Quantum Koopmanism

VOJKAN JAŠIĆ¹, CLAUDE-ALAIN PILLET²

²CPT-CNRS, UMR 6207 Université du Sud Toulon-Var B.P. 20132 83957 La Garde Cedex, France pillet@univ-tln.fr

The Koopman-von Neumann spectral approach to ergodic theory is a powerful tool in the study of statistical properties of dynamical systems (see [Ergodic theory. Mixing], [Spectrum of dynamical system]). Its extension to quantum dynamical systems – the spectral theory of Liouvilleans – is at the center of many recent results in quantum statistical mechanics (see [Quantum nonequilibrium statistical mechanics], [Return to equilibrium], [NESS in quantum statistical mechanics] as well as [BFS],[DJ], [FM], [JP]).

Let (\mathcal{O},τ) be a $\underline{C^*$ - or W^* -dynamical system equipped with a τ -invariant state ω , assumed to be normal in the W^* -case. The GNS-representation $(\mathcal{H}_\omega,\pi_\omega,\Omega_\omega)$ maps the triple $(\mathcal{O},\tau,\omega)$ into $(\mathcal{O}_\omega,\tilde{\tau},\tilde{\omega})$, a W^* -dynamical system on the enveloping von Neumann algebra $\mathcal{O}_\omega=\pi_\omega(\mathcal{O})''$ with a normal invariant state $\tilde{\omega}(A)=(\Omega_\omega|A\Omega_\omega)$. The W^* -dynamics $\tilde{\tau}$ is given by

$$\tilde{\tau}^t(A) = e^{itL_\omega} A e^{-itL_\omega},$$

where L_{ω} is the ω -Liouvillean (see Section 3 in [Quantum dynamical systems]). We shall say that $(\pi_{\omega}, \mathcal{O}_{\omega}, \mathcal{H}_{\omega}, L_{\omega}, \Omega_{\omega})$ is the normal form of $(\mathcal{O}, \tau, \omega)$.

1 Ergodic properties of quantum dynamical systems

Let \mathfrak{M} be a <u>von Neumann algebra</u> acting on the Hilbert space \mathcal{H} . The support s_{ω} of a <u>normal state</u> ω on \mathfrak{M} is the smallest orthogonal projection $P \in \mathfrak{M}$ such that $\omega(P) = 1$. A normal state ω is faithful if and only if $s_{\omega} = I$. The support of the state $\omega(A) = (\Omega | A\Omega)$ is the orthogonal projection on the closure of the subspace $\mathfrak{M}'\Omega$.

Notation. We write $\nu \ll \omega$ whenever ν is a ω -normal state such that $s_{\nu} \leq s_{\omega}$.

Remark. If \mathfrak{M} is Abelian any ω -normal state ν satisfies $\nu \ll \omega$. This explains why the support condition is absent in classical ergodic theory (the reader may consult [P] for a detailed discussion of this point). In most applications to statistical mechanics ω is faithful and any ω -normal state ν satisfies $\nu \ll \omega$.

Definition 1 Let (\mathfrak{M}, τ) be a W^* -dynamical system on the von Neumann algebra \mathfrak{M} and ω a normal τ -invariant state.

1. $(\mathfrak{M}, \tau, \omega)$ is ergodic if

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \nu(\tau^t(A)) \, \mathrm{d}t = \omega(A),$$

holds for all $A \in \mathfrak{M}$ and all states $\nu \ll \omega$.

2. $(\mathfrak{M}, \tau, \omega)$ is mixing or returns to equilibrium if

$$\lim_{t \to \infty} \nu(\tau^t(A)) = \omega(A),$$

holds for all $A \in \mathfrak{M}$ and all states $\nu \ll \omega$.

3. If ω is an invariant state of the C^* -dynamical system (\mathcal{O}, τ) we say that $(\mathcal{O}, \tau, \omega)$ is ergodic (resp. mixing) if $(\mathcal{O}_{\omega}, \tilde{\tau}, \tilde{\omega})$ is ergodic (resp. mixing).

Department of Mathematics and Statistics McGill University 805 Sherbrooke Street West Montreal, QC, H3A 2K6, Canada jaksic@math.mcgill.ca

2 Spectral characterization of ergodic properties

We refer to [P] for proofs of the results in this section.

The following theorem is the quantum version of the well known Koopman-von Neumann spectral characterizations ([AA], [K], [N]).

Theorem 2 Let (\mathcal{O}, τ) be a C^* - or W^* -dynamical system equipped with a τ -invariant state ω , assumed to be normal in the W^* -case. Denote by $(\pi_\omega, \mathcal{O}_\omega, \mathcal{H}_\omega, L_\omega, \Omega_\omega)$ its normal form and by \mathcal{K}_ω the closure of $\pi_\omega(\mathcal{O})'\Omega_\omega$.

- 1. The subspace \mathcal{K}_{ω} reduces the operator L_{ω} . Denote by \mathfrak{L}_{ω} the restriction $L_{\omega}|_{\mathcal{K}_{\omega}}$.
- 2. $(\mathcal{O}, \tau, \omega)$ is ergodic if and only if $\operatorname{Ker}(\mathfrak{L}_{\omega})$ is one dimensional.
- 3. $(\mathcal{O}, \tau, \omega)$ is mixing if and only if

$$\mathbf{w} - \lim_{t \to \infty} \mathbf{e}^{\mathrm{i}t\mathfrak{L}_{\omega}} = \Omega_{\omega}(\Omega_{\omega}|\cdot).$$

4. If the spectrum of \mathfrak{L}_{ω} on $\{\Omega_{\omega}\}^{\perp}$ is purely absolutely continuous then $(\mathcal{O}, \tau, \omega)$ is mixing.

Note that \mathcal{K}_{ω} is the range of the support of $\tilde{\omega}$. Thus, if $\tilde{\omega}$ is faithful then $\mathfrak{L}_{\omega} = L_{\omega}$.

Like the classical Koopman operator, the reduced Liouvillean \mathfrak{L}_{ω} of an ergodic quantum dynamical system has a number of peculiar spectral properties.

Theorem 3 Assume, in addition to the hypotheses of the previous theorem, that $(\mathcal{O}, \tau, \omega)$ is ergodic. Then the following hold:

- 1. The point spectrum of \mathfrak{L}_{ω} is a subgroup Σ of the additive group \mathbb{R} .
- 2. The eigenvalues of \mathfrak{L}_{ω} are simple.
- 3. The spectrum of \mathfrak{L}_{ω} is invariant under translations in Σ , that is, $\operatorname{spec}(\mathfrak{L}_{\omega}) + \Sigma = \operatorname{spec}(\mathfrak{L}_{\omega})$.
- 4. If Ψ is a normalized eigenvector of \mathfrak{L}_{ω} then $(\Psi|\pi_{\omega}(A)\Psi)=\omega(A)$ for all $A\in\mathcal{O}$.
- 5. If $(\mathcal{O}, \tau, \omega)$ is mixing then 0 is the only eigenvalue of \mathfrak{L}_{ω} .

References

- [AA] Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968).
- [BFS] Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41, 3985 (2000).
- [DJ] Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli-Fierz systems. Ann. Henri Poincaré 4, 739 (2003).
- [FM] Fröhlich, J., Merkli, M.: Another return of "Return to Equilibrium". Commun. Math. Phys. 251, 235 (2004).
- [JP] Jakšić, V., Pillet, C.-A.: On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun. Math. Phys. **178**, 627 (1996).
- [K] Koopman, B.O.: Hamiltonian systems and transformations in Hilbert spaces. Proc. Nat. Acad. Sci. (U.S.A.) 17, 315 (1931).
- [N] von Neumann, J.: Proof of the quasiergodic hypothesis. Proc. Acad. Sci. (U.S.A.) 17, 70 (1932).
- [P] Pillet, C.-A.: Quantum dynamical systems. In S. Attal, A. Joye, and C.-A. Pillet, editors, Open Quantum Systems I: The Hamiltonian Approach, volume 1880 of Lecture Notes in Mathematics. Springer, New York, (2006).