Nonequilibrium steady states
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Equilibrium states are the central objects of equilibritatistical mechanics. To a large extent the success of
this theory is due to the fact that the equilibrium states sfstem can be constructed and characterized without
explicit reference to the dynamics of this system. This isiytamazing fact because the concept of equilibrium
state and the ultimate justification of the whole theory,amiilated by Boltzmann and its followers, do depend
on the dynamics.

Nonequilibrium statistical mechanics has a completelfediint status. It is a more difficult theory, both con-
ceptually and technically, because a deep control of thamyes is required to understand even the most basic
nonequilibrium properties of the system. The simplest edrable elements of the large manifold of nonequilib-
rium states of a system are the steady states in which iesettider the action of weak, stationary external forces.
Such a forcing can be achieved either by applying an extéisidlor by imposing a sustained gradient of intensive
thermodynamic parameters (e.g., a constant temperatopg alcross the system. Even though definite progresses
have been made in the recent years we are still far from a enh#reory of steady states if such a theory exists at
all.

1 Phenomenological theory and linear response

To appreciate recent rigorous results in the field a basiwledge of nonequilibrium thermodynamics is required.
This section is a condensed introduction to the phenomgitabtheory of nonequilibrium steady states (NESS).
The interested reader should consult [dGM] or [C] for detiéxpositions.

Consider bringing into contact two systerfis, S, each of which is in thermal equilibrium. Denote by
Sa(Aa1, Aaz, .. .) the entropy ofS,, as a function of its extensive thermodynamic parameterse ciimbined
systemS; + S being otherwise isolated, the values4f = A;; + A,; are fixed and the entropy of the joint
system s given bys = > S, (Aa1, Aas2, - ..). The conditions for joint thermal equilibrium are thus
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wherel,; denotes the intensive thermodynamic parameter conjugate, t. If the combined system is not in
thermal equilibrium, then the(; # 0 act as thermodynamic forces. Their effect is to generatedlt the
extensive quantities which can be measured by
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The rate of entropy production is then
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Near equilibrium the forces(; are weak and first order perturbation theory in these forcalse-called linear
response theory — becomes a good approximation. Writingukedlas

®; = Ly; X + higher order terms (2)
k

defines thekineticor transport coefficientd.;,;. The matrixL = (Ly;) is calledOnsager matrixIt depends only
on the intensive parametefs;. One of the most basic problem of nonequilibrium stati$tioachanics is the
calculation of Onsager’s matrix starting from a microscagescription of the system.

In linear response theory the entropy production rate besom
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Thus, the second law of thermodynamics implies that the sgtmopart ofL is positive. Moreover, if the systems
are time-reversal invariant then the Onsager reciproeigtions

Lyj = Lji,

hold, i.e., the matrix. is symmetric. If the systems are not time reversal invayidugise relations have to be modi-
fied consequently. For example if an external magnetic fieigl applied then the matrik depends parametrically
on B and the Onsager-Casimir relations

Ly;(B) = Ljr(—B),

hold.

Remarks. 1. Applying the above discussion to small volume elements pfacroscopic body it is possible to
obtain a phenomenological description of the local stmgctf a nonequilibrium state under the so called local
thermodynamic equilibrium (LTE) hypothesis. The readenth consult the above references for details.

2. Some variational characterizations of NESS have begyopeal, most notably the principle of minimal entropy
production. However the status of such principles is stifitcoversial and their validity seems to be only approxi-
mate and limited to some special systems. See the [Varatmwimciple for NESS] and [MN] for more information
on this subject.

2 Microscopic theory

A microscopic theory of NESS must be based on the asymptadilysis of the dynamics which describes the evo-
lution of the system. A non-isolated system is driven outafiibrium by the forces exerted by its environment.
Under appropriate conditions the system eventually setila steady state. Denote by), the initial state, in the
sense of statistical mechanics, of the system and its emmeat. If¢ — (-); denotes the evolution of this state
then the limit

()4 = lim ()4,
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or more generally
1t
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defines a stationary state.
On physical grounds one expects more. Namely the limitiatpét ) - should be invariant under local changes
of the initial state(-)o. To elaborate on this essential point let us consider a dmdyrtamical system on a
compact phase spacé C R"™. A physically natural statistics of the configurations of #ystem is provided by



the normalized Lebesgue measudre on X: Initial configurations sampled according da: can be considered
typical. This has nothing to do with dynamics and any distitn p(x)dz with strictly positive density» would
serve the same purpose. Accordingly, we expect all thetialistates to yield the same limiting state) . For
systems with infinitely many degrees of freedom there isingtlike Lebesgue measure and we must provide a
reference state to sample the initial configurations. Thipgae of this state is to specify the thermodynamic state
of the system. Suppose for example that the system is drivenfeequilibrium by several infinite reservoirs.
Specifying an equilibrium state (a Gibbs measure or a KM&}far each reservoir sets the temperature and other
relevant thermodynamic parameters of each reservoie$tath different thermodynamic parameter are mutually
singular and will lead to different NESS. A contrario, logarturbations of these equilibrium states will relax to
equilibrium under the reservoir dynamics. Therefore, dhdrfinite dimensional case, we expect the limiting state
()4 to be insensitive to such local perturbations. In the lagguef C*-dynamicalsystems, the NESS should
only depends on thislium of the initial state.

The minimal goal of a microscopic theory of NESS is a math@&ahtlerivation of the main results of linear
response theory: Onsager reciprocity relations and fltiolaissipation relations (e.g. the Green-Kubo formula
for the kinetic coefficientd;, see [Linear response theory]). A more ambitious prograim éxplore the largely
unknown fields of far from equilibrium steady states thergrainics.

Discarding the obvious distinction between classical amahtum systems, recent progresses in these direc-
tions can be classified in two categories according to thed thdescription of microscopic dynamics: Hamiltonian
or Markovian. The first category is of course more fundaniesitee microscopic dynamics is inherently Hamil-
tonian. However, the facts that

e various roads (scaling limits, coarse graining, restrittio specific degrees of freedom, etc...) lead from
Hamiltonian dynamics to Markov processes;

e Hamiltonian dynamics is much more difficult to control thamuMovian evolution;

explain why most available results belong to the secondjoage In fact the Markovian nature of time evolution
was already at the heart of the pioneering works of Onsagehifollowers (see [dGM]).

A large body of works have been devoted to the study of intergparticle systems. This class of Markovian
models is discussed in details in [Interacting particleeys], [Hydrodynamic scaling limit], [Macroscopic equa-
tions in equilibrium and nonequilibrium statistical menkes], [Nonequilibrium stationary states (stochastisgle
also [KL], [BDGJ]. We shall not consider such models hererbstrict our attention to a small mechanical system
S, with a finite number of degrees of freedom, driven out of Blgiim by some external forcing.

In the framework of classical mechanics, two approachegassible. In what we will calthe canonical
approachthe systemS interacts with infinitely extended reservoiRs;, R ...Apart from its physical appeal,
the advantage of the canonical approach is that it allowsafblamiltonian description of the coupled system
S+ Ry +---. The price to pay is the necessity to deal with infinitely mdegrees of freedom. As a result only
very simple reservoirs (e.g., ideal gases or free fields)beaoonsidered. Fortunately these simple systems also
do a good job as reservoirs in the sense that, at least in diorefarger than two, the local properties of their
internal state do not change too much as a result of the capmithe system. Moreover, it is possible to design
the coupling of these reservoirs to the system in such a vaytie dynamics af becomes essentially Markovian
(see [EPR]). This is an important feature hardly achieveotlrer approaches (except of course in an axiomatic
way, see below). We refer to [RB] for an introduction to reta@sults in the canonical approach to classical NESS.

It is important to realize that, in the canonical approatie, teservoirs serve two complementary purposes.
First they have a chaotic internal dynamics. The forces #xeyt on the syster§ act as a source of randomness.
Under the action of these forces, the dynamics dfiecomes itself chaotic. Second, the dynamics of the reiservo
is dissipative: Any local perturbation get carried away pat&l infinity. This allows the systeid to relax from
large fluctuations in its internal state by transferringrggemomentum, ..., to the reservoirs.

In the microcanonical approactihe same effects of the environment on the motion of the syare obtained
in a different way. Fluctuations of the syste$nare generated by a non-conservative external force. Uheer t
action of this force the system would constantly heat-upavaid this effect and allow the system to settle in a



stationary state a dissipative force is added — a so caleditbstat. A popular example is the Gaussian thermostat
which keep the energy (or the kinetic energy)Sofonstant. The advantage of the microcanonical approablais t
it leads to a dynamical system on a finite dimensional compectifold (a surface of constant energy&). In
particular, numerical experiments are much easier to parfm such a system than on the infinite dimensional
systems obtained in the canonical approach. This fact lcastlg led to the numerical discovery of an unexpected
fluctuation relation in far from equilibrium NESS [ECM]. Thielation has been turned into a mathematical state-
ment by combining the microcanonical approach with an agiiersetup — the so callethaotic hypothesigGC].
We refer to [R1], [D] for detailed introductions to this appch and to the articles [NESS in classical statistical
mechanics], [Gallavotti-Cohen chaotic hypothesis], §iBowen-Ruelle distribution], [Numerical simulations i
nonequilibrium statistical mechanics], [Dynamical sysseapproach to nonequilibrium statistical mechanics]. A
proof of the fluctuation relation for the canonical NESS ofaariarmonic chain of oscillators has also been ob-
tained in [RBT]. More recently the fluctuation relation haseh observed in real experiments in various systems
of very different nature, confirming its apparent univeitgal

Equivalence of the equilibrium ensembles (microcanonicaihonical, grand canonical,...) is a cornerstone
of equilibrium statistical mechanics (see [Equivalenc&n$embles]). It is conjectured that a similar equivalence
holds for NESS. In the thermodynamic limit, i.e., as the sik& becomes large, one expects that the statistical
properties of macroscopic observables in a NESS do not depethe construction of the NESS. Microcanonical
NESS with different kinds of thermostats as well as candiN&SS with different kinds of reservoirs should yield
the same statistics. To our knowledge the only availablgtregsthis direction is [R2].

Due to the intrinsic Hamiltonian nature of quantum mechsthe canonical approach is the only way to define
and study the NESS of a quantum system (at least within aypgreintum description). We refer to [NESS in
guantum statistical mechanics] for a detailed discussiguantum NESS.
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