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Spectral theory of corrugated surfaces

Vojkan Jakšić

Abstract
We discuss spectral and scattering theory of the discrete Laplacian limited

to a half-space. The interesting properties of such operators stem from the
imposed boundary condition and are related to certain phenomena in surface
physics.

1. Introduction

This paper is a brief review of the program initiated some years ago in [JMP].
The main goal of this program is to understand the formation and the propagation
properties of surface states in regions with corrugated boundaries. The history of
this problem and its physical aspects are discussed in [JMP, KP].

The results described in this review are obtained in collaborations with Yoram
Last and Stanislav Molchanov. I am grateful to Leonid Pastur and Barry Simon for
many useful discussions on the subject of this review.

2. The model

Let d ≥ 1 be given and let Zd+1
+ := Zd × Z+ where Z+ = {0, 1, . . .}. We denote

the points in Zd+1
+ by (n, x), for n ∈ Zd and x ∈ Z+. Let V : Zd 7→ R be a

given function and let H be the discrete Laplacian on H := l2(Zd+1
+ ) with boundary

condition ψ(n,−1) = V (n)ψ(n, 0). When V = 0 the operator H reduces to Dirichlet
Laplacian which we denote by H0. The operator H acts as

(Hψ)(n, x) =

{∑
|n−n′|++|x−x′|=1 ψ(n′, x′) if x > 0,

ψ(n, 1) +
∑

|n−n′|+=1 ψ(n′, 0) + V (n)ψ(n, 0) if x = 0,

where |n|+ =
∑d

j=1 |nj|. Physically, the boundary condition V models the cor-
rugated surface of the medium and one is interested in its effects on propagation
properties of wave packets.
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Note that the operator H can be also viewed as the Schrödinger operator

H = H0 + V (2.1)

where the potential V acts only along the boundary ∂Zd+1
+ = {(n, 0) : n ∈ Zd}.

This point of view is notationaly convenient and we will adopt it in the sequel. We
recall that the spectrum of H0 is purely absolutely continuous and that

σ(H0) = [−2(d+ 1), 2(d+ 1)].

The results we wish to describe fall into four categories.

1. Structural results. These results follow from the geometry of the model and
hold for an arbitrary surface potential.

2. Random surface potentials. The surface potential is a random process on
Zd. Such potentials describe effects of impurities distributed randomly along the
surface of the medium.

3. Surface Maryland model. The surface potential is the Maryland potential
V (n) = λ tan(πα · n + θ). Such quasiperiodic potential may be used to describe
strongly corrugated surfaces.

4. Surface states and spectra. These results deal with certain dynamical aspects
of the model and are motivated by surface physics.

3. Structural results

Unless otherwise stated, all the results of this section hold for an arbitrary surface
potential V .

Theorem 3.1 [JL1, CS] The wave operators

Ω± = s− lim
t→±∞

eitHe−itH0 (3.1)

exist. In particular, σ(H0) ⊂ σac(H).

One can also compute the ranges of wave operators. For any R ≥ 0 let ΓR :=
{(n, x) : n ∈ Zd, 0 ≤ x ≤ R}, ΓR = Zd+1

+ \ ΓR. We denote by 1R, 1R, the character-
istic functions of the sets ΓR, ΓR, and use the same symbol for the corresponding
multiplication operators. Obviously, 1 = 1R + 1R.

Theorem 3.2 [JL3]

RanΩ± =

{
ψ : ∀R ≥ 0,

∫
R
‖1Re−itHψ‖2dt <∞

}cl

=
{
ψ : ∀R, k ≥ 0, ‖1Re−itHψ‖ = O(〈t〉−k)

}cl
,

where cl stands for the closure.
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Due to the free propagation along the x-axis, the above theorems are certainly
expected. They are also relatively simply to prove. Subtler results are related to the
question when and where the wave operators are complete and the spectrum of H
is purely absolutely continuous. To describe these results we need some additional
notions.

Let
Hs := l2(Γ0) ≡ l2(Zd), Hb := l2(Γ0).

We will refer to these Hilbert spaces as the surface and the bulk. Clearly,

H = Hs ⊕Hb.

With respect to this decomposition the operator H can be written as a 2×2 matrix

H =

[
Hss Hsb

Hbs Hbb

]
. (3.2)

Here, Hss = h0 + V , where h0 is the usual discrete Laplacian on l2(Zd), and Hbb is
the Dirichlet Laplacian on l2(Γ0). Note that Hbb is unitarily equivalent to H0. The
operators Hsb and Hbs couple the surface and the bulk, Hsb = (Hbs)∗, Hbsδ(n,x) = 0
if x > 0 and Hbsδ(n,0) = δ(n,1).

We will use notation similar to (3.2) for other operators on H. For example, 1ss

is the projection onto the surface and 1bb is the projection onto the bulk.
For any z 6∈ σ(Hbb), we define

Ws(z) := Hsb(Hbb − z1bb)−1Hbs,

Gs(z) := Hss −Ws(z)− z1ss.
(3.3)

In physics literature, the operator Ws(z) is sometimes called the self-energy. Fol-
lowing [DJ], we will call Gs(z) the resonance function. Its importance stems from
the identity

1ss(H − z)−11ss = G−1
s (z), (3.4)

which is a consequence of the Feshbach formula for (H − z)−1. One can also show
that the Hilbert space Hs is a cyclic set for H. It then follows from (3.4) that the
spectral properties of H are encoded by the resonance function Gs(z).

In the sequel, we will use the short-hand C± := {z : ±Imz > 0}. One can
show (see [JL1]) that the operator-valued function C+ 3 z 7→ Ws(z) extends by
continuity to a norm-continuous function on C+. Thus, for e ∈ R, we can define
Gs(e) by (3.3). Clearly, Gs(e) is a closed operator with domain D(V ). We define
the resonant spectrum of the operator H by

R(H) := {e ∈ R : 0 ∈ σ(Gs(e))} .

If V is a constant surface potential, V = a, then R(H) = ∅ if |a| < 1 and

R(H) = [−2d, 2d] + a+ a−1

if |a| ≥ 1. Motivated by this observation, we set

S(V ) :=
{
[−2d, 2d] + a+ a−1 : a ∈ σ(V ), |a| ≥ 1

}
.
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One can show (see [JL1]) that

σ(H) ⊂ σ(H0) ∪ S(V ). (3.5)

We also define

Sext(V ) := S(V ) ∪ ([−2d, 2d] + {2a : a ∈ σ(V ), |a| < 1}) .

The basic properties of the resonant spectrum are summarized in:

Theorem 3.3 [JL1]

(i) R(H) is a closed set.

(ii) R(H) ⊂ σ(H) and σ(H) \ σ(H0) ⊂ R(H).

(iii) R(H) ⊂ Sext(V ).

(iv) If ‖V ‖ < 1 then R(H) = ∅.
(v) If lim sup |V (n)| < 1 or lim |V (n)| = ∞ then R(H) has Lebesgue measure 0.

Theorem 3.4 [JL1] The wave operators Ω± are complete on σ(H) \ R(H). In
particular, the spectrum of H is purely absolutely continuous on this set.

The existing counterexamples [MV1, MV2] suggest that the last theorem is an
optimal result in the sense that it holds for an arbitrary surface potential V .

4. Random surface potentials

Let
Ω = RZd

=
∏
n∈Zd

R,

be the set of all surface potentials, that is, the functions V : Zd 7→ R. Let F be the
σ-algebra generated by the cylinder sets

{V : V (n1) ∈ B1, . . . , V (nk) ∈ Bk},

where B1, B2, . . . , Bk are Borel subsets of R. The random surface model is specified
by the choice of a probability measure P on (Ω,F). Given P , one is interested in
spectral and scattering properties of H = H0 + V which hold P -a.s., that is, for a
set of V ’s of P measure 1.

We will consider measures P of the form

P =
∏
n∈Zd

µn,

where each µn is a probability measure on R. Thus, µn is a probability distribution
of the random variable Ω 3 V 7→ V (n). The random variable V (n) has density if the
measure µn is absolutely continuous w.r.t. Lebesgue measure. It follows from the
definition of P that the random variables {V (n)} are independent, and we say that
they are i.i.d. if all the measures µn are equal to µ. We recall that the topological
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support of µ, suppµ, is the complement of the largest open set B such that µ(B) = 0.
Set

S :=
{
[−2d, 2d] + a+ a−1 : a ∈ suppµ, |a| ≥ 1

}
.

Consider first the i.i.d. case. Then H = H0 + V is an ergodic family of random
operators and it follows from the well-known argument (see [CFKS]) that there
exist closed sets Σ, Σac, Σpp, Σsc, such that P -a.s., σ(H) = Σ, σac(H) = Σac,
σsc(H) = Σsc. Note that P -a.s. σ(V ) = suppµ and so

S(V ) = S P − a.s.

One can show (see [JL1] and compare with (3.5)) that

Σ = σ(H0) ∪ S. (4.1)

Theorem 3.3 is complemented with the following result.

Theorem 4.1 Assume that the random variables {V (n)}n∈Zd are i.i.d. Then:

(i) There is a set R such that R(H) = R P -a.s.

(ii) S ⊂ R.

(iii) If suppµ ∩ (−1, 1) = ∅, then S = R.

The above result yields that in many situations there is a rich resonant spectrum
on σ(H0). The deterministic Theorem 3.4 gives no information about the structure
of the spectrum on the set R ∩ σ(H0) (by Theorem 3.1, though, we know that
there is a component of a.c. spectrum on this set). The next result gives complete
characterization of the spectrum of H in σ(H0) if the random variables V (n) have
densities.

Theorem 4.2 [JL1, JL2] Assume that the random variables {V (n)}n∈Zd have den-
sities. Then the spectrum of H in σ(H0) is P -a.s. purely absolutely continuous.

Combining Theorems 3.3 and 4.2 one derives:

Corollary 4.3 [JL1] Assume that the assumption of Theorem 4.2 holds and that
either

lim sup
|n|→∞

|V (n)| < 1 P − a.s. or lim
|n|→∞

|V (n)| = ∞ P − a.s.

Then the wave operators Ω± are complete on σ(H0).

Under the assumptions of the previous corollary, the spectrum of H outside σ(H0)
is P -a.s. discrete.

We proceed to describe the structure of the spectrum outside σ(H0). The first
results in this direction were obtained in [AM, G]. Note that by the formula (4.1),
in the i.i.d. case the operator H will have P -a.s. some essential spectrum outside
σ(H0) whenever suppµ \ [−1, 1] 6= ∅.

For simplicity, until the end of this section we will assume that the random
variables {V (n)} are i.i.d. with distribution dµ = p(x)dx.
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Theorem 4.4 [JM2] Assume that d+ 1 = 2, p ∈ L∞(R), and that the topological
boundary of suppµ is a discrete set. Then the operator H has P-a.s. only pure point
spectrum outside σ(H0).

In [JM2] it is also shown that the eigenfunctions of H decay exponentially in the
x-variable and faster then any polynomial in the n-variable. We do not believe that
this result is optimal (see Theorem 4.5 below).

Theorem 4.4 is a non-perturbative result and its proof is technically demanding.
We outline the strategy of the proof. The operators Gs(e) can be written as

Gs(e) = h0(e) + V − e,

where h0(e) = h0 −Ws(e), and h0 is the usual discrete Laplacian on l2(Zd). The
operator h0(e) acts as convolution by a certain function j(n, e), that is,

(h0(e)ψ)(k) =
∑

k

j(n− k, e)ψ(k).

We adopt the short-hand h(e) = h0(e) + V . It is not difficult to show that j(n, e)
decays exponentially in the n-variable for e 6∈ σ(H0),

|j(n, e)| ≤ Ce−γ(e)|n|. (4.2)

The exponential decay is not uniform and γ(e) → 0 as |e| ↓ 2(d+ 1).
Let (a, b) be an interval outside σ(H0). The Simon-Wolff theorem [SW] can

be adapted to the half-space problems and it yields that if for de ⊗ dP a.e. pairs
(e, V ) ∈ (a, b)× Ω,

lim
ε↓0

∑
n

|(δ0|(h(e)− e− iε)−1δn)|2 <∞,

then the spectrum of H is P -a.s. pure point on (a, b). Therefore, one needs a
suitable estimate on

|(δ0|(h(e)− e− iε)−1δn)| (4.3)

for a.e. (e, V ). In comparison with the usual theory of random Schrödinger opera-
tors, the difficulties in estimating (4.3) stem from the fact that h0(e) is long-range
energy-dependent Laplacian.

When d = 1, we have estimated (4.3) in [JM1, JM2] following geometric KAM
approach to one-dimensional localization which goes back to [KMP, M1, M2, GJMS].
The heuristic ideas behind this estimation are explained in detail in the introductions
of [JM1, JM2].

The method of [JM2] works only for d = 1, and a new approach is needed
in higher dimensions. This problem was studied in [JM3] using the Aizenman-
Molchanov technique. The basic observation is that although there is no uniform
exponential bound on the sequence j(n, e), the following bound holds:

sup
e6∈σ(H0)

|j(n, e)| ≤ C
∏
〈ni〉−(d+1)/d. (4.4)
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The estimates (4.2), (4.4) and Aizenman-Molchanov theory yield that the sequence
(4.3) decays exponentially in n for all e 6∈ σ(H0). We state the result of [JM3]
under a simple assumption on the density p. The interested reader may consult the
original paper for various generalizations.

Theorem 4.5 [JM3] Let d ≥ 1 and H = H0 + λV , V ∈ Ω, where λ is a real
constant. Assume that p(x) = O(〈x〉−1−α) for some α > 2d/(d+ 1). Then there are
constants 0 < ad < bd such that for |λ| 6∈ [ad, bd] the operator H has P -a.s. only
pure point spectrum outside σ(H0) with exponentially decaying eigenfunctions.

The weak coupling (|λ| < ad) and the large coupling (|λ| > bd) regime of Theorem
4.5 are mathematically and physically very different. A perhaps most important
difference is that the large coupling regime allows for a background surface potential
U0, while the weak coupling regime does not. For a discussion of mathematical and
physical reasons behaind this difference we refer the reader to [JM3].

5. Surface Maryland model

Let α = (α1, · · · , αd) ∈ [0, 1]d and θ ∈ [0, π] be given. The Maryland potential on
Zd is the function

Vα,θ(n) = tan(πα · n+ θ).

To avoid singular cases, one assumes that for a given α, θ is chosen so that for all
n,

πα · n+ θ 6≡ 0 modπ/2.

The results described in this section hold for all θ which satisfy this relation.
The usual Maryland model is a family of operators on l2(Zd) of the form hλ,α,θ =

h0 + λVα,θ, where λ is a real parameter and h0 the discrete Laplacian on l2(Zd).
This model has been introduced in physics literature by Fishman, Grempel and
Prange in early 1980’s, and has been extensively studied (see [CFKS] for references
and additional information). We say that α = (α1, · · · , αd) is independent over
rationals if for any choice of rational numbers r1, · · · , rd ∈ Q,

∑
rkαk 6∈ Q. We

say that α has typical Diophantine property if there exist constants C, k > 0 such
that |n · α −m| > C|n|−k for all n ∈ Zd, m ∈ Z. The set of such α’s in [0, 1]d has
Lebesgue measure 1. If α has typical Diophantine properties then for all λ 6= 0,
σ(hλ,α,θ) = R, the spectrum is pure point, the eigenvalues of hλ,α,θ are simple and
the corresponding eigenfunctions decay exponentially (see [CFKS, FP]).

The surface Maryland model is the family of operators on l2(Zd+1
+ ) defined by

Hλ,α,θ = H0 + λVα,θ,

where Vα,θ acts only along the boundary ∂Zd+1
+ = Zd.

The surface Maryland model was first studied by Khoruzenko and Pastur. They
have proven the following the result.

Theorem 5.1 [KP] Assume that α has typical Diophantine properties. Then, for
all λ 6= 0, σ(Hλ,α,θ) = R and the spectrum of Hλ,α,θ on the set R \ σ(H0) is pure
point. On this set the eigenvalues are simple and the corresponding eigenfunctions
decay exponentially.
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It follows from Theorem 3.1 that σ(H0) ⊂ σac(Hλ,α,θ). The structure of the
spectrum of Hλ,α,θ in σ(H0) was studied in [JM1, JM4].

Theorem 5.2 [JM1, JM4] Assume that α is independent over rationals. Then,
for all λ, the wave operators (3.1) are complete on σ(H0). In particular, the spectrum
of H in σ(H0) is purely absolutely continuous.

A perhaps surprising aspect of Theorem 5.2 is that the scattering is complete
without any Diophantine restrictions on α. If α is dependent over rationals, the
potential V is periodic and the wave operators might not be complete.

For a discussion of the surface Maryland model in the context of surface physics
we refer the reader to [KP, JM4].

In a recent work, Bentosela, Briet and Pastur [BBP] have developed stationary
scattering theory for the surface Maryland model.

6. Surface states and spectra

The surface states of the model (2.1) are the wave packets which remain localized
near the boundary ∂Zd+1

+ for all time. This heuristic description can be made
mathematically rigorous as follows.

We say that a vector ψ is a surface state of the operator H if

lim
R→∞

lim inf
T→∞

1

2T

∫ T

−T

‖1Re−itHψ‖2dt = ‖ψ‖2.

We denote the set of all surface states by Hs(H). 1Θ(H) denotes the spectral
projection of H onto the Borel set Θ.

Theorem 6.1 [JL3]

(i) Hs(H) is a closed subspace of H invariant under H.

(ii) Ran1R\σ(H0)(H) ⊂ Hs(H).

Part (i) of this theorem allows to define the surface spectrum of the operator H,
σs(H), by

σs(H) = σ (H � Hs(H)) .

Part (ii) yields that σ(H) \ σ(H0) ⊂ σs(H).
An important question is whether H has some surface spectra on σ(H0). The

only known examples where this happens are periodic potentials [DS] and some
special surface potentials for which H has embedded eigenvalues in σ(H0) [MV1].

Theorem 6.2 [JL3] Assume that the wave operators Ω± are complete on a Borel
set Θ. Then σs(H) ∩Θ = ∅. In particular, σs(H) ⊂ R(H).

We remark that Theorems 6.1 and 6.2 hold for an arbitrary surface potential V .
Surface states in Hac(H) are called surface waves. Surface waves are localized

near the boundary ∂Zd+1
+ and propagate along this boundary. For symmetry reasons

surface waves exist if the surface potential V is periodic. An explicit example is a
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constant surface potential V = a, with |a| > 1. In this case the spectrum of H is
purely absolutely continuous and σs(H) = [−2d, 2d]+a+a−1. An important question
is whether surface waves exist for quasi-periodic and random surface potentials.

In what follows we consider random surface potentials. For simplicity, we assume
that the random variables {V (n)} are i.i.d. with distribution dµ = p(x)dx. As we
have described in Section 4, in many situations the spectrum of H outside σ(H0) is
P -a.s. pure point and hence in these regimes there are no surface waves with energies
outside σ(H0). The question whether in some situations there is some absolutely
continuous spectrum outside σ(H0) is the problem of Anderson delocalization (see
[JM3] for a discussion). This fundamental problem is very little understood. On the
other hand, by Theorem 4.1, a surface state with energy in σ(H0) is automatically
a surface wave, and it is natural question whether for random potentials there are
any surface spectra on σ(H0).

The only existing result in this direction is negative. We state the result of [JL3]
under a simple assumption on the density p, see [JL3] for details and additional
information. We use the symbol E(f) for the expectation of a random variable f .

Theorem 6.3 [JL3] Assime that d+ 1 = 2 and let H = H0 + λV , V ∈ Ω, where λ
is a real constant. Assume that p(x) = O(〈x〉−α) for some α > 5/3. Then there are
constants 0 < a < b such that for |λ| 6∈ [a, b], R ≥ 0 and ψ ∈ H,

lim
T→∞

1

2T

∫ T

−T

E
(
1Re−itH1σ(H0)(H)ψ‖2

)
dt = 0. (6.1)

In particular, for |λ| 6∈ [a, b], σs(H) ∩ σ(H0) = ∅.

The proof of this theorem combines Aizenman-Molchanov theory [A, AM] with
techniques of scattering theory. More precisely, we use Aizenman-Molchanov theory
to prove a “localization” estimate for matrix elements of the resolvent (H − z)−1

along the boundary ∂Zd+1
+ . Such an estimate implies that propagation of wave

packets along the boundary is supressed. We then combine this estimate with
techniques of scattering theory to show that wave packets with energies in σ(H0)
must dissolve in the bulk and that the estimate (6.1) holds. A perhaps surprising
aspect of this argument is that Aizenman-Molchanov theory is used to establish a
result which is in spirit opposite to “localization” of wave packets.

The reason we need d + 1 = 2 is related to use of Aizenman-Molchanov theory
and is discussed in detail in [JL3]. We do not know whether this restriction is
technical or new physical phenomena emerge in dimensions d+ 1 > 2.
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