For any V ∈ C(A ), let us consider the following generalised Markov kernel
on A :

PV
1 (u,Γ) = Eu

(
IΓ(u1)eV (u1)

)
=
∫

Γ

P1(u,dv)eV (v), u ∈A , Γ ∈B(A ).(3.2)

The corresponding semigroup of operators is given by (1.42). The goal of this
section is to prove:

Theorem 3.1. Under the hypotheses of Theorem 1.3, for any V ∈ V the semigroup
{PV

k } possesses the uniform Feller property for the determining class C . In other
words, for any V ∈ V and f ∈C the sequence {‖PV

k f‖−1
∞ PV

k f ,k≥ 0} is uniformly
equicontinuous.

This theorem will play a key role in the proof of our main results. To prove it,
we first recall a coupling construction for the Markov chain associated with (1.1)
and then use it to establish Theorem 3.1.
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3.1 Coupling
Let us denote by A Z+ the direct product of countably many copies of A en-

dowed with the Tikhonov topology and by PPP(v) the law of the trajectory (uk,k≥ 0)
for (1.1) issued from v ∈ A . Thus, PPP(v) is a probability measure on A Z+ . The
following result is established in [22] (see Section 3.2.2).

Proposition 3.2. Under the hypotheses of Theorem 1.3, for any sufficiently large
integer N ≥ 1 there is a probability space (ΩN ,FN ,PN), positive numbers CN
and γN < 1 such that

(3.3) γN → 0 as N→ ∞,

and an A ×A -valued Markov process (uk,u′k) on ΩN parametrised by the initial
point (v,v′) ∈A ×A for which the following properties hold.

(a) The PN-laws of the sequences {uk,k≥ 0} and {u′k,k≥ 0} coincide with PPP(v)
and PPP(v′), respectively.

(b) For any integer r ≥ 1, we have 5

(3.4) PN
{
PNuk = PNu′k for 1≤ k ≤ r−1,PNur 6= PNu′r

}
≤CNγ

r
N‖v− v′‖,

where the trajectory (uk,u′k) entering the left-hand side corresponds to the
initial point (v,v′) ∈A ×A .

Note that, in [22], inequality (3.4) is proved with a fixed γN . However, since
the numbers γN(R) entering (1.5) go to zero, we can make γN arbitrarily small by
choosing a large N.

3.2 Proof of Theorem 3.1
Let us fix two functions V ∈ V and f ∈ C . There is no loss of generality in

assuming that the integer N ≥ 1 entering representation (3.1) for V and f is the
same. Abusing slightly the notation, we shall write V and f for the corresponding
function F in the right-hand side. Let us set

gk(u) = ‖PV
k f‖−1

∞ PV
k f (u), k ≥ 0.

We need to show that {gk,k ≥ 0} is uniformly equicontinuous. One can assume
that 0 < f ≤ 1 and infA V = 0.

Let us fix two points v,v′ ∈ A and denote by {uk} and {u′k} the sequences
constructed in Proposition 3.2. Denoting

ΞV f (z1, . . . ,zk) = exp(V (z1)+ · · ·+V (zk)) f (zk)

and defining A(r) to be the event on the left-hand side of (3.4), we can write

(3.5) PV
k f (v)−PV

k f (v′) =
k

∑
r=1

Ir
k(v,v

′),

5 The relation PNuk = PNu′k in (3.4) should be omitted when r = 1.
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where we set

Ir
k(v,v

′) = EN
{

IA(r)
(
ΞV f (u1, . . . ,uk)−ΞV f (u′1, . . . ,u

′
k)
)}

,

and EN stands for the expectation corresponding to PN . Let us denote by F N
k the

filtration generated by (uk,u′k). Since f is bounded by 1 and separated from zero
by a positive number δ , taking the conditional expectation given F N

r and carrying
out some simple estimates, we derive

Ir
k(v,v

′)≤ EN
{

IA(r)e
V (u1)+···+V (uk) f (uk)

}
≤ EN

(
IA(r)e

V (u1)+···+V (ur)EN
{

ΞV 1(ur+1, . . . ,uk)
∣∣F N

r
})

≤ er‖V‖∞EN
(
IA(r)(P

V
k−r1)(ur)

)
≤ er‖V‖∞EN

(
IA(r)‖PV

k 1‖∞

)
≤ δ

−1er‖V‖∞‖PV
k f‖∞PN

(
A(r)

)
.(3.6)

Substituting this into (3.5) and using (3.4), we derive

|gk(v)−gk(v′)| ≤CNδ
−1‖v− v′‖

k

∑
r=1

er‖V‖∞γ
r
N .

Choosing N so large that ‖V‖∞ + logγN < 0, we obtain

|gk(v)−gk(v′)| ≤C′N‖v− v′‖ for all v,v′ ∈A , k ≥ 0.

The proof of Theorem 3.1 is complete.

4 Proof of Theorem 1.3

We shall prove Theorem 1.3 by verifying Property 1 (the existence of a limit)
and Property 2 (uniqueness of the equilibrium state) of Section 1.4.

Let PV
k (u,Γ), {PV

k }, V , and C be as in Theorem 3.1. For any V ∈C(A ),

PV
k (u, ·)≥ e−k‖V‖∞Pk(u, ·) for any u ∈A .

Since Pk(u,Γ) is uniformly irreducible (e.g., see Section 5 of [20] for a proof of a
similar assertion in a more complicated setting), so is PV

k (u,Γ). By Theorem 3.1,
for any V ∈ V the semigroup {PV

k } possesses the uniform Feller property for the
determining class C . Thus, for V ∈ V , Theorem 2.1 holds for the semigroup {PV

k }
and the class C .

We now turn to the proof of Property 1 and the existence of the limit (1.40).
Theorem 2.1 implies that for any V ∈V there is hV ∈C+(A ) and a constant λV > 0
such that

λ
−k
V PV

k 1→ hV in C(A ) as k→ ∞.

It follows that for V ∈ V

Q(V ) = lim
k→+∞

1
k

log(PV
k 1)(u) = logλV(4.1)
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uniformly in u ∈A . The estimate

(PV1
k 1)(u) = Eu exp

( k

∑
n=1

V1(un)

)
≤ ek‖V1−V2‖∞ Eu exp

( k

∑
n=1

V2(un)

)
= ek‖V1−V2‖∞ (PV2

k 1)(u),

which holds for any V1,V2 ∈C(A ), implies∣∣∣∣1k log(PV1
k 1)(u)− 1

k
log(PV2

k 1)(u)
∣∣∣∣≤ ‖V1−V2‖∞ for k ≥ 1, u ∈A .(4.2)

Hence, (4.1) holds for all V ∈C(A ), the limit is uniform in u ∈A , and

|Q(V1)−Q(V2)| ≤ ‖V1−V2‖∞ for V1,V2 ∈C(A ).(4.3)

The existence of the limit (1.40) for an arbitrary A -valued initial random vari-
able u0 now follows by integration with respect to the law of u0. The Hölder
inequality implies immediately that Q is a convex function.

Let us prove Property 2. We shall show that, for any V ∈ V , there is a unique
equilibrium state σV ∈P(A ) for Q(V ). To this end, we first derive a necessary
and sufficient condition for a measure σ ∈P(A ) to be an equilibrium state.

Recall that I : M (A )→ R is the Legendre transform of the 1-Lipschitz con-
vex function Q : C(A )→ R. Given a function V ∈ C(A ), introduce a Markov
semigroup by (1.46) and denote by {S V∗

k } its dual semigroup acting on P(A ).
As in the case of Pk, for any F ∈ C(A ) we can consider a generalised Markov
semigroup defined by

SF
1 f = S V

1 (eF f ), SF
k = (SF

1 )
k.

We claim that, for any F ∈C(A ), the limit

(4.4) QV (F) = lim
k→∞

1
k

log(SF
k 1)(u)

is well defined and does not depend on u ∈ A . Indeed, it is straightforward to
check using (1.46) that

SF
k 1 = λ

−k
V h−1

V PV+F
k hV .

In view of convergence (1.44), it follows that (4.4) exists for any F ∈ V and is
equal to

(4.5) QV (F) = Q(V +F)−Q(V ).

Repeating the simple approximation argument used in the proof of (4.1), we con-
clude that the limit (4.4) is well defined for any F ∈C(A ) and is given by (4.5). It
follows that the Legendre transform of QV has the form

(4.6) IV (σ) = I(σ)+Q(V )−〈V,σ〉.
Thus, σ ∈P(A ) is an equilibrium state for Q(V ) if and only if IV (σ) = 0. On the
other hand, by Lemma 2.5 in [11] (see also Lemma 4.1.45 in [10]), the latter holds
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if and only if σ is a stationary measure for S V∗
1 . Thus, the required property will

be established if we prove that S V∗
1 has a unique stationary measure.

In view of (1.46), we have

(4.7) S V∗
k σ = λ

−k
V hVP

V∗
k (h−1

V σ).

It follows that σV = hV µV (where µV is the measure in (1.43)) is a stationary mea-
sure for S V∗

1 . Moreover, if σ ∈P(A ) is another stationary measure for S V∗
k ,

then, by (1.45), we have

σ = S V∗
k σ = λ

−k
V hVP

V∗
k (h−1

V σ)→ hV µV = σV .

This completes the proof of uniqueness of the equilibrium state for V ∈ V and that
of Theorem 1.3.

5 Proof of Theorem 1.4

As described in Section 1.5, Theorem 1.4 follows from Theorem 1.8 (which in
turn is a generalisation of Theorem 1.3). To establish Theorem 1.8, one follows
the general scheme used in the proof of Theorem 1.3, applying it to the Markov
chain formed by the segments of trajectories of length m. Namely, let us consider
the following family of Markov chains in A (m):

(5.1) uuuk = SSS(uuuk−1)+ηηηk,

where uuuk = (u1
k , . . . ,u

m
k ), ηηηk = (0, . . . ,0,ηk+m−1), and SSS : Hm→Hm is the mapping

given by

SSS(v1, . . . ,vm) =
(
v2, . . . ,vm,S(vm)

)
, (v1, . . . ,vm) ∈ Hm.

It is clear that if u0 is an A -valued random variable independent of {ηk} and {uk}
is the corresponding trajectory of (1.1), then ζ m

k is the occupation measure for the
trajectory of (5.1) starting from the (random) initial point (u0, . . . ,um−1). Since its
law is supported by A (m), the LDP for ζ m

k will be established if we prove the LDP
for the Markov family (5.1) restricted to the invariant compact set A (m). By Kifer’s
theorem and the argument described Section 1.4, the latter result is a consequence
of the following two properties (which were described in Section 1.4 for {uk}):

PROPERTY 1’: THE EXISTENCE OF A LIMIT.: For any function V ∈C(A (m))
the limit

Qm(V ) = lim
k→+∞

1
k

logE exp
( k

∑
n=1

V (uuun)

)
(5.2)

exists and does not depend on the initial point uuu = (u1, . . . ,um) ∈A (m).
PROPERTY 2’: UNIQUENESS OF EQUILIBRIUM STATE.: There exists a dense

vector space Vm ⊂ C(A (m)) such that, for any V ∈ Vm, there is a unique
measure σV ∈P(A (m)) satisfying the relation

Qm(V ) = sup
σ∈P(A (m))

(
〈V,σ〉− Im(σ)

)
,
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where Im(σ) denotes the Legendre transform of Qm.

To establish these assertions, we introduce a generalised Markov semigroup by the
relation (cf. (1.42))

(5.3) PV
k f (uuu) := Euuu f (uuuk)exp

( k

∑
n=1

V (uuun)

)
, f ∈C(A (m)),

where V ∈C(A (m)) is a given function. If we prove that {PV
k } satisfies the uniform

Feller and uniform irreducibility properties of Theorem 2.1 for any V belonging to
a dense subspace Vm that contains constant functions, then the required results will
following line by line the proof of Theorem 1.3.

To show the uniform irreducibility, note that A (m) is the domain of attainability
from zero for system (5.1). Therefore the required property follows by repeating
the proof of a similar property for (1.1).

We now turn to the uniform Feller property. Let Vm be the space of functions
V ∈C(A (m)) for which there is an integer N ≥ 1 and a function F ∈C(Hm

N ) such
that

V (uuu) = F(PNuuu) for uuu = (u1, . . . ,um) ∈A (m),

where PNuuu = (PNu1, . . . ,PNum). Given vvv,vvv′ ∈A (m), we define

vvvk = (vvv,u1, . . . ,uk), vvv′k = (vvv′,u′1, . . . ,u
′
k), wwwk = (vvv′,u1, . . . ,uk),

where {uk} and {u′k} stand for the trajectories issued from vvv and vvv′, respectively.
Then, for V, f ∈ Vm and k ≥ m, we have (cf. (3.5))

PV
k f (vvv)−PV

k f (vvv′) = Ik(vvv,vvv′)+
k

∑
r=1

Ir
k(vvv,vvv

′),

where we set 6

Ik(vvv,vvv′) = E f (vvvk)
(
eV (vvv1)+···+V (vvvk)− eV (www1)+···+V (wwwk)

)
,

Ir
k(vvv,vvv

′) = EIA(r)
(
eV (www1)+···+V (wwwk) f (vvvk)− eV (vvv′1)+···+V (vvv′k) f (vvv′k)

)
,

and A(r) is defined in Section 3.2. Since the last k elements of the sequences vvvk
and wwwk are the same, the expression Ik(vvv,vvv′) can be estimated uniformly in k ≥ m
by a function of the form ‖PV

k f‖∞ g(vvv,vvv′), where g(vvv,vvv′)→ 0 as vvv− vvv′→ 0. On
the other hand, Ir

k(vvv,vvv
′) can be bounded in exactly the same way as in the proof of

Theorem 3.1. This completes the proof of Theorems 1.8 and 1.4.

6 Given a function g : A (m)→R and any finite sequence zzz⊂A of length≥m, with a slight abuse
of notation we denote by g(zzz) the value of g calculated on the last m elements of zzz.
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Appendix: Auxiliary results

In this section, we recall three results on the large deviation principle (LDP).
The first of them was established by Kifer [19] and provides a sufficient condi-
tion for the validity of LDP for a family of random probability measures. The
second result shows that, when studying the LDP for occupation measures of ran-
dom processes, one can take the average starting from any non-negative time. The
third result due to Dawson and Gärtner [8] shows that the process level LDP is a
straightforward consequence of the LDP for finite segments of solutions.

A.1 Kifer’s sufficient condition for LDP
Let Θ be a directed set, let X be a compact metric space, and let (Ω,F ,P)

be a probability space. We consider a family {ζθ} = {ζ ω
θ
} of random probability

measures on X depending on θ ∈ Θ such that the following limit exists for any
V ∈C(X):

Q(V ) = lim
θ∈Θ

1
r(θ)

log
∫

Ω

exp
(

r(θ)
∫

X
V dζ

ω
θ

)
dP(ω),(A.1)

where r : Θ→ R is a given positive function such that limθ∈Θ r(θ) = ∞. Then
Q : C(X)→ R is a convex 1-Lipschitz functional such that Q(V ) ≥ 0 for any V ∈
C+(X) and Q(C) =C for any constant C ∈ R. Recall that the Legendre transform
of Q is defined on the space M (X) by

(A.2) I(σ) = sup
V∈C(X)

(
〈V,σ〉−Q(V )

)
if σ ∈P(X) and I(σ) = ∞ otherwise. The function I(σ) is convex and lower
semicontinuous in the weak topology, and Q can be reconstructed by the formula

Q(V ) = sup
σ∈P(X)

(
〈V,σ〉− I(σ)

)
.

Since P(X) endowed with topology of weak convergence is compact, for any
V ∈C(X) there is σV ∈P(X) such that

Q(V ) = 〈V,σV 〉− I(σV ).(A.3)

Any measure σV ∈P(X) satisfying (A.3) is called an equilibrium state for V . The
following result of Kifer shows that if the equilibrium state is unique for a dense
vector subspace of V ∈C(X), then the LDP holds for ζθ .

Theorem A.1. Suppose that limit (A.1) exists for any V ∈ C(X). Then the LD
upper bound

limsup
θ∈Θ

1
r(θ)

logP{ζθ ∈ F} ≤ −I(F)

holds with the rate function I given by (A.2). Furthermore, if there exists a dense
vector space V ⊂C(X) such that the equilibrium state σV ∈P(X) is unique for
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any V ∈ V , then the LD lower bound also holds:

liminf
θ∈Θ

1
r(θ)

logP{ζθ ∈ G} ≥ −I(G).

A.2 Exponential equivalence of random probability measures
Let X be a Polish space and let {µk} and {µ ′k} be two sequences of random

probability measures on X . Recall that {µk} and {µ ′k} are said to be exponentially
equivalent if

(A.4) lim
k→∞

P
{
‖µk−µ

′
k‖∗L > δ

}1/k
= 0 for any δ > 0.

It is well known that if two sequences of random probability measures are expo-
nentially equivalent, then an LDP with a good rate function for one of them implies
the same LDP for the other; see Section 4.2.2 in [9].

Now let {un} be a random sequence in X . We denote by ζ
(m)
k the occupation

measures for {un} starting at time m≥ 0:

µ
(m)
k =

1
k

m+k−1

∑
n=m

δun .

The following result was used in Sections 1.4.

Lemma A.2. The sequences µ
(m)
k and µ

(l)
k are exponentially equivalent for any

integers m, l ≥ 0.

Proof. Let f ∈ Lb(X) be such that ‖ f‖L ≤ 1. Then∣∣( f ,µ(m)
k

)
−
(

f ,µ(l)
k

)∣∣≤ 2|m− l|
k

.

It follows that
∥∥µ

(m)
k −µ

(l)
k

∥∥∗
L ≤

2|m−l|
k , whence we see that

P
{
‖µ(m)

k −µ
(l)
k

∥∥∗
L > δ

}
= 0 for k > 2δ−1|m− l|.

Hence, condition (A.4) is satisfied for any δ > 0, and the sequences in question are
exponentially equivalent. �

A.3 Dawson–Gärtner theorem
For a given Polish space X , we denote by XXX = XZ+ the direct product of count-

ably many copies of X , endowed with the Tikhonov topology, and by pm : XXX→ Xm

the natural projection to the first m components of XXX . Let {ζζζ k} = {ζζζ
ω

k } be a se-
quence of random probability measures on P(XXX) and let ζ m

k be the image of ζζζ k
under the projection pm. The following theorem is a particular case of a more
general result established in [8] (see also Theorem 4.6.1 in [9]).
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Theorem A.3. Suppose that for any integer m ≥ 1 the sequence {ζ m
k } satisfies

the LDP with a good rate function Im : P(Xm)→ [0,+∞]. Then the LDP holds
for {ζζζ k} with the good rate function

(A.5) III(σσσ) = sup
m≥1

Im
(
σσσ ◦ p−1

m
)
.

Proof. Step 1: Rate function. Let us prove that the function III defined by (A.5) is
a good rate function. Indeed, since Im are good rate functions, for any α ∈ R we
have

{III ≤ α}=
∞⋂

m=1

{
σσσ ∈P(XXX) : Im

(
σσσ ◦ p−1

m
)
≤ α

}
=

∞⋂
m=1

{σσσ ◦ p−1
m ∈ Km

α },(A.6)

where Km
α are compact subsets in P(Xm). This relation immediately implies that

the set {III ≤ α} is closed and therefore III is lower semicontinuous. Furthermore,
since a sequence {σσσ j} ⊂P(XXX) converges if and only if so does {σσσ j ◦ p−1

m } for
any m≥ 1, it follows from (A.6) that the level sets of III are compact.

Step 2: Lower bound. Let G ⊂P(XXX) be an open subset. It suffices to prove
that, for any σσσ ∈ G, we have

liminf
k→∞

1
k

logP{ζζζ k ∈ G} ≥ −III(σσσ).

Since G is open, for any σσσ ∈ G, one can find an integer m ≥ 1 and open subset
Gm ⊂P(Xm) containing σσσ ◦ p−1

m such that G ⊃ p−1
m (Gm). Since the LDP holds

for ζ m
k = ζζζ k ◦ p−1

m , it follows that

liminf
k→∞

1
k

logP{ζζζ k ∈ G} ≥ liminf
k→∞

1
k

logP{ζζζ k ∈ p−1
m (Gm)}

= liminf
k→∞

1
k

logP{ζ m
k ∈ Gm} ≥ −Im(Gm).

It remains to note that Im(Gm)≤ Im(σσσ ◦ p−1
m )≤ III(σσσ).

Step 3: Upper bound. Let F ⊂P(XXX) be a closed subset. It suffices to prove
that, if α < III(F), then

(A.7) liminf
k→∞

1
k

logP{ζζζ k ∈ F} ≤ −α.

Relation (A.6) implies that

∅= F ∩{III ≤ α}=
∞⋂

m=1

F ∩
{

Im
(
σσσ ◦ p−1

m
)
≤ α

}
.

Since F ∩{III ≤ α} is a compact set, it follows that one can find an integer m ≥ 1
such that F ∩

{
Im
(
σσσ ◦ p−1

m
)
≤ α

}
= ∅. Denoting by Fm the image of F under the
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projection pm, we conclude that Im(Fm) > α . Since F ⊂ p−1
m (Fm), using the LDP

for ζ m
k , we derive

liminf
k→∞

1
k

logP{ζζζ k ∈ F} ≤ liminf
k→∞

1
k

logP{ζζζ k ∈ p−1
m (Fm)}

= liminf
k→∞

1
k

logP{ζ m
k ∈ Fm} ≤ −Im(Fm)<−α.

This completes the proof of (A.7) and of the theorem. �

Theorem A.3 admits a simple generalisation to the case of uniform LDP. Namely,
let us assume that we are given a sequence of random probability measures {ζζζ k(y)}
on XXX depending on a parameter y ∈ Y , where Y is an arbitrary set. We say that
{ζζζ k(y)} satisfies the uniform LDP with a good rate function III : P(XXX)→ [0,+∞]
if

−III(Γ̇)≤ liminf
k→∞

1
k

log inf
y∈Y

P{ζζζ k(y) ∈ Γ}

≤ liminf
k→∞

1
k

logsup
y∈Y

P{ζζζ k(y) ∈ Γ} ≤ −III(Γ),(A.8)

where Γ ⊂P(XXX) is an arbitrary Borel subset. The proof of the following result
literally repeats that of Theorem A.3, and we omit it.

Theorem A.4. Suppose that for any integer m ≥ 1 the sequence {ζ m
k (y),y ∈ Y}

satisfies the uniform LDP with a good rate function Im : P(Xm)→ [0,+∞]. Then
the uniform LDP holds for {ζζζ k(y),y ∈ Y} with the good rate function (A.5).
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