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Abstract� We study self adjoint operators of the form H� � H� 	
P

��
n�h�n� �i�n �

where the �n �s are a family of orthonormal vectors and the ��
n��s are independently dis


tributed random variables with absolutely continuous probability distributions� We prove

a general structural theorem saying that for each pair 
n�m�� if the cyclic subspaces cor


responding to the vectors �n and �m are not completely orthogonal� then the restrictions

of H� to these subspaces are unitarily equivalent 
with probability one�� This has some

consequences for the spectral theory of such operators� In particular� we show that �well

behaved� absolutely continuous spectrum of Anderson type Hamiltonians must be pure�

and use this to prove the purity of absolutely continuous spectrum in some concrete cases�

�



�� Introduction

Let H be a separable Hilbert space and H� a bounded self adjoint operator on H � Let

f�ngn�N � H be a set of orthonormal vectors� where N is either �nite or a countable

in�nite set� Let fpngn�N be absolutely continuous 
w�r�t� Lebesgue measure� probability

measures on R � and consider the probability space 
�� dP �� where � � �N R and

dP � �N dpn � For each � � 
��
��� ��
��� � � �� � �� de�ne

H� � H� 	
X
n�N

��
n�h�n� �i�n � 
����

Operators of the form 
���� often arise as discrete Schr�odinger operators with random

potentials in models of condensed matter physics� Perhaps the most famous example of this

type is the d 
dimensional Anderson model� which has the form 
���� on H � �	
Zd�� with

H� � � being the discrete Laplacian on �	
Zd� 

���
n� �
P

jj�nj�� �
j��� N � Zd �

the �n �s being the standard basis of �	
Zd� 
namely� �n
m� � �nm � where �nm is the

Kronecker delta�� and pn � p for some �xed measure p and all n �s� There are also

many variants of this model� such as operators where H� is the Laplacian plus some

�xed potential� operators where the potential is supported on a subset of Zd � operators

where the potential is random
decaying 
e�g�� dpn
�� � f
an�� d
an�� for some �xed f

and an � � as jnj � ��� operators on graphs other than Zd � etc��� While we discuss

below some concrete examples of this kind� our main results here involve general random

operators of the form 
����� and are thus valid in this more general context�

Our main result in this paper is the following structural theorem�

Theorem ���� Let fH�g��� be a family of operators of the form given by 
����� and

for each n � N let H��n be the cyclic subspace spanned by H� and �n � Let n�m � N �

and suppose that for a�e� � � � � the subspaces H��n and H��m are not orthogonal� Then

for a�e� � � � � the restrictions H� �H��n and H� �H��m are unitarily equivalent�

Remarks� �� One easily veri�es that for any � � �� H� is essentially self adjoint�

The cyclic subspaces are de�ned by H��n � ff
H���n j f � C�
R �g � where � denotes a

closure� and C�
R � is the set of 
complex valued� continuous functions on R with the

property that for any � 	 �� there exists a compact set D� � R such that jf
x�j 
 � if

x �� D� �

�



�� The assumption that H� is bounded can be relaxed� as long as we separately

require that the �n �s obey �n � D
H�� 
where D
�� denotes the domain of the operator��

and that the H� �s are essentially self adjoint 
for a�e� � � ���

�� The assumption that the ��
n��s are completely independent can also be relaxed�

Theorem ��� 
along with its Corollaries ����������� below� would remain true if we consider

any probability measure P on � that has the property that for each n � the conditional

probability distribution of ��
n�� given any f��
m�gm ��n � is absolutely continuous�

�� We note that by the spectral theorem ����� each of the restriction operators

H� �H��n is unitarily equivalent to multiplication by E on L	
R � d����n�� where ����n is

the spectral measure for H� and �n � namely� the unique 
regular� Borel measure on R

obeying h�n� f
H���ni �
R
f
E� d����n
E� for any bounded Borel function f � Thus� the

unitary equivalence of H� �H��n and H� �H��m is the same as the mutual equivalence of

the two spectral measures ����n and ����m 
where we say that two measures are equivalent

if they have the same sets of zero measure��

While we are mainly interested here in random operators of the form 
����� and we have

thus formulated our main result in this context� we will see that the core of Theorem ��� is�

in fact� a theorem about rank
two perturbations which is itself an immediate consequence

of a theorem about rank
one perturbations� Recall that the 
by now� classical� theory of

rank
one perturbations ���� deals with families fH�g��R of self adjoint operators of the

form H� � H�	�h�� �i� � The theory concentrates on the cyclic subspace spanned by H�

and � 
which is independent of �� and deals with the behavior of the spectral measure

���� 
for H� and � � as � is varied� In this paper we treat a somewhat di�erent question

in the same context� We will consider an additional vector 
 � and show that if the cyclic

subspace spanned by H� and � is not orthogonal to the cyclic subspace spanned by H�

and 
 � then for Lebesgue a�e� � � the spectral measure ���� is absolutely continuous with

respect to the spectral measure ���� � This fact is the core of Theorem ���� Our proof of

it is an extension of an argument of Simon ���� 
see more on this below��

In what follows� we are mostly interested in cases where the family f�ngn�N is a cyclic

family for the H� �s� Given a self adjoint operator H on H and a 
�nite or in�nite� family

of orthonormal vectors f
ngn�I 
where I � N �� we denote by H�n the cyclic subspace

spanned by H and 
n � and we say that f
ngn�I is a cyclic family for H if the set of

all �nite sums f �
� 	 �
	 	 � � �	 �
N j �
n � H�ng is dense in H � We note that such cyclic

families always exists� since every orthonormal basis of H is a cyclic family for H � Given

�



such a cyclic family� we de�ne a Borel measure � on R by

� �
X
n�I

��n��n � 
����

where for each n � ��n is the spectral measure for H and 
n � Such a measure �

completely determines the spectral properties of H � since any spectral measure of H

must be absolutely continuous with respect to it� In particular� the Borel decomposition

� � �ac 	 �sc 	 �pp of � into absolutely continuous� singular continuous� and pure point

parts determines the corresponding spectra of H � The absolutely continuous spectrum

�ac
H�� singular continuous spectrum �sc
H�� and pure point spectrum �pp
H�� are the

topological supports of the corresponding parts of � � We call the class of measures that

are equivalent to � 
namely� those measures having the same sets of zero measure� the

spectral measure class of the operator H �

Theorem ��� immediately implies the following�

Corollary ����� Let fH�g��� be as in Theorem ���� and suppose that for a�e� � � � �

the following two conditions hold�


i� The family f�ngn�N is a cyclic family for H� �


ii� For every n�m � N � the subspaces H��n and H��m are not orthogonal�

Then for a�e� � � � � for every n � N � the spectral measure ����n �for H� and �n � is in

the spectral measure class of H� �

Corollary ����� indicates that the spectral theory of operators of the form 
���� 
in cases

where the assumptions of the Corollary hold� is somewhat simpler than what one might

a priory expect� since it is su�cient to study the restriction of H� to any of the cyclic

subspaces H��n � More importantly� we will show that Corollary ����� imposes some re


strictions on the kind of spectral properties that such operators might have as well as on

the behavior of certain spectral objects when � is varied� It is tempting to think that

Corollary ����� has something to do with the spectrum of H� being simple and the �n �s

being cyclic vectors� Indeed� if this where true� then Corollary ����� would have followed

from it� Furthermore� it has been shown by Simon ���� that for fH�g��� as in Corollary

������ the �n �s are indeed cyclic vectors 
and thus the spectrum is simple� in case that

the H� �s have only pure point spectrum� In fact� our proof of Theorem ��� 
and thus of

Corollary ���� is an extension of Simon�s argument� In the pure point case� the mutual

equivalence of the ����n �s along with the existence of resolution of the identity in terms

of normalized eigenvectors imply the cyclicity of the �n �s� However� this argument breaks

�



down for continuous spectrum� Moreover� we will see below that there are simple examples

where the spectrum is not simple� and so Corollary ����� holds irrespectively of spectral

multiplicity issues�

Given an operator H� of the form 
����� let

�� �
X
n�N

��n����n � 
����

We will prove the following�

Corollary ����� Let fH�g��� be as in Corollary ������ Then for P �a�e� pair �� �� � � �

the singular parts of the measures �� and ��� are mutually singular�

Remarks� �� Corollary ����� is related to the known ��� � fact about Schr�odinger operators

with ergodic potentials that f� � � jE is an eigenvalue of H� g has zero measure 
and

thus the pure point parts of �� and ��� are almost surely mutually singular�� Of course�

our result does not cover general Schr�odinger operators with ergodic potentials� while it

does cover many operators that are not ergodic� For the case of Schr�odinger operators

with i�i�d� random potentials 
which are ergodic�� our result generalizes the above fact by

handling the singular parts of the measures rather than just their pure point parts� Deift


Simon ��� have proven precisely the same kind of result 
namely� for the singular parts of

the measures� for Schr�odinger operators with ergodic potentials in one dimension�

�� It is interesting to note that Corollary ����� can potentially be used to prove the

existence 
and even purity� of absolutely continuous spectrum� since it would be enough

to show the mutual equivalence of spectral measures for di�erent realizations 
with pos


itive probability� in order to establish their absolute continuity� Indeed� this strategy� in

conjunction with the Deift
Simon analog of Corollary ������ had been used by Gordon et�

al� �!� 
and more recently� through direct application of their results� by Jitomirskaya �����

to establish purely absolutely continuous spectrum for the almost Mathieu operator�

Our next result is a natural complement of Corollary ������ involving the essential

supports of absolutely continuous spectral measures� Given an absolutely continuous Borel

measure � on R � a measurable set A is said to be an essential support of � if it supports

� 
namely� if �
R n A� � �� and if any set of strictly smaller Lebesgue measure does

not support � � Equivalently� A is an essential support of � if and only if there exists

f � L�
R � dx� such that A � fx � R j f
x� �� �g and d� � f
x� dx 
as measures�� We

note that if A is such an essential support� then every measurable set which di�ers from

 



A by a set of zero Lebesgue measure is also an essential support� Thus� such an essential

support can be viewed as an equivalence class of measurable sets 
where equivalence here

means up to sets of zero Lebesgue measure� rather than as some concrete set� However�

one can still talk of concrete sets as being 
or not being� essential supports� A possible

concrete candidate to represent the essential support is the set

A � fE � R j lim
���

����
E � �� E 	 �� exists and is �nite and strictly positiveg � 
����

We will prove the following�

Corollary ����� Let fH�g��� be as in Corollary ������ Then there exists an � �

independent Borel set A � R � such that for a�e� � � � � A is an essential support of

the absolutely continuous part of �� � Moreover� for any measurable set �A that di�ers

from A by a set of zero Lebesgue measure �namely� for any �A that is also an essential

support of the absolutely continuous part of �� for a�e� � � ��� we have that for a�e�

� � � � ���sing
 �A� � � � where ���sing is the singular part of �� �

Remarks� �� The �rst part of Corollary ������ namely� the existence of a non
random

almost
sure essential support of the absolutely continuous part of �� � is a fairly elementary

consequence of Kolmogorov�s zero
one law� and its proof does not require Theorem ����

An analogous fact is also known ��� � in the context of Schr�odinger operators with ergodic

potentials� While this result 
for general random operators of the form 
����� is fairly

elementary and seems to be known to workers in the �eld� we are not aware of it previously

appearing in the literature�

�� Corollary ����� provides a 
weak� sense in which absolutely continuous spectrum of

such random operators must be pure� since it says that with probability one� the singular

parts of spectral measures must be supported outside the 
non
random� essential support

of the absolutely continuous spectrum� This does not yet insure truly pure absolutely

continuous spectrum� since the spectra themselves are� roughly speaking� closures of the

corresponding supports� and so Corollary ����� still allows for a situation where �ac
H���

�sing
H�� �� 	 � However� if it so happens that the essential support A of Corollary �����

contains an open interval I � then it follows that for a�e� � � �� H� has purely absolutely

continuous spectrum on I � namely� I � �ac
H�� and I � �sing
H�� � 	 �

As we shall see below� Corollary ����� can be used to establish the purity of absolutely

continuous spectrum in many concrete examples� including some cases where this has

�



been an open problem for some time� Furthermore� it might be used in the future to

prove the purity of absolutely continuous spectrum in cases where its existence is not

currently known 
such as the Anderson model�� We note at this point that if H� is a

discrete Laplacian 	 potential on �	
G�� for some connected graph G 
namely� if H� �

�	
P

n�G V 
n�h�n� �i�n	
P

n�N ��
n�h�n� �i�n � where the �n �s are delta functions on the

graph� and 
���
n� �
P

jn�jj�� �
j�� where jn � jj denotes the distance on the graph

between n and j �� then it is always true that for any pair n�m � N and � � �� the

cyclic subspaces H��n and H��m are not orthogonal� This can be seen by noting that

hH
jn�mj
� �n� �mi always takes a strictly positive integer value that is independent of the

potential 
more explicitly� it is equal to the number of di�erent paths of length jn � mj

that connect n and m on the graph�� Thus� if the set of points N where the random part

of the potential lives is su�ciently large so that f�ngn�N is a cyclic family for the H� �s�

then Corollaries ����������� are fully applicable to such operators�

One of the simplest examples of Schr�odinger operators to which Theorem ��� can

be applied is that of a one
dimensional operator along with two consecutive rank
one

perturbations� That is� consider the operator

H��� � H� 	 �h��� �i�� 	 �h��� �i�� 
�� �

on �	
Z�� where H� � � 	 V for some �xed potential V 
such that 
H�����
n� �

�
n	��	�
n���	
V 
n�	���n	���n��
n��� Theorem ��� implies that for Lebesgue a�e�

pair �� � � the restrictions of H��� to the cyclic subspaces it spans with �� and with �� are

unitarily equivalent� It is elementary that if V � �� then the above H��� has absolutely

continuous spectrum of multiplicity � on ���� ��� and so we see that the conclusion of

Theorem ��� holds regardless of simple spectral multiplicity�

Our next example involves discrete Schr�odinger operators with random
decaying po


tentials� By combining Corollary ����� with a result of Krishna ����� we have the following�

Theorem ���� Let d 
 � and let p be an absolutely continuous probability measure

on R with
R
� dp
�� � � and

R
�	 dp
�� 
 � � Let fangn�Zd � R be such that � 


janj 
 jnj�	 for some � 	 � � Let H� � � 	 V� on �	
Zd� � where the potential V�

is given by V�
n� � an��
n� and the ��
n� 	s are independently identically distributed

random variables with common probability distribution p � Then for a�e� � � H� has purely

absolutely continuous spectrum on 
��d� �d� �

Remarks� �� Krishna ���� had shown that for H� �s as in Theorem ���� ���d� �d� � �ac
H��

for a�e� � � His proof is based on showing the existence of wave operators 
w�r�t� the free

!



Laplacian ��� and it thus also imply that ���d� �d� is contained in an essential support

of the absolutely continuous part of d�� � 
This is because the existence of these wave

operators imply unitary equivalence between the restriction of H� to a subspace and the

free Laplacian � ������ Thus� Theorem ��� 
namely� the purity of the absolutely continuous

spectrum on 
��d� �d��� follows immediately from Corollary ������

�� Kirsch� Krishna� and Obermeit ���� have recently studied operators H� as in

Theorem ���� They show that with appropriate restrictions on the measure p 
they need

it to have some smoothness properties and not to decay too fast at in�nity� and on the

an �s 
they should not decay too fast� the resulting H� �s have 
for a�e� � � spectrum on the

entire real line� and moreover� the spectrum outside ���d� �d� is purely pure point 
namely�

R n ���d� �d� � �pp
H�� n �c
H���� Their proof relies on earlier works by Aizenman

��� and Aizenman
Molchanov ���� Our Theorem ��� completes the spectral picture for

these models by proving the absence of singular spectrum on 
��d� �d�� That is� we get

�ac
H�� � ���d� �d� � �pp
H�� � R n 
��d� �d�� and �sc
H�� � 	 �

Another example we wish to discuss here is that of Laplacians on a �half space� with

a random boundary potential� In ���� we prove the following�

Theorem ���� Let d 
 � and let fH�g��� be Schr
odinger operators of the form �	V�

on �	
Zd��� Z�� � where Z� � f�� �� �� � � �g � and V� is a random potential supported on

the boundary� That is

V�
n�m� �

�
��
n� m � �
� m �� � �

where n � Zd�� � m � Z� � and the ��
n� 	s are independently distributed �real� random

variables with absolutely continuous probability distributions� Then� for a�e� � � � � H�

has purely absolutely continuous spectrum on 
��d� �d� �

Remarks� �� Our proof of Theorem ��� 
given in ����� is based on proving the existence of

wave operators w�r�t� the free Laplacian � on �	
Zd�� � Z��� It thus yields that for a�e�

� � ���d� �d� is in an essential support of the absolutely continuous part of �� � Since the

set of delta function vectors on the boundary is easily seen to form a cyclic family for the

H� �s� Theorem ��� follows as an immediate consequence of Corollary ������

�� It is possible to construct a compact deterministic potential V that is supported

on the boundary of Zd��� Z� � so that �	V on �	
Zd��� Z�� will have an eigenvalue


imbedded in the absolutely continuous spectrum� in 
��d� �d� �� �� Thus� the purity of the

�



absolutely continuous spectrum on 
��d� �d� in the random case can�t follow from a simple

perturbation bound� Theorem ��� says that the occurrence of such imbedded eigenvalues

is su�ciently rare so that they occur with probability � in appropriate random settings�

�� Jak�si�c
Molchanov ����� have recently studied operators as in Theorem ���� They

show that there are cases where such operators have Anderson localization 
namely� purely

pure point essential spectrum� outside ���d� �d� � Moreover� there are cases where all

spectrum outside ���d� �d� is purely pure point� and so� using our Theorem ���� one gets

a complete spectral picture with purely absolutely continuous spectrum on 
��d� �d�� a

pure point component 
in some cases R n 
��d� �d�� outside 
��d� �d�� and no singular

continuous spectrum�

The rest of this paper is organized as follows� In Section � we prove Theorem ���� in

Section � we prove Corollary ������ and in Section � we prove Corollary ������

We would like to thank B� Simon and S� Molchanov for useful discussions� This work

was partially supported by NATO Collaborative Research Grant CRG �!�� �� VJ�s work

was also partially supported by NSERC� YL�s work was also partially supported by NSF

grant DMS
�����!� and by an Allon fellowship�

�� Proof of Theorem ���

We start with some background facts�

Proposition ���� Let H be a self adjoint operator on H and let 
� � � H � Suppose that

the cyclic subspaces H� and H� � spanned by H and� correspondingly� 
 and � � are not

orthogonal� Then for Lebesgue a�e� E � R � the limit

lim
���

h
� 
H �E � i�����i � h
� 
H � E � i�����i

exists and is �nite and non�zero�

Remark� Note that Proposition ��� does not exclude the case 
 � � �

Proof� By the spectral theorem ����� we have 
for any z � C �

h
� 
H � z����i �

Z
d����
x�

x� z
� 
����

�



where ���� is an appropriate 
�nite� complex valued� spectral measure� That is� h
� 
H�

z����i is the Borel 
a�k�a� Stieltjes� transform of a �nite complex valued measure and� in

particular� it is an analytic function of z in the upper half plane� By mapping the upper

half plane to the unit disc and using known theorems about boundary values of analytic

functions in the disk ���� 
also see Appendix A of ���� and references therein�� one deduces

that h
� 
H � E � i�����i exists and is �nite for a�e� E � R � Moreover� it must also

be non
zero for a�e� E � R � unless h
� 
H � z����i vanishes identically 
as a function of

z � C �� and this happens if and only if the measure ���� vanishes identically� But� if

���� vanishes� then we have

hg
H�
� f
H��i �

Z
g�
x�f
x� d����
x� � � � 
����

for any f� g � C�
R �� and so the cyclic subspaces H� and H� are orthogonal� pqxy

Next� we need to recall here a few basic facts from the classical theory of rank one pertur


bations 
see ���� for a proof��

Proposition ���� Let H� be a self adjoint operator on H and let � � H � For each

� � R � let

H� � H� 	 �h�� �i� �

and let ���� be the spectral measure for H� and � � Then


i� The set fE � R j h�� 
H��E�i��
���i exists and � 
 Im h�� 
H��E�i��

���i 
�g

is independent of � � and for any � � R � it is an essential support of the absolutely

continuous part of ���� �


ii� The singular part of ���� is supported on the set fE � R j h�� 
H� � E � i�����i �

����g �


iii� For any B � R of zero Lebesgue measure� we have ����
B� � � for Lebesgue a�e�

� � R �

The �nal background result that we need here is the following theorem of Poltoratskii

��!��

Proposition ���� Let � and � be two �nite complex valued measures on R � and for any

z � C � let F 
�� z� �
R

x � z��� d� and F 
�� z� �

R

x � z��� d� be the corresponding

��



Borel transforms� Let � � �� 	 �	 be the Lebesgue decomposition of � w�r�t� � � such that

�� is absolutely continuous w�r�t� � and �	 is singular w�r�t� � � Furthermore� let �	�sing

be the singular �w�r�t� Lebesgue measure� part of �	 � Then� for a�e� E w�r�t� �	�sing � we

have

lim
���

jF 
��E 	 i��j

jF 
�� E 	 i��j
� � �

Remarks� �� Poltoratskii discusses measures on the unit circle� The implication for

measures on R is both standard and straight
forward�

�� The result is not explicitly stated in ��!� in this way� However� Corollary � in page

��� of ��!� is exactly our Proposition ��� for the case where � � �	 � �	�sing � The more

general form follows immediately from this assertion� because we have for a�e� E w�r�t�

�	�sing �

lim
���

jF 
��E 	 i��j

jF 
�	�sing� E 	 i��j
� �

and

lim
���

jF 
�� E 	 i��j

jF 
�	�sing� E 	 i��j
� lim

���

jF 
� � �	�sing� E 	 i�� 	 F 
�	�sing� E 	 i��j

jF 
�	�sing� E 	 i��j
� � �

Our next theorem is a general result concerning rank one perturbations of self adjoint

operators� In essence� it is the main result of this paper�

Theorem ���� Let H� be a self adjoint operator on H and let 
� � � H � For each

� � R � let

H� � H� 	 �h�� �i� �

and let ���� and ���� be the spectral measures for H� and� correspondingly� 
 and � �

Suppose that the cyclic subspaces H��� and H��� � spanned by H� and� correspondingly� 


and � � are not orthogonal� Then for Lebesgue a�e� � � R � ���� is absolutely continuous

w�r�t� ���� � namely� there exists f����� � L�
R � d����� such that d���� � f�����d���� �

Remark� Note that H��� is independent of � � and while H��� does� in general� depend

on � � it will be independent of � in case that it is orthogonal to H��� for some � � R �

Thus� the non
orthogonality of H��� and H��� is a � 
independent fact�

��



Proof� "From the general operator formula A���B�� � B��
B�A�A�� � we get for any

z � C n R �


H� � z��� � 
H� � z��� � �
H� � z���
h�� �i��
H� � z��� � 
����

which implies that for any ��� �	 � H we have

h��� 
H� � z����	i � h��� 
H� � z����	i � �h��� 
H� � z����ih�� 
H� � z����	i � 
����

In what follows� it would be convenient to have more compact notations for the vari


ous resolvent matrix elements� We thus set� for any � � R � ��� �	 � H � and z � C �

G�
��� �	� z� � h��� 
H� � z����	i � Thus� 
���� can be rewritten as

G�
��� �	� z� � G�
��� �	� z�� �G�
��� �� z�G�
�� �	� z� � 
�� �

Setting �� � �	 � � in 
�� �� we get

G�
�� �� z� � G�
�� �� z�� �G�
�� �� z�G�
�� �� z� � 
����

which can be rewritten as

G�
�� �� z� �
G�
�� �� z�

� 	 �G�
�� �� z�
� 
��!�

Since G�
�� �� z� is the Borel transform of ���� � namely�

G�
�� �� z� �

Z

x� z��� d����
x� � 
����


��!� relates the perturbed spectral measure ���� to ���� � It is the fundamental formula

for developing the theory of rank one perturbations ���� 
and in particular� for proving

Proposition �����

We will now use 
�� � to develop relations between ���� and ���� � By setting �� � �

and �	 � 
 in 
�� �� we obtain 
similarly to 
��!��

G�
�� 
� z� �
G�
�� 
� z�

� 	 �G�
�� �� z�
� 
����

and by setting �� � �	 � 
 in 
�� �� we get

G�

� 
� z� � G�

� 
� z�� �G�

� �� z�G�
�� 
� z� � 
�����

��



Inserting G�
�� 
� z� from 
���� in 
������ we get

G�

� 
� z� � G�

� 
� z�� �
G�

� �� z�G�
�� 
� z�

� 	 �G�
�� �� z�
� 
�����

By the Lebesgue decomposition theorem� we always have a decomposition of the form�

d���� � f�����d���� 	 d������� � 
�����

where ������� is the part of ���� which is singular w�r�t� ���� � The Theorem would thus

follow if we can show that for Lebesgue a�e� � � R � ������� � ��

Let A� be the set of all E � R for which the limits G�
�� ��E	i��� G�

� ��E	i���

G�
�� 
�E 	 i��� and G�

� 
�E 	 i�� exist and are �nite and non
zero� By Proposition

���� A� is a set of full Lebesgue measure� and thus by 
iii� of Proposition ���� we have

���� � ���� �A� for Lebesgue a�e� � � R � Thus� it su�ces to analyze the restriction of the

various measures to the set A� � In order to show that ������� vanishes 
for a�e� � � R ��

we will use two separate treatments� One for the singular part of ���� and the other for

its absolutely continuous part� We start with the singular part�

By rearranging 
��!�� we have

�

� 	 �G�
�� �� z�
�

G�
�� �� z�

G�
�� �� z�
� 
�����

and by inserting � 	 �G�
�� �� z� from 
����� in 
������ we get

G�

� 
� z� � G�

� 
� z�� �
G�

� �� z�G�
�� 
� z�

G�
�� �� z�
G�
�� �� z� � 
�����


����� implies that for any � � R and E � A� �

lim
���

G�

� 
�E 	 i��

G�
�� ��E 	 i��
� lim

���

G�

� 
�E 	 i��

G�
�� ��E 	 i��
� �

G�

� ��E 	 i��G�
�� 
�E 	 i��

G�
�� ��E 	 i��
�


��� �

and since jG�
�� ��E	 i��j � � as �� �� for a�e� E w�r�t� the singular part of ���� � we

obtain that

lim
���

G�

� 
�E 	 i��

G�
�� ��E 	 i��
� ��

G�

� ��E 	 i��G�
�� 
�E 	 i��

G�
�� ��E 	 i��
�� � � 
�����

��



for every � �� � and a�e� E w�r�t� the singular part of ���� �A� � By Proposition ���� this

implies that the singular part of ������� �A� vanishes for every � �� �� and thus that the

singular part of ������� vanishes for Lebesgue a�e� � � R �

It remains to show that the absolutely continuous part of ������� vanishes� By multi


plying both sides of 
����� by j� 	 �G�
�� �� z�j	 and taking imaginary parts� we obtain

j� 	 �G�
�� �� z�j
	ImG�

� 
� z� � j� 	 �G�
�� �� z�j

	ImG�

� 
� z�

� �Im
�
G�

� �� z�G�
�� 
� z�

�

	 �	
h
ImG�
�� �� z�Re

�
G�

� �� z�G�
�� 
� z�

�

� ReG�
�� �� z�Im
�
G�

� �� z�G�
�� 
� z�

�i
�


���!�

For z � C n R � the r�h�s� of 
���!� is a second order polynomial in � � which we denote by

P 
z� ��� For z � E 	 i� and E � A� � it also converges as � � � 
uniformly on compact

sets� to a limiting 
second order in �� polynomial P 
E 	 i�� ��� Let

A � fE � R jG�
�� ��E 	 i�� exists and � 
 ImG�
�� ��E 	 i�� 
�g � 
�����

We claim that for E � A � A� � P 
E 	 i�� �� can�t vanish identically 
as a polynomial

in ��� Indeed� since E � A � we must have j� 	 �G�
�� ��E 	 i��j	 	 � for all � � R �

Suppose that both the constant term and the linear term of P 
E	i�� �� vanish identically�

then we must have ImG�

� 
�E 	 i�� � � and also Im
�
G�

� �� z�G�
�� 
� z�

�
� ��

Thus� P 
E	 i�� �� reduces to �	ImG�
�� ��E	 i��Re
�
G�

� �� z�G�
�� 
� z�

�
� and since

G�

� �� z�G�
�� 
� z� �� � for E � A� � we see that it doesn�t vanish�

Since P 
E 	 i�� �� does not vanish identically for E � A � A� � it follows that for

each E � A � A� � it can vanish for at most two values of � 
actually� for at most one

value� since the l�h�s� of 
���!� is clearly non
negative�� In particular� it follows that for

each E � A � A� � P 
E 	 i�� �� �� � for Lebesgue a�e� � � R � and thus by Fubini�s

theorem� we have that for Lebesgue a�e� � � R � P 
E 	 i�� �� �� � for Lebesgue a�e�

E � A�A� � Since j�	�G�
�� ��E	i��j	 exists and is strictly positive for any � � R and

E � A�A� � it follows that for a�e� � � R � for a�e� E � A�A� � ImG�

� 
�E	 i�� exists

and is �nite and strictly positive� Since the absolutely continuous parts of the measures

���� and ���� are given by d�����ac
E� � ���ImG�
�� ��E 	 i�� dE and d�����ac
E� �

���ImG�

� 
�E 	 i�� dE � and since A �A� is an essential support of �����ac � it follows

��



that for a�e� � � R � �����ac is absolutely continuous w�r�t� �����ac � This says that the

absolutely continuous part of ������� must vanish� and it thus completes the proof of

Theorem ���� pqxy

Remark� By Poltoratskii�s Theorem ��! of ��!�� the function f����� is determined a�e�

w�r�t� the singular part of ���� by the limiting value of the ratio of the corresponding

Borel transforms� Thus� 
����� implies that

f�����
E� � �
G�
�� ��E 	 i��

�G�

� ��E 	 i��G�
�� 
�E 	 i��
� 
�����

for a�e� � � R � for a�e� E w�r�t� �����sing � Moreover� similarly to 
��� ��
������ 
�����

and Proposition ��� can be used to show that �����sing �A� is absolutely continuous w�r�t�

�����sing � Thus� by 
ii� of Proposition ��� 
and noting that G�

� ��E 	 i��G�
�� 
�E 	

i�� � jG�
�� 
�E 	 i��j	 if G�
�� ��E 	 i�� � R �� this implies that we have

d�����sing
E� �
�A�


E�

�	jG�
�� 
�E 	 i��j	
d�����sing
E� � 
�����

for Lebesgue a�e� � � R � We note that a simple relation of the type 
����� does not hold

for the absolutely continuous parts of the measures� The relation for these parts is more

complex�

Our next theorem is an immediate consequence of Theorem ��� for the case of two

independent rank one perturbations�

Theorem ���� Let H� be a self adjoint operator on H and let �� 
 � H � For every

�� � � R � let

H��� � H� 	 �h�� �i� 	 �h
� �i
 �

and let ������ and ������ be the spectral measures for H��� and� correspondingly� � and


 � Suppose that the cyclic subspaces H����� and H����� � spanned by H��� and� corre�

spondingly� � and 
 � are not orthogonal� Then for Lebesgue a�e� �� � � R � ������ and

������ are equivalent�

Remark� Note that 
similarly to the remark to Theorem ���� the non
orthogonality of

H����� and H����� is independent of � and � 
namely� it holds for any �� � � R if and

only if it holds for � � � � ���

� 



Proof� By Theorem ���� we have for each �xed � � that ������ is absolutely continuous w�r�t�

������ for Lebesgue a�e� � � Thus� by Fubini�s theorem� ������ is absolutely continuous

w�r�t� ������ for Lebesgue a�e� pair �� � � By the same argument we also have that ������ is

absolutely continuous w�r�t� ������ for Lebesgue a�e� pair �� � � Thus� we have for Lebesgue

a�e� �� � � R � that each of the measures ������ and ������ is absolutely continuous w�r�t�

the other� namely� they are equivalent� pqxy

We can now prove Theorem ����

Proof of Theorem ���� For every �xed pair n�m � N � the conditional probability dis


tribution of the pair 
��
n�� ��
m��� given any f��
k�gk ��n�m � is absolutely continuous

w�r�t� Lebesgue measure on R 	 � Thus� it follows from Theorem �� that the corresponding

spectral measures� ����n and ����m must be equivalent for a�e� � � �� As discussed in

Remark � to Theorem ���� this equivalence of the spectral measures is equivalent to the

unitary equivalence of H� �H��n and H� �H��m � pqxy

�� Proof of Corollary �����

Proof of Corollary ������ Suppose that the assertion of the Corollary is not true� Then

there must be a Borel set S � R of zero Lebesgue measure and a measurable subset

�� � � with P 
��� 	 �� such that ��
S� 	 � for every � � ��� By Corollary ������ we must

thus also have �����
S� 	 � for a�e� � � ��� Since the conditional probability distribution

of ��
��� given any f��
m�gm
� � is absolutely continuous w�r�t� Lebesgue measure� there

is a subset #� � �� for which f��
m�gm
� are �xed� ��
�� varies over a set of positive

Lebesgue measure� and �����
S� 	 � for every � � #�� This is a contradiction to 
iii� of

Proposition ���� pqxy

�� Proof of Corollary �����

Proof of Corollary ����
� For each � � �� let A� be an essential support of the absolutely

continuous part of �� 
A� can be explicitly chosen by 
������ De�ne a function f� �

$L�
R � dE� by f� � �A� 
E�
� 	 E	��� � By 
for example� Lemma V����� of ���� the map

� 
 � �� f� � $L�
R � dE� is measurable� Since the essential support of the absolutely

��



continuous part of �� is invariant under rank one 
and thus �nite rank� perturbations�

f� 
as an element of L�
R � dE�� is independent of f��
n�gn�N for any N � N � We

claim that by Kolmogorov�s �
� law 
see� e�g�� ����� this implies that f� 
as an element of

L�
R � dE�� is P 
almost surely independent of � � To see this precisely� de�ne

F�
x� �

Z x

��
f�
E� dE � 
����

and for every q� r � Q � let ��q
r� � f� � � jF�
q� 
 rg � Since F�
q� is independent of

f��
n�gn�N � we have� by Kolmogorov�s �
� law� that for every q� r � either P 
��q
r�� � �

or P 
��q
r�� � �� For every q � Q � let �
q� � inffr � Q jP 
��q
r�� � �g � Then

F�
q� � �
q� P 
almost surely� Since F�
�� is a continuous function on R � there must be

a deterministic function F � such that F�
x� � F 
x� for every x � R and a�e� � � �� Let

f
x� � F �
x�� then f is independent of � and we have that for a�e� � � �� f � f� as

elements of L�
R � dE�� In particular� the deterministic set

A � fE � R jF �
x� exists and is �nite and strictly positiveg 
����

is P 
almost surely an essential support of the absolutely continuous part of �� �

It remains to show that for a�e� � � �� ���sing
A� � �� By Corollary ������ A is

P 
almost surely an essential support of the absolutely continuous part of ����� � Thus� for

a�e� � � �� A equals� up to a set of zero Lebesgue measure� to the set

A���� � fE � R j h��� 
H��E� i������i exists and � 
 Im h��� 
H��E� i������i 
�g �


����

For any �xed � � � and a rank one perturbation of H� of the form H��� � H�	�h��� �i�� �


i� of Proposition ��� implies that ��������sing
A����� � � for any � � R 
where ��������sing

is the singular part of the spectral measure for H��� and �� �� By 
iii� of Proposition

���� this implies that ��������sing
A� � � for Lebesgue a�e� � � R � By the same kind of

argument as in the proof of Corollary ����� 
namely� due to the fact that the conditional

probability distribution of ��
��� given any f��
m�gm
� � is absolutely continuous w�r�t�

Lebesgue measure�� this implies that ������sing
A� � � for a�e� � � � 
where ������sing is

the singular part of the spectral measure for H� and �� �� By Corollary ������ again� this

implies that for a�e� � � �� ���sing
A� � �� pqxy

�!
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