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Equilibrium states are the central objects of equilibrium statistical mechanics. To a large extent the success of
this theory is due to the fact that the equilibrium states of asystem can be constructed and characterized without
explicit reference to the dynamics of this system. This is a truly amazing fact because the concept of equilibrium
state and the ultimate justification of the whole theory, as formulated by Boltzmann and its followers, do depend
on the dynamics.

Nonequilibrium statistical mechanics has a completely different status. It is a more difficult theory, both con-
ceptually and technically, because a deep control of the dynamics is required to understand even the most basic
nonequilibrium properties of the system. The simplest conceivable elements of the large manifold of nonequilib-
rium states of a system are the steady states in which it settles under the action of weak, stationary external forces.
Such a forcing can be achieved either by applying an externalfield or by imposing a sustained gradient of intensive
thermodynamic parameters (e.g., a constant temperature drop) across the system. Even though definite progresses
have been made in the recent years we are still far from a coherent theory of steady states if such a theory exists at
all.

1 Phenomenological theory and linear response

To appreciate recent rigorous results in the field a basic knowledge of nonequilibrium thermodynamics is required.
This section is a condensed introduction to the phenomenological theory of nonequilibrium steady states (NESS).
The interested reader should consult [dGM] or [C] for detailed expositions.

Consider bringing into contact two systemsS1, S2, each of which is in thermal equilibrium. Denote by
Sα(Aα1, Aα2, . . .) the entropy ofSα as a function of its extensive thermodynamic parameters. The combined
systemS1 + S2 being otherwise isolated, the values ofAj = A1j + A2j are fixed and the entropy of the joint
system is given byS =

∑
α Sα(Aα1, Aα2, . . .). The conditions for joint thermal equilibrium are thus

Xj =
∂S

∂A1j

=
∂S1

∂A1j

−
∂S2

∂A2j

= I1j − I2j = 0,

whereIαj denotes the intensive thermodynamic parameter conjugate to Aαj . If the combined system is not in
thermal equilibrium, then theXj 6= 0 act as thermodynamic forces. Their effect is to generate fluxes of the
extensive quantities which can be measured by

Φj =
dA1j

dt
.

The rate of entropy production is then

dS

dt
=

∑
j

∂S

∂A1j

dA1j

dt
=

∑
j

XjΦj . (1)
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Near equilibrium the forcesXj are weak and first order perturbation theory in these forces –also called linear
response theory – becomes a good approximation. Writing the fluxes as

Φj =
∑

k

LkjXk + higher order terms, (2)

defines thekineticor transport coefficientsLkj . The matrixL = (Lkj) is calledOnsager matrix.It depends only
on the intensive parametersI1j . One of the most basic problem of nonequilibrium statistical mechanics is the
calculation of Onsager’s matrix starting from a microscopic description of the system.

In linear response theory the entropy production rate becomes

dS

dt
≃

∑
k

LkjXkXj .

Thus, the second law of thermodynamics implies that the symmetric part ofL is positive. Moreover, if the systems
are time-reversal invariant then the Onsager reciprocity relations

Lkj = Ljk,

hold, i.e., the matrixL is symmetric. If the systems are not time reversal invariant, these relations have to be modi-
fied consequently. For example if an external magnetic fieldB is applied then the matrixL depends parametrically
onB and the Onsager-Casimir relations

Lkj(B) = Ljk(−B),

hold.

Remarks. 1. Applying the above discussion to small volume elements ofa macroscopic body it is possible to
obtain a phenomenological description of the local structure of a nonequilibrium state under the so called local
thermodynamic equilibrium (LTE) hypothesis. The reader should consult the above references for details.

2. Some variational characterizations of NESS have been proposed, most notably the principle of minimal entropy
production. However the status of such principles is still controversial and their validity seems to be only approxi-
mate and limited to some special systems. See the [Variational principle for NESS] and [MN] for more information
on this subject.

2 Microscopic theory

A microscopic theory of NESS must be based on the asymptotic analysis of the dynamics which describes the evo-
lution of the system. A non-isolated system is driven out of equilibrium by the forces exerted by its environment.
Under appropriate conditions the system eventually settles in a steady state. Denote by〈 · 〉0 the initial state, in the
sense of statistical mechanics, of the system and its environment. Ift 7→ 〈 · 〉t denotes the evolution of this state
then the limit

〈 · 〉+ = lim
t→∞

〈 · 〉t,

or more generally

〈 · 〉+ = lim
t→∞

1

t

∫ t

0

〈 · 〉s ds,

defines a stationary state.
On physical grounds one expects more. Namely the limiting state〈 · 〉+ should be invariant under local changes

of the initial state〈 · 〉0. To elaborate on this essential point let us consider a smooth dynamical system on a
compact phase spaceX ⊂ R

n. A physically natural statistics of the configurations of the system is provided by

2



the normalized Lebesgue measuredx on X: Initial configurations sampled according todx can be considered
typical. This has nothing to do with dynamics and any distribution ρ(x)dx with strictly positive densityρ would
serve the same purpose. Accordingly, we expect all these initial states to yield the same limiting state〈 · 〉+. For
systems with infinitely many degrees of freedom there is nothing like Lebesgue measure and we must provide a
reference state to sample the initial configurations. The purpose of this state is to specify the thermodynamic state
of the system. Suppose for example that the system is driven out of equilibrium by several infinite reservoirs.
Specifying an equilibrium state (a Gibbs measure or a KMS state) for each reservoir sets the temperature and other
relevant thermodynamic parameters of each reservoir. States with different thermodynamic parameter are mutually
singular and will lead to different NESS. A contrario, localperturbations of these equilibrium states will relax to
equilibrium under the reservoir dynamics. Therefore, as inthe finite dimensional case, we expect the limiting state
〈 · 〉+ to be insensitive to such local perturbations. In the language of C∗-dynamicalsystems, the NESS should
only depends on thefolium of the initial state.

The minimal goal of a microscopic theory of NESS is a mathematical derivation of the main results of linear
response theory: Onsager reciprocity relations and fluctuation-dissipation relations (e.g. the Green-Kubo formula
for the kinetic coefficientsLkj , see [Linear response theory]). A more ambitious program isto explore the largely
unknown fields of far from equilibrium steady states thermodynamics.

Discarding the obvious distinction between classical and quantum systems, recent progresses in these direc-
tions can be classified in two categories according to the level of description of microscopic dynamics: Hamiltonian
or Markovian. The first category is of course more fundamental since microscopic dynamics is inherently Hamil-
tonian. However, the facts that

• various roads (scaling limits, coarse graining, restriction to specific degrees of freedom, etc. . . ) lead from
Hamiltonian dynamics to Markov processes;

• Hamiltonian dynamics is much more difficult to control than Markovian evolution;

explain why most available results belong to the second category. In fact the Markovian nature of time evolution
was already at the heart of the pioneering works of Onsager and his followers (see [dGM]).

A large body of works have been devoted to the study of interacting particle systems. This class of Markovian
models is discussed in details in [Interacting particle systems], [Hydrodynamic scaling limit], [Macroscopic equa-
tions in equilibrium and nonequilibrium statistical mechanics], [Nonequilibrium stationary states (stochastic)],see
also [KL], [BDGJ]. We shall not consider such models here butrestrict our attention to a small mechanical system
S, with a finite number of degrees of freedom, driven out of equilibrium by some external forcing.

In the framework of classical mechanics, two approaches arepossible. In what we will callthe canonical
approachthe systemS interacts with infinitely extended reservoirsR1, R2 . . . Apart from its physical appeal,
the advantage of the canonical approach is that it allows fora Hamiltonian description of the coupled system
S + R1 + · · · . The price to pay is the necessity to deal with infinitely manydegrees of freedom. As a result only
very simple reservoirs (e.g., ideal gases or free fields) canbe considered. Fortunately these simple systems also
do a good job as reservoirs in the sense that, at least in dimension larger than two, the local properties of their
internal state do not change too much as a result of the coupling to the system. Moreover, it is possible to design
the coupling of these reservoirs to the system in such a way that the dynamics ofS becomes essentially Markovian
(see [EPR]). This is an important feature hardly achieved inother approaches (except of course in an axiomatic
way, see below). We refer to [RB] for an introduction to recent results in the canonical approach to classical NESS.

It is important to realize that, in the canonical approach, the reservoirs serve two complementary purposes.
First they have a chaotic internal dynamics. The forces theyexert on the systemS act as a source of randomness.
Under the action of these forces, the dynamics ofS becomes itself chaotic. Second, the dynamics of the reservoir
is dissipative: Any local perturbation get carried away to spatial infinity. This allows the systemS to relax from
large fluctuations in its internal state by transferring energy, momentum, . . . , to the reservoirs.

In the microcanonical approachthe same effects of the environment on the motion of the system are obtained
in a different way. Fluctuations of the systemS are generated by a non-conservative external force. Under the
action of this force the system would constantly heat-up. Toavoid this effect and allow the system to settle in a
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stationary state a dissipative force is added – a so called thermostat. A popular example is the Gaussian thermostat
which keep the energy (or the kinetic energy) ofS constant. The advantage of the microcanonical approach is that
it leads to a dynamical system on a finite dimensional compactmanifold (a surface of constant energy ofS). In
particular, numerical experiments are much easier to perform on such a system than on the infinite dimensional
systems obtained in the canonical approach. This fact has recently led to the numerical discovery of an unexpected
fluctuation relation in far from equilibrium NESS [ECM]. This relation has been turned into a mathematical state-
ment by combining the microcanonical approach with an axiomatic setup – the so calledchaotic hypothesis[GC].
We refer to [R1], [D] for detailed introductions to this approach and to the articles [NESS in classical statistical
mechanics], [Gallavotti-Cohen chaotic hypothesis], [Sinai-Bowen-Ruelle distribution], [Numerical simulations in
nonequilibrium statistical mechanics], [Dynamical systems approach to nonequilibrium statistical mechanics]. A
proof of the fluctuation relation for the canonical NESS of ananharmonic chain of oscillators has also been ob-
tained in [RBT]. More recently the fluctuation relation has been observed in real experiments in various systems
of very different nature, confirming its apparent universality.

Equivalence of the equilibrium ensembles (microcanonical, canonical, grand canonical,. . . ) is a cornerstone
of equilibrium statistical mechanics (see [Equivalence ofEnsembles]). It is conjectured that a similar equivalence
holds for NESS. In the thermodynamic limit, i.e., as the sizeof S becomes large, one expects that the statistical
properties of macroscopic observables in a NESS do not depend on the construction of the NESS. Microcanonical
NESS with different kinds of thermostats as well as canonical NESS with different kinds of reservoirs should yield
the same statistics. To our knowledge the only available result in this direction is [R2].

Due to the intrinsic Hamiltonian nature of quantum mechanics the canonical approach is the only way to define
and study the NESS of a quantum system (at least within a purely quantum description). We refer to [NESS in
quantum statistical mechanics] for a detailed discussion of quantum NESS.
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