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Abstract

We study spectral and scattering properties of the discrete Laplacian H on the
half-space Z‘f‘l = 7% x Z, with boundary condition 1(n, —1) = V(n)¢(n,0). We
consider cases where V is a deterministic function and a random process on Z¢.
Let Hy be the Dirichlet Laplacian on Z‘fl. We show that the wave operators
QF (H, Hp) exist for all V, and in particular, that o(Hp) C oac(H). We study
when and where the wave operators are complete and the spectrum of H is purely
absolutely continuous and prove some optimal results. In particular, if V' is a random
process on a probability space (Q,F, P), such that the random variables V' (n) are
independent and have densities, we show that the spectrum of H on o(Hy) is purely
absolutely continuous P-a.s.. If in addition, either V or V! vanish at infinity, we
show that the wave operators QF (H, Hy) are complete on o(Hy) P-a.s.



1 Introduction

This paper deals with spectral and scattering theory of the discrete Laplacian limited
to a half-space. The interesting properties of such operators stem from the imposed
boundary condition. We refer the reader to [KP, JMP] for the history of the problem and
to [AM, BS, G, JM1, JM2, JM3, JM4, JMP, KP, M, P] for some recent rigorous work on
the subject.

In this section we define the model and state our results.

1.1 The model

Let d > 1 be given, and let Z4*" = Z? x Z, where Z; = {0,1,...}. We denote the points
in Z by (n,z), for n € Z% and x € Z;. Let V : Z? — R be a given function and let
H be the discrete Laplacian on the Hilbert space H := [?(Z%"™) with boundary condition
(n,—1) = V(n)1p(n,0). When V = 0, this operator reduces to the Dirichlet Laplacian
which we denote by Hy. The operator H acts as

E\nfn’\++\x7$’\:1 @/}(n', x') ifz >0
Y(n, 1) + X,z (0, 0) + V(n)y(n,0) if =0,
where |n|, = Z?Zl In;|. Physically, the boundary condition V' models the corrugated
surface of the medium and one is interested in its effects on propagation properties of

wave packets.
Note that the operator H can be viewed as the Schrodinger operator

H=H,+7V, (1.1)

(Hl/))(nv x) = {

where the potential V acts only along the surface 9Z%™ = Z¢, that is, (Vi) (n,z) =0 if
z > 0 and (V4)(n,0) = V(n)i(n,0). For many purposes it is convenient to adopt this
point of view and we will do so in the sequel. Since Hj is bounded, the operator H is
properly defined as a self-adjoint operator.

We recall that the spectrum of Hj is purely absolutely continuous and that

o(Hy) =[-2(d+1),2(d + 1)].

A simple Weyl’s sequence argument yields that for any V', o(Hy) C o(H). In this paper
we will study spectral and scattering properties of H on the set o(Hy). We will consider
the cases where V is a deterministic and a random potential on Z¢.

1.2 Deterministic results

Unless otherwise stated, all the results of this section hold for an arbitrary surface potential
V.
The starting point of our work is the following result.



Theorem 1.1 The wave operators

OF =s— lim eHe tHo (1.2)
t—F o0

exist. In particular, o(Hy) C 0ac(H).
Remark 1. Note that the existence of the limits (1.2) implies that for every s € R,

elsHQi — QielsHo )

Therefore, H preserves the subspaces Ran QF, and its restrictions to these subspaces are
unitarily equivalent to Hy. This implies that o(Hy) C 0ac(H).
Remark 2. After this work was finished we have learned from J. Sahbani that a result
similar to Theorem 1.1 has been recently proven in [CS].

Due to the free propagation along the z-axis, the above theorem is certainly expected.
Somewhat subtler results are related to the question of when and where the wave operators
are complete and the spectrum of H is purely absolutely continuous. Before we state our

theorems, we need some additional notions.
We decompose Z¢ x Z, = Ty UT'y, where Ty = Z9 x {0} and 'y = Z¢ x {1,2,...}. Let

H® = 13(Ty) 2132,  H":=13Ty). (1.3)
We will refer to these Hilbert spaces as the surface and the bulk. Clearly,
H=HdH" (1.4)
With respect to this decomposition the operator H can be written as a 2 X 2 matrix,
H* H
wem "

Here, H® = hy + V, where hy is the usual discrete Laplacian on [?(Z%), and H"" is the
Dirichlet Laplacian on (?(T'5). Note that H" is unitarily equivalent to Hy. The operators
H*> and H™ couple the surface and the bulk. Clearly, H = (H")*, H™(, ) = 0 if
x>0 and Hbsé(n,g) = (5(71,1).

We will use notation similar to (1.5) for other operators on H. For example, 1% is the
projection onto the surface and 1" is the projection onto the bulk.

For any z & o(H"P), we define
WS(Z) = Hsb(be _ zlbb)lebsj
(1.6)
Gs(z) = H» — Wy(z) — 21%.

In physics literature, the operator Wi(2) is sometimes called the self-energy. Following
[DJ], we will call G5(z) the resonance function. Its importance stems from the identity

15(H — 2)711% = G74(2), (1.7)



which is a consequence of the Feshbach formula for (H — z)™! (see Section 2.2). One
can also show that the Hilbert space H® is a cyclic set for H (see Section 3.1). It then
follows from Relation (1.7) that the spectral properties of H are encoded by the resonance
function Gy(z).

We remark that the objects (1.6) appear naturally in many different problems in
mathematical physics. In particular, they have been recently used in [DJ] in the study
of some Hamiltonians of quantum field theory. Our notation and some of our abstract
results in Section 2 are motivated by [DJ].

In the sequel, we will use the short-hand Cy := {z : £Imz > 0}. We will show in
Section 3.1 that the operator-valued function C; 5 z — W;(z) extends by continuity to a
norm-continuous function on C,. Thus, for e € R, we can define G4(e) by (1.6). Clearly,
Gs(e) is a closed operator with domain D(V'). We define the resonant spectrum of the
operator H by

R(H):={ecR:0€a(Gse))}.

The basic properties of this set are summarized in

Proposition 1.2

(i) ®’(H) is a closed set.
(ii) ®(H) C o(H).

(iii) o(H) \ 0(Hp) C R(H).

The existence of the resonant spectrum is linked to the surface potential V. For example,
we will show that if [|V|| < 1 then ®(H) = 0.
We now recall some basic notions of scattering theory. Let A and B be self-adjoint
operators on a Hilbert space $ and assume that the wave operators
Ut :=s— lim ePe™14(A)
t—Foo
exist. The relation e*PU* = U*e*4 yields that for any bounded Borel function f,
f(B)U* = U*f(B), and in particular that RanU* C Ran1g(B). The wave operators
U# are complete on © if RanU* = Ranle(B). If © = R, we simply say that the wave
operators U* are complete. The wave operators U* are complete on O iff the wave
operators
W*:=s— lim e "P14(B)
t—F o0
exist. If the wave operators are complete on © and ©’ is such that Ranle (H) C
Ran1g(H), then the wave operators are also complete on ©'.
Recall that the wave operators QF are given by (1.2). Our next result is

Theorem 1.3 The wave operators Q* are complete on o(H) \ R(H). In particular, the
spectrum of H on this set is purely absolutely continuous.



Remark. There are examples of surface potentials V' (which even vanish at infinity)
such that H has eigenvalues in ®(H) No(Hy) [MV1]. It is likely that these examples can
be modified to produce potentials V' for which %(H) N o(Hy) # 0 and o,,(H) = R(H)
[N, S1, MV2]. Thus, we believe that Theorem 1.3 is an optimal result in the sense that
it holds for an arbitrary surface potential V.

We proceed to obtain some information on the location of the set %(H). In the sequel,
f XY CR,wewrite X+Y ={z+y:ze€ X,yec Y} Ifeither X =0 or Y =0, we set
X +Y =0. If V is a constant surface potential, V = a, then ®(H) = 0 if |a] < 1 and

R(H) = [-2d,2d] + {a +a™ '},
if |a| > 1. Motivated by this observation, we set
S(V):=[-2d,2d|+{a+a":a€a(V),|a] >1}. (1.8)
We also define

Sext (V) := S(V) U (|~2d,2d] + {2a - a € o(V), |a] < 1}). (1.9)

Here, o(V) ={V(n) : n € Z4}. Note that if inf, |V (n)| > 1, then S(V) = Sexi (V).

Theorem 1.4

(i) o(H) C o(Hy) US(V).

(il) R(H) C Sext (V).

(iii) If |V|| < 1, then m(H) = 0.

This result and Theorem 1.3 imply that on the set 0(H) \ Sext(V'), the spectrum of H is
purely absolutely continuous and the wave operators QF are complete. If ||V|| < 1, the
operator H has only absolutely continuous spectrum and the wave operators are complete.

It appears difficult to say substantially more about spectral theory of H without mak-
ing some further assumptions on the model. For example, one can proceed by assuming
that V' has suitable decay or growth properties and we will briefly pursue this direc-
tion in Section 3.4. The case where V is the Maryland potential has been studied in
[KP, JM1, JM4]. In the next section, we will consider the case where V is a random
process on Z?. This case is of particular physical importance.

1.3 Random boundary condition

Let us describe the random surface model we will study. Let €2 be the set of all surface
potentials, that is, the functions V : Z¢ — R. The set Q can be identified with

Q=RZ% = XR.

7Zd



Let F be the o-algebra in Q generated by the cylinder sets {V : V(ny) € By,...,V(ny) €
By}, where By, ..., By are Borel subsets of R. The model is specified by the choice of
probability measure P on (9, F).

In this work we will consider measures P of the form

P:X/‘Lna

nezd

where each i, is a probability measure on R. Note that pu,, is the probability distribution
of the random variable Q > V +— V(n). We say that the random variable V(n) has
density, if the measure p, is absolutely continuous w.r.t. Lebesgue measure. Obviously,
the random variables {V(n)} are independent, and we say that they are i.i.d. if all the
measures ji, are equal to u. We recall that the topological support of pu, suppu, is the
complement of the largest open set B such that pu(B) = 0. We set

S:=[-2d,2d] +{a+a"':a € supppy, |a| > 1}. (1.10)

As usual in the theory of random Schrodinger operators, we are interested in the spectral
properties of H = Hy + V which hold P-a.s., that is, for a set of V’s of P measure 1.

We discuss first the i.i.d. case. Note that if 7} is the shift operator on the probability
space €, (T;V)(n) =V (n —j), and (U;y)(n,z) = (n — j, x), then

U;HU; = Hy + T;V. (1.11)

Therefore, H = Hy + V is an ergodic family of random operators and it follows from the
well-known argument (see [CFKS] for details) that there exist closed sets X, X,., Xpp,
Y such that P-a.s., 0(H) = X, 0ac(H) = Zac, opp(H) = Epp, 0sc(H) = Xg.. Obviously,
Y =¥, UX,, UXg. Note that P-a.s., 0(V) = suppp. Thus,

SV)=§8 P —a.s.
We can now complement Theorem 1.4 with the following result.

Theorem 1.5 Assume that the random variables {V (n)},cze are ii.d. Then,
(i) X =0o(Hy) US.
(ii) There is a set | such that ®R(H) = R P-a.s. Moreover, S C .

Remark. Although Part (i) of this theorem is known to workers in the field, its com-
plete proof is not available in the literature. For completeness, we include the proof here.

Combining Theorems 1.4 and 1.5, we show that if suppun(—1,1) = 0, then ®(H) = S
P-a.s.. Of course, if suppu C (=1, 1), then %(H) = () P-a.s..

Our next result concerns the structure of the spectrum of H in o(Hp). As we have
already discussed, it is known that for some surface potentials V', H may have embedded



eigenvalues in o(Hy). The general wisdom, however, suggests that a singular spectrum
embedded in an absolutely continuous spectrum is unstable with respect to “generic per-
turbations”. In the random case, the vague notion of “generic” could be replaced with a
precise P-a.s. statement, and a natural conjecture is that P-a.s. the spectrum of H in
o(Hy) is purely absolutely continuous. This is indeed the context of our next and perhaps
deepest result.

Theorem 1.6 Assume that the random variables {V(n)},cza have densities. Then, the
spectrum of H in o(Hy) is P-a.s. purely absolutely continuous.

Remark 1. Independence of {V(n)} is not needed. It suffices that for all n the condi-
tional distribution of V' (n), conditioned on {V(m)},,+,, has density.
Remark 2. This theorem is a special case of a general result concerning the structure of
the spectrum of Anderson-type models recently proven by the authors in [JL1].
Remark 3. The proof of Theorem 1.6 gives some additional information. For exam-
ple, from our arguments it follows that the spectrum of H in o(Hy) is P-a.s. transient
absolutely continuous in the sense of Avron-Simon [AS].

Our final result deals with the case where either V or V! vanishes at infinity.

Theorem 1.7 Assume that the assumption of Theorem 1.6 holds, and that either

‘ l|irn V(n)=0P —a.s. or | l‘im |V (n)] =00 P —a.s. (1.12)
n|—0o0 n|—00

Then,

(i) The resonant spectrum of H has Lebesgue measure zero P-a.s.

(i) The wave operators QF are complete on o(Hy) P-a.s.

Remark. Under the assumptions (1.12), the spectrum of H outside o(H,) is P-a.s.
discrete. See Section 3.4.

It is interesting to compare Theorem 1.6 with some recent results about localization
for H proven in [JM2, JM3]. For simplicity, we will consider only the i.i.d. case. Let
dp = p(x)dx. Tt is convenient to introduce a “disorder” parameter A, that is, to consider
the family of operators

Hy,=Hy+ \V.

We set X = X, U Y. If d =1, p € L*(R) and the topological boundary of suppu is a
discrete set, it was shown in [JM2] that for all A

Yen{e:le] >4} = 0. (1.13)

In [JM3] it was shown that for any d there are constants \; and A4, which depend only
on d and the density p, such that for |A\| < A; and |A| > Ay

YcNn{e:le]>2(d+1)} =0 (1.14)



(weaker results are proven in [AM, G]). The conditions on the density p for which this
result hold are the same as in [AM]. Thus, whenever (1.13) or (1.14) hold, it follows from
Theorem 1.6 that

Yae = o(H,y), Yoo =0, (1.15)

and

Ypp =X\ 0(Ho) = S\ o(H). (1.16)

1.4 Some remarks

The spectral theory of random operators H = Hy + V on the set R\ o(H)) is reasonably
well understood. The remaining open problems in this direction are closely linked to some
fundamental open problems in the theory of random Schrodinger operators. For example,
the question whether H has some absolutely continuous spectrum outside o(Hy) is related
to the phenomenon of Anderson delocalization (see [JM3]).

In this paper we have concentrated on a much less studied subject, namely, the spectral
theory of H on the set o(Hp). Our goal has been to understand spectral and scattering
properties of H which follow essentially from the structure of the model and are insensitive
to details of the surface potential. It is perhaps surprising how far one can go in that
direction using only relatively simple operator-theoretic means. For example, if V is
a random process, Theorem 1.6 gives complete characterization of the structure of the
spectrum in the set o(H,).

For reasons of space, in this paper we have restricted ourselves to an essentially time-
independent approach to the spectral and scattering theory of the model (1.1). The
dynamical aspects of the model will be discussed in the continuation of this paper [JL2].

The paper is organized as follows. In Section 2, we extract the key structural properties
of the model (1.1) and prove Proposition 1.2 and Theorem 1.3 in an abstract framework.
In fact, practically all the results of our paper follow from these few structural properties
and can be cast into an abstract form. In Section 2, we illustrate how that could be done.
Besides (1.1), there are many other “surface type” models which appear in physics (see
e.g. [KP, JMP]) and the results of Section 2 indicate how the techniques of our paper can
be used in the study of such models. The basic tools used in Section 2 are Kato’s theory
of smooth perturbations and the Feshbach formula.

In Section 3, we verify the assumptions of the abstract approach of Section 2 and
establish the results described in Section 1.2. In Section 3.4, we study surface potentials
which vanish at infinity.

Random surface potentials are studied in Sections 4 and 5. In Section 4, we prove
Theorem 1.5. In Section 5, we prove Theorems 1.6 and 1.7.

Our final remark concerns some technical aspects of the paper. Our arguments are
based on techniques of scattering theory and the theory of random Schrodinger operators
and, it is likely that future developments will also be based on the fusion of techniques of



these two fields. Since these techniques are rarely combined together, we have attempted
to make the paper essentially self-contained.
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2 Abstract framework

2.1 Smooth perturbations

Let V be closed and A a self-adjoint operator on a Hilbert space . We say that V is
A-smooth if D(A) C D(V) and

sup [Im z|[|V (A4 — 2) !]* < 0. (2.17)
2€R

The condition (2.17) has a number of equivalent reformulations. The one which will
concern us below is that V' is A-smooth iff there exist C' > 0 such that for all ¢ € §,

Ve HpiRar < Clly. (2.18)
R

Let ©® C R be a Borel set. We denote by 1g(A) the spectral projection of A onto ©.
We say that V' is A-smooth on © iff V1g(A) is A-smooth. One can show (see Theorem
XII1.30 in [RS2]) that V' is A-smooth on O if D(A) C D(V) and

sup ||[V(A —e—iy) 'V < co.
e€0,y>0

Now let § be a Hilbert space decomposed into direct sum $ = §° @ . We will refer
to the Hilbert space $° as the surface and to $° as the bulk. The projections onto $° and
§” we denote by 1% and 1P,

We now describe the main result of this section which reduces the proof of Theorem
1.3 to a number of easily verifiable conditions.

Theorem 2.1 Let H and Hy be self-adjoint operators on $ and let © be a bounded open
interval. Assume that
(a) 1% is both H and Hy-smooth on ©.



(b) H1P® — 1" Hy = VTV, where T is a bounded operator, V is bounded and self-adjoint,
and V is both H and Hy-smooth on ©.

(c) The operators [H,1%], [Hy, 1%] are bounded.

Then the wave operators

U* =s— lim e e " o14(H))
t—F o0

exist and are complete on ©.

Remark 1. This theorem is a variant of the well-known results concerning completeness
of wave operators in Kato’s theory of smooth perturbations (see e.g. Theorem XIII.31 in
[RS2]).

Remark 2. For the above theorem to hold we do not need that either H or H, have

purely absolutely continuous spectrum on ©.
Proof. We first show that

s— lim e 1% 014(Hy) = 0. (2.19)

t—F oo

Let ¢ € Ran1g(H,) and . .
é(t) - eltHO ]_SSefltHoqu.

Obviously, _ _
[l 1% e 0g) || = [|e(2)]].

By (a), the function £(t) is square-integrable and by (c) its derivative is uniformly bounded.
These two facts yield that limy . ¢(t) = 0 (see e.g. Exercise 62 in [RS2]).
We now show that the limits

s — lim 1g(H)e™ 1" e 014 (H,) (2.20)
t—F oo
exist. Let ¢ € 9§ be given and let
w(t) := 1o (H)e™ 1P o1 o (Hy)1p.

Then for any ¢ € 9,
S ($ho(t) = i(Vie(H)e ™ 9ITVe 010 (Ho)y),

where we used the assumption (b). Therefore, if ¢t > s,

1
2

6t we] < 171 ([ 1V1etmegiPar) ([ V1ot rar)

10



It follows from Proposition 2.7 that for some constant C7,
[ IVie(H)e " g|far < Crllgl

Thus, for some constant C',

() = (ol < € ([ V20t g Par)

By the assumption (b), the integrand on the right hand side of the last equation is in
L*(R). Therefore, the sequence w(t) is Cauchy as t — oo and ¢ — —oco and the limits
(2.20) exist.

Let I = [a,b] be an interval contained in © and let v be a simple closed curve in the
complex plane that separates [a,b] and R\ © and encloses [a,b]. Let R(z) = (H — 2)7!,
Ro(z) = (Hy — z)~ . Then for any v € H,

1R\® (H)eitHlbbefitHo 1I(H0)1/) —
= (2mi)~! ?{ 1rie(H)e™ (R(2)1" — 1""Ry(2)) e 01, (Hy)yd2
v

— _(2mi) ! ]f Lrio(H)e "R (2)(H1™ — 17 Hy)Ro(2)e 01, (Hy)ipdz.
Y
It follows that for some constant C,
||1R\®(H)eitH1bbeiitH01[(H0)7,b|| S O% ||VR0(Z)€7itHO1](H0)7,b||d2.
Y

Let _
l(Z, t) = VRO(Z)Q_ltHO].I(Ho)I/).
The function {(z, t) is uniformly bounded on y xR and has a uniformly bounded derivative

in t. Moreover, by the assumption (b), for all z € 7, I(2,t) is square-integrable in ¢. It
follows that limy_~ [(z,%) = 0. This implies that

IRT itH 4 bb ,—itHo _
S tLu%loo lr\o(H)e"" 1 1,(Hy) =0,
and since © is a countable union of closed intervals, that

= lim_ o (H)e"17e 010 Ho) = .

This fact, (2.19) and the existence of limits (2.20) imply that the wave operators U* exist.
To prove that the wave operators U* are complete on © it suffices to show that the

wave operators
U* :=s— lim e "H14(H)
t—F oo

exist. However, since (b) implies that Hy1"® —1"*H = —VT*V, the proof of the existence
of U* is the same as the proof of the existence of U*. O

11



2.2 The Feshbach formula and the resonant spectrum

In this section we consider the operators H on $ = $° @ " of the form

(2.21)

[ Hss Hsb ‘|
H = ,

Hbs be

where H% and HP" are self-adjoint operators on $° and §°, H™ : % — ¢ is a bounded
operator and (H™)* = H*". Clearly, H is a self-adjoint operator and D(H) = D(H*) &
D(H).
For any z € o(H"") we define
WS(Z) - Hsb(be _ Zlbb)_leS,
(2.22)
Gs(z) = H®™ — Wy(z) — 21%.

We will call G(z) the resonance function. Note that for e € R\ o(H"") the operator
G;(e) is selfadjoint and that G(z) is an analytic family of type A on C\ o(H").

The following result is known as the Feshbach formula. For the proof we refer the
reader to [DJ], Proposition 3.5.

Proposition 2.2 Assume that z & o(H"P). Then,
(i) z & o(H) iff 0 & o(Gs(2)).
(ii) If 0 € o(Gs(2)) then

(H _ z)fl — (1ss _ (be _ zlbb)lebs)) G;l(z) (1ss _ HSb(be _ zlbb)fl)
+(HP> — z1PP) =1,

The spectral consequences of the Feshbach formula are discussed in detail in [DJ]. On
one occasion we will make use of the following result (Theorem 3.6 in [DJ]).

Theorem 2.3 Assume that e € R\ o(H). Then e is an eigenvalue of H iff 0 is an
eigenvalue of Gs(e). Moreover, dim 1y (H) = dim 10y (Gs(e)).

We make the following hypothesis:

(A1) For any e € R, the norm-limit

lif(()l Ws(e + iy) =: Ws(e) (2.23)
v

exists, and the function C, > z — Wj(2) is norm-continuous.

12



Notation. It is common to denote the value of the limit (2.23) by Wy(e +i0). Since we
will never deal with the boundary values lim, o Wy(e + iy), for notational simplicity we
write e for e + i0.

Until the end of this section we assume that Hypothesis (A1) holds.

We set

Gs(e) == H® — Wy(e) — el™, e e R.

Gs(e) is a closed operator and D(Gs(e)) = D(H*). We define the resonant spectrum of
the operator H by the formula

R(H):={ecR :0ec(Gse))}

Proposition 2.4

(i) |(H) is a closed set.

(ii) ®(H) C o(H).

(iii) o(H) \ o(H) C ®(H).

Proof. Part (iii) is an immediate consequence of Proposition 2.2.

We will prove Part (i) by showing that the set R\ %%(H) is open. Let e € R\ R(H)
be given. Then, it follows from Hypothesis (A1) that there exists 6 > 0 such that

sup [[(Gs(e) — Gs(eo)) Gy Heo)l| < L. (2.24)

le—eg|<d

For e € (eg — 0, e9 + 0) we write
Gs(e) = T'(e)Gs(ey), (2.25)

where

T(e) =1+ (Gs(e) — Gs(eo)) Gy (o).
It follows from (2.24) that T'(e) is a bounded, invertible operator. Relation (2.25) yields
that Gs(e) is invertible and that G '(e) = G, (ey)T(e) . Therefore,

(eg —d,e0+0) C R\ R(H),
and Part (i) follows.
To prove Part (ii), note first that for 2 € C, the Feshbach formula yields

1¥(H — 2)7'1% = G H(2). (2.26)

S

Therefore, if e € o(H) then the function C; 3 z — G;!(z) has an analytic extension
to a neighborhood of e. We denote this extension by @Q(z). Clearly, for z € C, and
any ¢, Gs5(2)Q(z)¢ = ¢ (in particular, Ran Q(z) = D(H®*)). Moreover, it follows from
Hypothesis (A1) that (G (2) —Gs(e))Q(z) — 0 as z — e. Thus, for any ¢, Gs(e)Q(2) —

Y as z — e. Since Gg(e) is a Closed operator, we conclude that for any ¢, Q(e)y €
D(Gs(e)) and Gs(e)Q(e)yp = . It follows from the closed graph theorem that 0 ¢
o(Gs(e)). O

The next observation we need is
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Lemma 2.5 The function
C, \R®(H) > 2+ G7'(2),
with values in bounded operators on $H°, is continuous in the norm topology.

Proof. Let z € C, \ %(H) be given. It follows from Hypothesis (A1) that there exists
§ > 0 such that if |z — 2p| < 0 and z € C, then

1(Ga(2) = Gs(20)) G (20)l] < 1/2.
If in addition z € R(H), this relation and the identity

G (2) = G M (z) = G (2)(Gs(20) — Gis(2)) G (20) (2.27)

S

yield that
-1

Gy 1(2) = Gy (20) (1 = (Gs(2) — Ga(20))Gy ™ (20) )

In particular, we get that
1G] < 201G (=) -

Going back to the equation (2.27) we derive that if z € C, \ ®(H) and |z — 2| < 4, then
1G5 (2) = G Go)ll < 201G (20) P11 Gs(2) = Gs(z0)
= 2/|G5 (20) [PIWi(2) = Walz0) + (2 — 20)1%|.

The result follows from this relation and Hypothesis (A1). O

The following technical result will be used on several occasions in this paper.

Proposition 2.6 Let T be a closed operator of the form T = A+iB, where A and B are
self-adjoint operators and B is bounded. Assume further that B < 0. Then,

(i) KerT'= Ker A N Ker B.

(ii) If 0 € o(T') then 0 € o(A) No(B).

(iii) If 0 € o(T) and y > 0 then [|(T +iy) Y| =yt

Proof. Let ¢ € KerT. Then (¢|T¢) = (v|Ay) +1i(¢)|Bty) = 0 which yields (¢|B) = 0.
Since B <0, By =0 and Ay = (T —iB)1 = 0. Therefore, KerT' C Ker AN Ker B. The
inclusion D is obvious, and Part (i) follows.

To establish Part (ii), we note first that D(T') = D(T*) = D(A) and that the numerical
range of T' is contained in C_. By the numerical range theorem (see e.g. Lemma 4.5 in
[JP]) we have that o(T) C C_. Therefore, if 0 € o(T) then 0 is on the topological
boundary of o(7T). It follows (see e.g. [VH], Theorem 2.1) that there exists a sequence
Un, ||1bn]l = 1, such that

lim T, = 0. (2.28)
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Now, (2.28) yields that lim,(,|B,) = 0, and since B < 0, that lim,, By, = 0. This
and (2.28) yield that lim, Ay, = 0. Thus, 9, is Weyl’s sequence of A and B and 0 €
o(A)No(B).
Finally, to prove (iii), let 4,, with ||¢,|| = 1, be such that lim, T, = 0. Set ¢, :=
T,. Then
= (T + iy)_1¢n + 1y(T + iy)_llbn,
which yields that
(T +iy) M =y = (T +iy) "l
Letting n — oo we conclude that [|(T +iy)!|| > y~*. Since the numerical range theorem
implies that ||(T +iy) || <y~ 1, (iii) follows. O
Our next result is

Proposition 2.7 e € o(H) \ R(H) iff there exists § > 0 such that

sup 11%(H — 2 — iy)'1%|| < . (2.29)
x€(e—d,e+9),y>0

In particular, the projection 1% is H-smooth on any compact subset of o(H) \ R(H).
Proof. If e € o(H) \ ®(H) then the relation (2.29) follows from Lemmas 2.4 and 2.5.
Assume now that e € ®(H). Since
(Gsle) +iy) ' = G e +iy) (1= (Wale +iy) — Wile))(Gale) +iy) )
and
H(Gs(e) +ig)ll " =y
(we used Proposition 2.6), it follows that
IGH e +iy)ll > (y +1(y) ™, (2.30)

where [(y) = ||W;(e+iy) —Ws(e)||. By Lemma 2.5, lim, o [(y) = 0, and (2.30) implies that
for e € M(H) the relation (2.29) does not hold for any 6 > 0. This yields the statement.
O

The last proposition does not imply that the spectrum of H on the set o(H) \ R(H)
is purely absolutely continuous. Indeed, the fact that 1% is H-smooth on any compact
subset of o(H) \ %®(H) implies only that

Ran (la(H)\SR(H) (H)lss) - ﬁac(H). (2.31)

(see Theorem XIII.23 in [RS2]). To establish that the spectrum of H on o(H) \ R(H) is
purely absolutely continuous we need an additional assumption on our abstract model.
We recall that a set T' is called cyclic for H if the linear span of the set {g(H)y : g €
Cx(R),9 € T'} is dense in $. Our hypothesis is:

(A2) The surface Hilbert space $° is a cyclic set for H.
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Proposition 2.8 Assume that A(2) holds. Then the spectrum of H on the set o(H) \
M(H) is purely absolutely continuous.

Proof. By (2.31), for any g € Co(R), g(H)1smpo(m)(H)1% C $Hc(H). This observation
and Hypothesis (A1) imply that Ran 1,(gy\om)(H) C 9ac(H). O

3 Deterministic results

3.1 Basic facts

In this section we establish a number of technical results which will be used throughout
the paper, we verify Hypotheses (A1)-(A2) of Section 2 and prove Proposition 1.2 and
Theorem 1.3.

Let T = R/27Z be the circle and T¢ the d-dimensional torus. We denote the points in
T by ¢ = (¢1,...,¢4), and by d¢ the usual Lebesgue measure. In the sequel we identify
H® with [2(Z%). Let F :[%(Z%) — L*(T?) be the usual Fourier transform,

(FP)() = (21)7F S (n)e™.

neZd

In the sequel we will use the shorthand ®(¢) := 23¢_, cos¢. For z € C\ o(H,), let
A(¢, z) be the solution of the quadratic equation

X+ X+ 0(p) = 2, (3.32)

which satisfies |A(¢, z)| < 1. This solution also satisfies £Im A\(¢, z) < 0 if z € C1 (write
A in the polar form).
We adopt the shorthand R(z) = (H — z) !, and, for m,n € Z%*, we set

R(m,n; 2) := (6p|(H — 2)7'6y). (3.33)

Let
R((m,0), (¢, x);2) = (27) 2 3 R((m,0), (n,x); 2)e™".

nezd

We set Ro(z) = (Hy — z)~" and define Ry(m, n; z) and Ry((m, 0), (¢, z); z) analogously.

Proposition 3.1 Let x > 0 and m € Z? be given. Then,

~

(i) R((m.0), (9,); 2) = R((m,0), (4,0): 2)A(@, 2)".
(i) Ro((m,0), (¢, 2); z) = —(27) Felm@ (g, 2) "L,

16



Proof. For fixed m the matrix elements (3.33) satisfy the equation
R(ma (TL, T+ l)a Z) + R(mv (nv r— l)a Z) + Z\n—n’|+:1 R(mv (nla Z‘), Z)
= Omn + 2ZR(m, (n, x); 2),

if x >0, and

R(m, (n,1);2) + Z R(m, (n',0;2) + (V(n) — 2)R(m, (n,0); 2) = dmn

In—n'|+=1

if x = 0. The first equation is equivalent to

R(m, (¢, z +1);2) + R(m, (¢, z — 1); 2) + (B(¢) — 2)R(m, (¢, 2); 2) =

Of course, this equation is easily “integrated” and it follows that

R(m, (¢, 2); 2) = R(m, (,0); 2)A(¢, 2)".
This yields Part (i).
If V=0 the equation (3.35) is equivalent to
Ro(m, (¢,1); 2) + (B(¢) — 2)Ro(m, (¢,0); 2) = (27) 2.

Combining this relation with (3.37) we derive the equation

~

Ro(m, (9.0): 2) (M, 2) + @(¢) — 2) = (2m) "2,
which yields that

A~ d -

Ro(m, (¢,0);2) = —(2m)"2e™A(¢, 2).
Combining (3.39) with (3.37) we arrive at Part (ii). O

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

For z € C\ o(H,) the self-energy operators Wy(z) can be computed. We denote by

A(z) the operator of multiplication by the function A(¢, z). Then
Proposition 3.2 W;(z) = —F A\(z)F.
Proof. Note first that for any n,m € Z¢,

(O(m,0) | HP(H® — 21°") TP HY6(1,.0)) = (8(m,0) | (Ho — 2) " 0 0))-

This observation and Part (ii) of Proposition 3.1 yield

(Bmoy | (Ho = 2)Hnny) = (2m) % / Ro(m, (,0); z)e "do

o
/ —m)o,
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where we used that ¢ — A(¢, z) is an even function. Thus,

((5(m70)|(H0 — Z)_l(s(mo)) = _(fé(m,0)|A(z)f5(n,0))- (3.41)

Relations (3.40) and (3.41) yield the statement. O

Proposition 3.3 The projection 1%° is Hy-smooth.
Proof. For z € C,,

11%°(Ho — 2)711%|| = [|[Wi(2)]] = sup [A\(¢, 2)] < 1.
peTd

This yields the statement. O

Note that the function \(¢, z) is analytic in T¢ x (C\ o(Hy)) and that the operator-
valued function A(z) is analytic in C \ o(Hy). We proceed to show that these functions
have continuous extensions from T¢ x C, to T¢x C, and C, to C,. For e € R we define
A(¢, e) as the solution of the equation (3.32) which satisfies |A(¢,e)| < 1, Im A(¢,e) < 0.
Explicitly, for z € C,,

\6.2) = 5 (2(6) — 2 = 1208 - 22— 1),

where the branch of the square root is fixed by Im/w > 0 if Imw > 0. If w = z + iy,
y > 0, this branch is given by

ﬁ:%(\/|w|+x+i\/|w|—x>.

Thus, we clearly have
Lemma 3.4 The function T¢ x C > z — (¢, 2) is continuous.

For e € R we set Wy(e) := —F 'A(e)F. An immediate consequence of the previous
lemma is

Lemma 3.5 The function Cy > z + Wy(2) is norm-continuous.

Proof. Since the function A(¢, 2) is continuous on T? x C, (and therefore uniformly
continuous on T¢ x compacts), the statement follows from the formula

Wi(z1) = Wi(22) || = sup |A(¢, z1) — A, 22)].

¢cTd
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The above results allow us to compute the resonance function Gs(z). For z € C\o(H,),
we define the operator hy(z) on H® by

ho(z) = —F'A\712)F. (3.42)
Then,
Gy(2) = ho(2) + V. (3.43)

For e € o(Hy), Gs(e) = hg(e) + V, where ho(e) = —F'A7!(e)F. Note that the operator
Gs(e) is self-adjoint iff e € R\ into(H,).

For later reference we prove

Lemma 3.6 Let n € Z? and e € into(H,). Then

lim I (80 [ (Ho — € = i9) " 0(n0)) = = / ImA(6,e)dg > 0. (3.44)
Y T

Proof. That the limit exists and that the limit and the integral in (3.44) are equal follows
from Lemmas 3.2, 3.4 and Relation (3.40). Because for e € into(Hy) the set

{e:]®(¢) —ef <2}
has positive Lebesgue measure, the inequality in (3.44) follows from the definition of
A(.e). O
Lemma 3.5 verifies Hypothesis (A1) of Section 2 for the model (1.1) with respect to
decomposition (1.4).
We shall also need the following technical results which are slight generalizations of
Lemmas 2.7 and 3.5. For R € Z let

Tp:={(n,z):n€Z0<z <R},

and let 1z be the orthogonal projection on [?(T'g). Clearly, 15 = 1%.
The next two results hold for an arbitrary R.

Lemma 3.7 The operator-valued function
C+ S 2 ]-R(HO — Z)illR,

extends by continuity to a continuous function on C,. In particular, the projection 1g is
Hy-smooth.

Proof. If R = 0 then the result follows from Lemma 3.5. The case R > 0 follows by
induction from the Feshbach formula. O

Let V be surface potential and H = Hy + V. The next two propositions hold for all
V.
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Proposition 3.8 The projection 1 is H-smooth on any compact subset of o(H)\R(H).

Proof. If R = 0 then the result follows from Lemma 2.7. The case R > 0 follows from
Lemma 3.7 and the Feshbach formula. O

We now verify Hypothesis (A2).
Proposition 3.9 The surface Hilbert space H® is a cyclic set for H.

Proof. It suffices to show that the linear span of the vectors
{H™8(0):n € Z"m=0,1,...}, (3.45)

is dense in H. Since V acts only along #?*, to prove this fact it suffices to show that the
linear span of the vectors

{H{"0(n0):n € Z",m =0,1,...} (3.46)
is dense in H. To prove the last statement, note that

Hodmoy = 2 Owr.0) = O(m1)-

In—n'|4=1

Thus, the vectors d(,1), n € Z%, belong to the linear span of the set (3.46). An obvious
induction yields the statement. O

To summarize, all the assumptions of Section 2 hold for the model (1.1) with respect
to the decomposition (1.3)-(1.5). In particular, Proposition 1.2 follows from Proposition
2.4. We finish this section with
Proof of Theorem 1.3. Let T be a linear operator defined by

—(5(n71) ifz =0
T(s(nw) = 5(n,0) ifr=1
0 if x> 1.
Note that ||T']| =1 and
H1"™ — 1" Hy = [Hy, 1" =T. (3.47)

Moreover, T'= 1,T1; and [H,1%] = [Hy, 1%] is a bounded operator. Thus all the condi-
tions of Theorem 2.1 are satisfied and Theorem 1.3 follows. O
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3.2 Wave operators

In this section we prove Theorem 1.1.
Let h be the usual discrete Laplacian on [?(Z) and hp the discrete Laplacian on [?(Z )
with Dirichlet boundary condition. The operator hp acts as follows:

(ho¥)(n) = p(n+1) + (o —1)  ifn>0,
and (hpt)(0) = (1). We will use the shorthand (z) = (1 + 22)3.

Lemma 3.10 There is a dense set of vectors T C I*(Z) such that for € T, n € Z and
k>0,
|(Bale )| = Cop () (n) . (3.48)

The constant Cy.j, does not depend on n.
Proof. In the Fourier representation,

1

(6 ]ehyp) = — /I‘efingbefZitcosgbl/;(()b)d()b‘

Let 7 be the set of all ¢ such that ) is C°°(T). Then the estimate (3.48) follows from
integration by parts. O

Lemma 3.11 There is a dense set of vectors R C 1*(Z,) such that for ¢ € R, z > 0
and k > 0,

|(0ale™"P9)] < Cyan(t)™" (3.49)

Proof. We define a unitary map U : [*(Z, ) — [*(Z) by

2731)(n) ifn>0
(U¢Xn){ 0 ifn=—1
—2 3ep(—n —2) ifn < —1.

Set [ := UI*(Z,). The Hilbert space [ is preserved by h and UhpU ' = h. If F : I*(Z) —
L?(T) is the usual Fourier transform, then the unitary map W = FU identifies [*(Z)
with the subspace L of L?(T) which consists of the functions which satisfy

f(=¢) = —e™f(9). (3.50)

Moreover, WhpW ! acts on this subspace as multiplication by 2cos¢. Thus, for any
%b € lz(ZJr)v

(8s]e~ P yp) = 272 (2m) ! / (710 — (IF29)e A O (Wap) (9)dp.  (3.51)

T
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Let R be the subspace of L which consists of C* functions which satisfy (3.50) and which
are equal to zero in neighbourhoods of 0 and 7. Clearly, R is dense in L, and therefore
R = W 'R is dense in [?(Z,.). Moreover, it follows from (3.51) that Relation (3.49) holds
for any 1) € R (integrate by parts). O

Proposition 3.12 There exists a dense set D C H such that for ¢» € D, R > 0 and
k>0 .
[Lre o] = O((t)™").

Proof. Let R be given. We take D = R®7T ®...® 7T, where R and T are as in Lemmas
3.10 and 3.11. The set D is dense in [*(Z%*!) and consists of finite linear combinations of
the vectors

fRUY ®...R 1y, feER, YpoeT. (3.52)

Note that . _
[Lre™ 2= 3 > [(Bmle™p) .

0<x<RneZd
If 1) has the form (3.52) and n = (nq,...,ng), then

d

(5(n,x)|e_itH07vb) = (5x|e_itth) H((Sn]‘ |e_ith¢j)-

Jj=1

It follows from Lemmas 3.10 and 3.11 that for any positive integers ki, ko there exist
constant Cy , i, k., Which does not depend on n, such that

d
|(Onarle™ )| < Coprr o ()™ T ().

j=1
Taking k; = 2d + 2 and ke = 2 we derive the result. O

Proof of Theorem 1.1. We will consider only the case t — oco. It follows from Propo-
sition 3.12 that

s — lim 1%e7iHo =
t—00

and so, by Cook’s criterion, to prove the existence of 7 it suffices to show that for a
dense set of 1’s,

/ [(H1" — 1% Hy)e tHogp||dt < oo. (3.53)
0

By (3.47),
||(H1bb o lbeg)efitHOl/}“ S ||1167itH07,b||,

and (3.53) follows from Proposition 3.12. O
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3.3 The resonant spectrum

In this section we prove Theorem 1.4.

Lemma 3.13 Let A and B be self-adjoint operators. Assume that A is bounded and that
o(A) is a connected set. Then o0(A+ B) C 0(A) + o(B).

Proof. By adding a constant to A we may assume that o(A) = [—||A]],||Al|]. Let z be
real and assume that z ¢ 0(A) + o(B). Then z ¢ o(B) and

Iz = B) 4] < — A

= Jist(z,0(B)) -

The identity
z—(A+B)=(2—B)(1+(z— B)'A),

yields that z € o(A+ B). O
We recall that Sext (V') is defined by (1.9) and that hg(e) is defined by (3.42).

Lemma 3.14 0 € o(Rehy(e) + V) = e € Sext (V).

Proof. In the Fourier representation Rehg(e) acts as operator of multiplication by
—ReA(p,e)™t. Since this function is continuous, o(Rehg(e)) is a connected set. Thus
if 0 € o(Rehg(e) + V) then, by Lemma 3.13, 0 € o(Rehg(e)) + o(V). Therefore, there
exist ¢o € T? and a € (V) such that

Re A(¢g,e) ™" = a.
If |a| > 1 then A(¢g, e) must be real, and we have that
a+a"t = Ao, e) + Moo, )" = e — (¢y). (3.54)
If |a| < 1 then |A(¢p,€)| =1 and
2a = (Ao, €) + Ao, €) ) = e — D(ho). (3.55)

The identities (3.54) and (3.55) yield the statement. O

We are now ready to finish the
Proof of Theorem 1.4. To prove Part (i) we have to show that

o(H)\ o(Hy) C S(V)\ o(Hy). (3.56)
First, we observe that o(H"") = o(Hy), so the Feshbach formula (Proposition 2.2) yields

(Ve & o(Hy)) ec o(H) < 0€ Gs(e).
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It follows from Lemma 3.13 that Ve & o(H)),
o(Gs(e)) C a(ho(e)) + o (V).
Thus, if e & o(Hy) and 0 € 0(Gs(e)) then for some ¢y € T¢ and a € o(V),

Mo, e) ™t = a.

It follows that
a+a"t = Ao, e) + Ao, e) ™t = e — ®(¢y).

Therefore, Ve & o(Hy), 0 € 0(Gs(e)) = e € S(V). This relation yields Part (i).
It follows from Proposition 2.6 that

0€0(Gs(e)) = 0¢€oa(ReGs(e)).

Since Re Gs(e) = Rehy(e) + V, Part (ii) of the theorem follows from Lemma 3.14. To
prove Part (iii), we write

Gs(e) = ho(e)(1 + hy't(e)V).
Thus, 0 € 0(Gs(e)) iff =1 € o(hy*(e)V). Since

1y (e) |l = sup |A(¢,e)| <1,
peT?

|hot(e)V]] < 1, and 0 & o(Gs(e)). This yields that ®(H) = (. O

3.4 Repulsive surfaces

Physically, the surface is repulsive if it repels the wave packets with energies in o(H,). We
make this heuristic notion mathematically precise by saying that the surface is repulsive
if the set ®/(H) N o(Hy) has Lebesgue measure 0.

In this section we will show that the surface is repulsive if the surface potential V'

satisfies
lim V(n) =0 or lim |V(n)| = co. (3.57)

[n]—o0 [n]—o0

Roughly, if V. — 0, Hy + V is “close” to Hy, and the surface is repulsive due to the

Dirichlet boundary condition. When |V| — oo, the surface is repulsive due to the force

exerted by the surface potential. The goal of this section is to justify this rough picture.
First, we have

Proposition 3.15 Assume that (3.57) holds. Then oes(H) = o(Hy).
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Proof. If V — 0, then V is a compact operator, and the result follows from Weyl’s
theorem.

Assume that |V| — oo. Then the spectrum of Gg(z) = ho(z) + V consists of a
discrete set of eigenvalues of finite multiplicity which can accumulate only at +00. Assume
that there exist ey € R\ 0(Hy) and a sequence e, such that e, — eg and 0 € Gg(ey).
Since z — Gy(z) is an analytic family of type A in a neighborhood of eg, by analytic
perturbation theory (see e.g. [Ka], Chapter VII, Theorem 1.10), 0 € o(Gg(z)) for z in
some neighborhood of ey. However, for z € C,, Im G4(z) < 0 and 0 € Gs(z). Thus, the
set

E={ecR:edo(H),0e€ o(Gse))},

is discrete and +2(d + 1), £oo are its only possible accumulation points. By Proposition
2.2 and Theorem 2.3, the spectrum of H outside o(Hj) is the set F, and each point of F
is an eigenvalue of H of finite multiplicity. Therefore, the spectrum of H outside o (Hy)
is discrete. O

The main result of this section is

Theorem 3.16 IfV is a surface potential which satisfies (3.57) then R(H) has Lebesque
measure 0.

An immediate consequence of this result and Theorem 1.3 is

Theorem 3.17 Let V be a surface potential which satisfies (3.57). Let © C o(Hy) be
a Borel set such that the spectrum of H on © is purely absolutely continuous. Then
Ranle(H) C Ran 1,y (H) and the wave operators QF are complete on ©.

Remark. Theorem 1.7 follows from Theorems 1.6 and 3.17.
Before we prove Theorem 3.16, we recall

Proposition 3.18 Let C, > z — A(2) be a function with values in compact operators on
a separable Hilbert space . Assume that A(z) is continuous in C, and analytic in C, . Let
w € C be given. Then either w € o(A(z)) for all z € C,. or the set {e € R:w € o(A(e))}
s a closed subset of R with Lebesgue measure 0.

For the proof of this proposition we refer the reader to [RS1], Section XI.6.
Proof of Theorem 3.16. We recall that for 2 € C,, Gs(z) = ho(z) +V, and that the
operator-valued functions C; > z ~ ho(z), Cy 3 2+ hy'(2), are continuous in C, and
analytic in C,. Moreover, Im hy(z) < 0 for z € C, and limyy, , s ||ho *(2)]] = 0.

Assume first that limy, . V(n) = 0. Clearly, V' is a compact operator on H* and
since

Gs(e) = ho(e)(1 + hyt(e)V),

0 € 0(Gs(e)) iff =1 € a(hy'(e)V). For z € C, we set A(z) := hy'(2)V. The function
A(z) satisfies all the conditions of Proposition 3.18 and limyy, ., [|A(2)|| = 0. Thus,
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if Im z is large enough, —1 ¢ o(A(z)) and it follows from Proposition 3.18 that the set
{e € R: —1€ 0(A(e))} has Lebesgue measure 0. This yields the statement.
Assume now that limy, |« |V (n)| = co. Since

Gs(2) = (V+1i)(1 4+ (V +1i) Hho(2) —1)),

0 € Gs(z)iff =1 € a((V+1i)"ho(z) —1)). Set A(z) := (V +1i)7 (ho(z) —1i). The function
A(z) satisfies all the conditions of Proposition 3.18. Since |V| — oo, the spectrum of
Gs(z) consists of a discrete set of eigenvalues which can accumulate only at +co. Since
Im ho(z) < 0 if Im 2z > 0, this implies that 0 ¢ Gs(z) for z € C; and so —1 € o(A(z)). It
follows from Proposition 3.18 that the set {e € R: —1 € o(A(e))} has Lebesgue measure
0 and this yields the statement. O

Finally, we discuss the case where |V (n)| grows exponentially fast.

Proposition 3.19 Assume that for n € Z%, |V (n)| > C1e"™ + Cy, where Cy and 7 are
positive constants. Then R(H) N (—cq, cq) = 0.

Proof. Assume that e € (—cq,cq) and 0 € 0(Gs(e)). Then there exists a vector ¢, with
||| = 1, such that ho(e)) + Vip = 0. Since V' is increasing exponentially, ¢ is decaying
exponentially and its Fourier transform z@ is an analytic function on T?. On the other
hand, it follows from Proposition 2.6 that ¢ € Ker Im hgy(e), and so ¢ has to vanish on
the set {¢ € T?: Im (¢, e) # 0}. Since this set has positive Lebesgue measure, ¢ = 0. O

4 The i.i.d. random potentials

In this section we prove Theorem 1.5.
Clearly, for any V, o(Hy) C o(H), and since for i.i.d random variables S(V) = S
P-a.s., it follows from Theorem 1.4 that

¥ C O'(H()) uS.
To show that S C ¥ and to prove Part (ii) of Theorem 1.5 we need some additional facts.

Lemma 4.1 Let a € suppp be given. Then, P-a.s. there exist a sequence of (V-
dependent) disjoint boxes

B, = {TL S AR |n— Ck|+ < Lk},
where |cx|y — 00, Ly — 0o, such that
Vn € By, |V (n) —a| < dg, (4.58)

where d;, — 0.
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Proof. A standard application of the Borel-Cantelli lemma establishes the result. O

Lemma 4.2 Let V. be a sequence of surface potentials such that ¥n € Z%, limy, Vi (n) =
V(n). Then Hy+ V}, — Ho+ V in the strong resolvent sense.

For any real constant a we denote by V, the constant boundary potential V,(n) = a.
We use the shorthand H, = Hy +V, and S, = [-2d,2d] + {a +a™'}

Lemma 4.3 Let a, |a| > 1, be given. Then,
(i) o(H,) = o(Hp) US,.
(i) m(H,) = S,.

The proofs of the last two lemmas are elementary and we will skip them.
Recall that for j € Z? the shift operator Tj is defined by (T;V)(n) = V(n — j) and
that U; is the unitary operator which acts as (U;¢)(n,z) = ¢(n — j, ).

Proposition 4.4 There exists a set R such that R(H) = R P-a.s.

Proof. Let B8(H) = o(H) \ ®(H). We will prove the equivalent statement, namely that
there exist a set 8 such that B(H) =98 P-a.s. Let H = Hy+ V and, for e € o(H), let

pv(e)=lim  sup  [[1¥(H —z —iy)~'1¥.
610 x€(e—d,e+4),y>0

By Lemma 2.7, e € B(H) iff py(e) < oo. It is not difficult to show that Q@ > V — py(e)
is a measurable function (see e.g. [CL]). Moreover, the relation (1.11) yields that for all
j» pryv(e) = pv(e). It follows (see e.g. Proposition 9.1 in [CFKS]) that py (e) is constant
P-a.s. and so either e € B(H) P-a.s. or e &€ B(H) P-a.s. Therefore, there exists a set
F C Q such that F'= QN ®B(H) P-a.s. Since B(H) is a relatively open subset of o(Hy),
the statement follows. O

We say that a bounded operator A on # is translationally invariant if for all j, AU; =
U;A.

Proposition 4.5 Let A and B be bounded, translationally invariant operators on H and
let a € suppp be given. Then for ally # 0 and e € R

IA(H — e —iy)™"B|| > |A(H, — e — iy) "' B]|.

Proof. Let 9 be a unit vector, let V' be given and let Bj be the sequence of boxes from
Lemma 4.1. Let ¢; be the center of B;, and

l/)k = Uckqubv Vi = UckVUfck-
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We write H, = Hy + Vi. Since for every n € Z¢, limy Vi(n) = a, H, — H, in the strong
resolvent sense. This fact and the identity

A(H — e — iy) "' By = U_o A(Hy, — e — iy) "',

yield that
lim | ACH — e — i)™ Byyl| = | A(H, — e — 1) By

It follows that
|A(H — e —iy) 'B|| > ||A(H, — e —iy) ' By||.

Taking the supremum over ¢ we derive the statement. O

Proof of Theorem 1.5. It remains to prove that S C ¥ and § C R. Let a € suppy,
la| > 1 be given and let e € S,. Taking respectively A =1 and A = 1% in Proposition 4.5
we deduce from this proposition and Lemmas 4.3 and 2.7 that e € o(H) and e € R(H)
P-a.s. Since o(H) = ¥ and ®(H) = % P-a.s., we derive that S, C ¥ and S, C %, and
since

S= U Sm

a€suppy,|al>1

that S C X and S C . O

5 The absence of singular spectrum on o¢(H))

In this section we prove Theorem 1.6. Theorem 1.7 is an immediate consequence of
Theorems 1.6 and 3.17.

The proof of Theorem 1.6 consists of three technically and conceptually distinct steps.
Step 1. Using Theorem 1.1 and general properties of the essential supports of subres-
olutions of the identity, we show that the essential support of the absolutely continuous
spectrum of H = Hy + V contains o(H,) for any surface potential V.

Step 2. Using an argument based on the rank-one perturbation theory we show that
P-a.s. the essential supports of the absolutely continuous components of the spectral
measures of 9, o) for H are equal for all n. It then follows from Step 1 and cyclicity of
5 that P-a.s. these essential supports contain o(Hy).

Step 3. Parts 1 and 2 yield that for all n € Z?, the singular spectrum of H, restricted
to the cyclic subspace generated by d(, ), P-a.s. has Lebesgue measure zero on o(Hy).
Spectral averaging (Simon-Wolff theorem) then yields that P-a.s. the operator H has
purely a.c. spectrum on o(Hp).

The principal novelty of our approach is Step 2 whose key technical ingredient is
Theorem 5.9 below. In this step we were guided by an elegant argument of Simon [S3].
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5.1 Step 1

We first recall several basic facts concerning various supports of Borel measures and
subresolutions of the identity of a Hilbert space. Our discussion will follow closely [CL].
In the sequel, all Hilbert spaces are assumed to be separable.

Let B be the o-algebra of Borel sets on R and $ a Hilbert space. A function £ on B
with values in the space of projections on $ is called a subresolution of the identity of §
if the following holds:

(a) E(0) = 0.

(b) For any sequence A, of disjoint Borel sets, E(UA,) = X E(A,), where the series
converges in the strong topology of 6.

Notation. In the sequel, m stands for Lebesgue measure on R. As usual, we write
dm = de, and say simply a.e. e for m-a.e. e.

Let F be a subresolution of the identity of a Hilbert space ©. We say that E is
supported on a Borel set S if E(R\ S) = 0. The complement of the largest open set
B such that F(B) = 0 is denoted by suppFE and called the (topological) support of E.
Somewhat less common in the literature is the notion of the essential support. An essential
support of E is a Borel set & which satisfies the following:

(c) There exists Borel set By with m(Bj) = 0 such that E is supported on & U B,.

(d) For any Borel set B, E(6N B) =0iff m(&N B) =0.

We will write & = ess.suppFE. Clearly, the essential support is defined up to a set of
Lebesgue measure zero.

Let 1 be a Borel measure on R and 6 = L?(R,du). In the sequel, unless otherwise
stated, all measures are assumed to be finite and nonnegative. We say that the measure
v is supported on a Borel set S if u(R\ S) = 0. Let E(B)f = 1pf, where 1p is the
characteristic function of the Borel set B. Then FE is a subresolution of the identity of
$, and its support and essential support are the support and the essential support of the
measure i (denoted respectively by suppu and ess.suppu). More explicitly, suppu is the
complement of the largest open set such that u(B) = 0, and the set & is an essential
support of p if
(f) There exists a Borel set By with m(By) = 0 such that x is supported on & U By.

(g) For any Borel set B, u(6 N B) =0 iff m(& N B) = 0.
Notation. To avoid repeating the phrase “up to a set of Lebesgue measure zero”, in the
sequel we write By C Bs if the set By \ By has Lebesgue measure zero. Thus, By = By if
the set (B \ Bz) U (B \ B1) has Lebesgue measure zero.
Let us state an obvious but useful fact.

Lemma 5.1 Ifdu = h(e)de then ess.suppu = {e : 0 < h(e) < oo}.

For our purposes, the Borel transform (sometimes called the Borel-Stieltjes or the
Stieltjes transform) of a measure provides a convenient way to track its essential support.
Let 1 be a finite complex Borel measure on R. Its Borel transform is defined for z € C,
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by
d
G(z) = / M.
e—z
The Borel transforms are studied in detail in [S2]. We summarize some results which we
will need in the sequel.

Theorem 5.2 Assume that p is a finite complex Borel measure on R and let G(z) be
its Borel transform. Then,
(i) The non-tangential limit

lim G(z) =: G(e +10),

z—e
exists and is finite for a.e. e € R.
(ii) Assume that for some zy € C,, G(2y) # 0. Then for all w € C the set

{e€e R :G(e+1i0) =w}
has Lebesgue measure (.

Proof. The measure p can be written as a linear combination of the four positive mea-
sures. Thus, G(z) can be written as a linear combination of the four Herglotz functions.
For the Herglotz functions, however, the existence and finiteness of the non-tangential
limit are well-known facts (see e.g. [Koo]).

Part (ii) is a consequence of the Lusin-Privalov theorem (see Section III1.3 in [Koo]).
O

We can say more if ;¢ is a Borel measure (hence finite and non-negative). Let ftac, fipps
tsc be the absolutely continuous, pure point and singular continuous parts of p. We set

Msing = Hpp + Msc-

Theorem 5.3 Let ju be a Borel measure and G(z) its Borel transform. Then,
(i) For all z € C,, ImG(z) > 0, so Part (ii) of Theorem 5.2 holds for G(z).

(ii) The absolutely continuous component of u is given by
dptae = 7 Im G(e +i0)de.

(iii) ess.supppac = {€: 0 < ImG(e +1i0) < oo}.
(V) psing @s supported on {e : lim, )y Im G(e +iy) = oco}.

We now collect a few general results concerning the essential support of a subresolution
of the identity.

Proposition 5.4 Let $ be a Hilbert space and E a subresolution of the identity of $. Let
{tr, k > 1} be an orthonormal basis of $. We define Borel measures puy, and p by

pe(B) = RIBB)),  u(B) = > 2 ().
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Then,
(i) ess.suppp = ess.supp k.

(ii) ess.suppfac = UpS,€8S.8UPD Lk ac-

Proof. Part (i) is the exercise 1.7.11 in [CL], so we prove only (ii).
Let G be Borel transform of p and G, Borel transform of . Since

00
Hac = Z 27k/1k,aca
k=1

it follows from Theorem 5.3 that for a.e. e,

ImG(e+i0) = Y 27" Im Gi(e +i0).

k=1
Since Im G (e +10) > 0,
{e:ImG(e+1i0) > 0} = | J{e: Im Gy (e +i0) > 0}. (5.59)
k=1

Finally, since the sets {e : InG(e + i0) = oo}, {e : ImGi(e + i0) = oo} have Lebesgue
measure zero, the result follows from Relation (5.59) and Theorem 5.3. O

We will need

Lemma 5.5 Let A be a self-adjoint operator on a Hilbert space $ and 1, ¢ € $. Assume
that ¢ is a cyclic vector for A, and let jy, j14 be the spectral measures of 1 and ¢ for A.
Then,

€8S.SUPP Ly ac C €SS.SUPDLLy ac-

Proof. $ is unitarily equivalent to L*(R, djs) so that ¢ = 1. The L*-function associated
to the vector ¢ will be denoted by ¢ (e). If G is the Borel transform of f,, then

dptpac = ImG(e +10)de, Aty = |1(€)|’Im G(e + i0)de,

and the statement follows from Lemma 5.1.00

Let A be a self-adjoint operator on a Hilbert space $. The spectral theorem for A
yields that $ can be decomposed as

5 = Nac @ﬁpp D Nsc

so that A,. := Als,. has only absolutely continuous spectrum, A,, := Alg  only pure
point spectrum, As. := Als,. only singular continuous spectrum, and A = A, ® A, D As..
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The spectral theorem further associates to A a subresolution of the identity E of .
Moreover,
E=FE,® Epp D ESC7

where F,. is the subresolution of the identity associated to A,., etc. We also have that
U(A) = SuppE, Uac(A) = SuppEac, etc.

Proposition 5.6 Let A be a self-adjoint operator on a Hilbert space $ and E,. the sub-
resolution of the identity associated to the absolutely continuous part of A. Assume that
9 =95®H° and that $° is a cyclic set for A. Let {1y, k > 1} be an orthonormal basis for
9°, and pu, the Borel measures defined by p(B) = (1| Eac(B)¢r). Then

ess.suppl,. = U €SS.SUpPP L
k

Proof. The relation

ess.suppF,e D Uess.suppuk,
k

follows from Proposition 5.4, so we have only to prove the inclusion C.

For notational simplicity we will assume that dim$€® = oo. Let $; be the cyclic
subspace generated by 1. We set ky = 1 and H; = 9i,. Assume that H; and k; are
defined for j =1,...,n — 1. We set

by =min {j: 9; ¢ &1 H; ),

Ho = on, © ((@)=1H;) N o).

Obviously, the subspaces #H; are mutually orthogonal and invariant under A. Moreover,

kn
H; C 9, U 9,5 C @1 H;. (5.60)
j=1
It follows that the Hilbert space
K= D;H,;

contains $° and is invariant under A, hence K contains the cyclic subspace generated by
$®. Since $° is a cyclic set for A, K = §. It follows that there exists an orthonormal basis
{¢:} of 9, so that each vector ¢; belong to some H;. Let 7; be the Borel measures defined
by 1;(B) = (¢i|Eac(B)$;). Now, let ¢; be given and assume that ¢; € ;. Then, 7; is an
absolutely continuous measure, and by Lemma 5.5 and (5.60)

ess.supp7); C esS.Suppply; .
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It follows from Proposition 5.4 that

ess.suppF,. = U ess.supp”;,
i

therefore

ess.suppli,. C Uess.suppuk.
k

Proposition 5.6 allows us to complete the first step in the proof of Theorem 1.6.

Proposition 5.7 Let V' be an arbitrary surface potential, H = Hy + V', and E,. the
subresolution of the identity associated to absolutely continuous part of H. Let p,, n € Z¢,
be the spectral measures of 0,0y for H. Then,

(i) o(Hp) C ess.suppEye.

(ii) ess.supp By = U, €S8.5Uppfin, ac-

Proof. It follows from Lemma 3.6 that for any e € int o(Hy) and n € Z<,

limn T (3n.0)| (o — ¢ = i) ~'dn.0) > 0.
Y

Therefore, by Lemma 5.4, the essential support of the subresolution of the identity asso-
ciated to Hy is o(Hy). Let QT be the wave operator from Theorem 1.1. The operator H
preserves Ran Q" and its restriction to Ran Q7" is unitarily equivalent to Hy. Since the
subresolutions of the identity associated to unitary equivalent operators have the same
essential support, we derive that

o(Hp) C ess.suppFye.

Part (ii) follows from Propositions 3.9 and 5.6. O

5.2 Step 2

In this section we study the behavior of the essential support of a.c. measures under
rank-one perturbations.

Theorem 5.8 Let A be a self-adjoint operator on a Hilbert space $ and ¢ € $. Let
Ay=A+A4)p,  A€ER,

and let py be the spectral measure of ¢ for Ax. Then,
(1) For all A, esS.SUPDLi) ac = €SS.SUPPL) ac-
(ii) Let n be a Borel measure defined by

L MA(B)
= 1+)\2d)\.

Then n is mutually equivalent to Lebesgue measure.

n(B)
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Proof. Part (ii) is a theorem of Simon-Wolff (Theorem 5 in [SW]), so we prove only Part
().

Let G,(z) be the Borel transform of p,. The resolvent identity yields

Ga(2) = Go()

TG (5.61)

By Theorem 5.2, for a.e. e € R the boundary values G, (e + i0), Gy(e + i0) exist, are
finite, Go(e +10) # —A1, and

_ TmGyle +10)
ImGie +10) = S e

Therefore, for a.e. e € R,
Im Gy (e +i0) >0 & Im Gy (e +10) > 0.

This yields the statement. O

Our next result is a generalization of Part (i) of the previous theorem.

Theorem 5.9 Let A be a self-adjoint operator on a Hilbert space $ and let ¢y, ¢o be two
vectors in . Assume that there exist complex numbers z;; € C, such that

(¢:il(A— z;)" ;) #0 for i, =1,2,1i#j. (5.62)

Let
A)\ :A+)\(¢1|)¢1, )\GR,

and let py; be the spectral measure of ¢; for Ax. Then, for a.e. A,

€sS.SUPPLiaLac C €SS.SUPPLA2.ac- (5.63)

Proof. For z € C, we set

Gija(2) = (9l (A — 2) " ¢;)).

When A = 0 we write simply G;;(z). By assumption (5.62), none of the functions G;;(2)
is identically equal to zero. Therefore, by Theorem 5.2, the set

S;j ={e: G;j(e+i0) =0 or |G;;(e+i0)| = oo or lig]l Gij(e+1y) does not exist}, (5.64)
y

has Lebesgue measure 0.
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The resolvent identity yields

. Ggl(Z)
Caa(2) = 1+ AGu(z)

G227)\(Z) = GQQ(Z) — AGQL)\(Z)GH(Z).
Substituting, we get

G227)\(Z) = Ggg(z) — )\%Cg?f((j))

Rearranging this identity, we derive

11T+ AG11(2)|?Gaan(2) = Na(z) + Ab(2) + ¢(2), (5.65)
where

a(z) = |Gu(2)PGa(z) — G11(2)Ga(2)Gra(2)

b(Z) = GQQ(Z)RQ Gll (Z) - Ggl(Z)Glg(Z), (566)

c(z) = Gaplz).
Let

S:={eec R\ (US;) : Im Gy (e +1i0) > 0}. (5.67)
If e € S, setting z = e + iy in (5.65) and taking y | 0, we derive that

|1+ AG11(e +10) [P Tm Gag p (€ +i0) = AIm (e +i0) + AIm b(e + i0) + Im c(e + i0). (5.68)
Assume now that for e € S we have
ImGap (e +i0) =0,  Ima(e+i0) =0,  Imb(e +i0) = 0. (5.69)
It then follows from (5.68) and the third relation in (5.66) that
Tm Gy (€ + i0) = 0. (5.70)
Then, the second relation in (5.66) yields
Im (Ga1(e +10)Gia2(e +10)) = 0. (5.71)
The first relation in (5.66) and (5.71) yield
Im Gq1(e +i0)Re (Ga1 (e +10)G12(e +10)) = 0. (5.72)
By the choice of e, Ga1(e +10)G12(e +10) # 0, and (5.71) implies that

Re (G21 (6 + iO)G12(€ —+ 10)) 7£ 0.
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Thus, (5.72) implies that
Im G11(€ + 10) = 0,

which contradicts the choice of e. Therefore, if Im G \(e +10) = 0 for some e € S, we
must have that either a(e +10) # 0 or b(e + i0) # 0.

Let
T:={(A\e) € RxS:ImGs (e+1i0) =0},

P(e) :={A € R:ImGy (e +i0) =0},
Q) :={e € S :ImGxp,(e+1i0) = 0}.
Since Im Gy (e +10) > 0, for fixed e the function
A= A’ Ima(e +10) + AIm b(e +i0) + Im c(e + i0),

is either identically equal to zero for all A or has at most one zero. If either Im a(e+i0) # 0
or Imb(e +10) # 0, then clearly this function is not identically zero. Therefore, for e € S
the set P(e) consists of at most one point. By Fubini’s theorem, the set 7' has Lebesgue
measure zero, and then, by Fubini’s theorem again, for a.e. A the set Q(\) has Lebesgue
measure zero. Therefore, for a.e. A,

Im G\ (e +10) > 0 for e S\Q(N). (5.73)
Since (A) has Lebesgue measure zero, it follows that for a.e. A,
S C ess.suppiirz.ac-
On the other hand, by Lemma 5.8 and (5.67)
eSS.SUPP/rLac = S (5.74)

for all A. The statement follows from (5.73) and (5.74). O

We now proceed to verify that condition (5.62) of Theorem 5.9 holds for our model.
To that end we need two lemmas.

Lemma 5.10 Let A be self-adjoint operator on a Hilbert space $ and 9, € H two
orthogonal vectors. Assume that ¢ € N,~oD(A"), and that

Ve i, (Yl(A—2)1g)=0.

Then, for all 1 >0, (1| Alg) = 0.
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Proof. We will prove by induction that the pair of statements
(A1) =0 and  VzeCy, (¥|A(A-2)"9) =0, (5.75)

holds for all [ > 0. Clearly, this is true for [ = 0. Assume that (5.75) holds for some /.
Then, the identity
2(PlAN(A = 2)79) + (Y]A'9) = (P| AT (A - 2)"9),

yields that
Vz € Cy, (| ATHA = 2)Tp) = 0. (5.76)
Since
s— lim —iA(A —i\)"' =1,

A—00
(5.76) implies that
(V] A™19) =0.
a

Our next lemma concerns the Dirichlet Laplacian Hy. For n = (n,z) € Z% we set
In, =z + X9 |n;|. We denote by Yam the number of paths in Z%™ of the length
|n — m|, which connect n and m. Obviously, yum > 0.

Lemma 5.11 Let n, m be two sites in Z‘fl. Then

0 ifl<|m-—n|y,

Yom il =|m —n|,.

(6n|H(l)6m) = {

Proof. An elementary induction with respect to k = |m —n|,. O

We now verify the condition (5.62) of Theorem 5.9.

Proposition 5.12 Let V be a surface potential, H = Hy+V, and n,m € Z?. Then there
exists z € C, such that

(Om0)|(H = 2) " 0(m,0)) # 0. (5.77)

Proof. Clearly, we may assume that n # m. Assume that
Vz € C-l—a (J(n,0)|(H - z)_l(s(m,ﬂ)) = 0.
Let I = |m — n|y. Then, it follows from Lemmas 5.10 and 5.11 that

(0n,0)| H'8(m,0)) = 0, (0n.0)| HoO(m,0) = 1. (5.78)
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Expanding (Hy + V)!, we write (0(n,0)|H"d(m,0)) as a sum of the term

(O(n,0)

Hid(m0))s

and the terms
() | HO V™ L HE = V16 0)), (5.79)

where [; > 0, >°1; = [, and at least one of [5;’s is bigger then zero. It follows from Lemma
5.11 that each of the terms (5.79) is zero. Therefore, the first identity in (5.78) yields that

(6(71,0) |H(l)(5(m,0)) - 0

which of course contradicts the second identity in (5.78). O

We will need the following measurability result. Recall that m stands for the Lebesgue
measure.

Proposition 5.13 Let p,, be the spectral measure of 6,0y for H = Ho+V. Then for any
n,m € Z?, the function

23V = m(ess.suppfin ac \ €8S.SUPP Ll ac)

18 measurable.

Proof. Let

Xo = {(V,e) : 0 < lim Im (0(n0)|(H — e — il ) " 6(n0)) < 00}

=00

Since for every [ the function
OxR> (V, 6) — ((5(n,0)|(H —e— il_l)é(n,g)),

is P ® m is measurable (see e.g. [CL]), the sets x,, are measurable. Therefore, by Fubini’s
theorem, the function

Qo53V — / (1—-1,,.(V,e))1,,(V.e)de = m (ess.Suppfin,ac \ €8S.SUPPLm.ac) »
R

is measurable. O

We are now ready to complete the second step in the proof of Theorem 1.6.

Proposition 5.14 Let H be as in Theorem 1.6 and, for n € Z%, let p, be the spectral
measure of 0,0y for H. Let E,. be the subresolution of the identity associated to absolutely
continuous part of H. Then,

(i) Vn € Z%, ess.suppfin ac = ess.suppEy. P-a.s.

(ii) Vn € Z¢, o0(Hy) C ess.supppinac P-a.s.
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Proof. Part (ii) is an immediate consequence of (i) and Proposition 5.7. To prove (i),
we fix two sites n, m € Z¢ and potential V; € Q and consider the operator

Hy = Hy+ Vo + MO0 )0(n0)-

Let i, be the spectral measure of d(, o) for Hy. Then, it follows from Theorem 5.9 that
for a.e. A,

€SS.Supp lan,ac C €SS.Suppliam,ac-

Since the random variable V'(n) has a density, it follows from Lemma 5.13 and Fubini’s
theorem that
/ m (€SS.SUPDPLin ac \ €5S.SUPPflm.ac) AP (V) = 0.
Q

Therefore,
m (€SS.SUPPLin.ac \ €8S.SUPPLm ac) = 0 P —a.s.

and
eSS.SUPPfin,ac C €8S.SUPD b, ac P —a.s.

Reversing the roles of n and m, we derive that the opposite inclusion also holds. Thus,
€SS.SUPD by ac = €SS.SUPD L ac P —a.s. (5.80)

Since by Proposition 5.7,

ess.suppF,. = U €SS.SUPPfin,ac,
n

we derive Part (i) from (5.80). O

5.3 Step 3

We are now ready to complete the third step in our argument and finish the proof of
Theorem 1.6. We will use the notation of Proposition 5.14. Fix n € Z? and let V; € 2 be
such that

o(Hy) C ess.Suppiy ac- (5.81)

Here, p, is the spectral measure of 6,0 for H = Hy +Vj. Let G, be the Borel transform
of p, and
S, :={e:0<ImG,(e+1i0) < co}.

(All these quantities depend on Vj.) Since S,, = ess.suppji,, the set
T, :=o(Hy) \ Sy

has Lebesgue measure zero.
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Let
H, :H0+‘/()+)\(6(n,0)|-)6(n,0), A €eR.

Let py, be the spectral measure of d(, ) for Hy and G),(2) its Borel transform. The
relation

Gn(z)

Gan(z) = TG (2)

yields that for all A,
{e € 0(H,) : liﬁ]llm Gan(e +iy) = oo} C Ty,
y
Therefore, by Theorem 5.3, for all A,

SUPPlan, sing - Tn (582)

It follows from the Simon-Wolff theorem (recall Proposition 5.8) that the Borel measure

_ :U’)\n(B)
1+ A2

n(B) : dA (5.83)

is equivalent to Lebesgue measure. Therefore, n(T,) = 0, and by (5.83), for a.e. A,

This relation and (5.82) yield that for a.e. A the measure py, is absolutely continuous on
O'(HO) . ]

Let 15%(H) be the spectral projection of H onto © associated to the singular spec-
trum. It is known (see e.g. [CL]) that the function

Q3V — 15%(H),

is weakly measurable. Since the random variable V(n) has density and Relation (5.81)
holds P-a.s., it follows from Fubini’s theorem that

/Q(fs(n,o)

Thus, P-a.s. the spectral measure p, is absolutely continuous on o(Hy). Therefore, the
operator H restricted to the cyclic subspace H, generated by d(, ) has P-a.s. purely a.c.
spectrum on o(Hy). By Lemma 3.9, the linear span of UH,, is dense in H. It follows that
the operator H has P-a.s. purely a.c. spectrum on o(Hy). The proof of Theorem 1.6 is
complete. O

155 (H)8n,0)dP(V) = 0.
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