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Abstract

We study spectral and scattering properties of the discrete Laplacian H on the

half�space Zd��
� � Z

d � Z� with boundary condition ��n���� � V �n���n� ��� We

consider cases where V is a deterministic function and a random process on Z
d�

Let H� be the Dirichlet Laplacian on Z
d��
� � We show that the wave operators

���H�H�� exist for all V 	 and in particular	 that ��H�� � �ac�H�� We study

when and where the wave operators are complete and the spectrum of H is purely

absolutely continuous and prove some optimal results� In particular	 if V is a random

process on a probability space ���F � P �	 such that the random variables V �n� are
independent and have densities	 we show that the spectrum of H on ��H�� is purely

absolutely continuous P �a�s�� If in addition	 either V or V �� vanish at in
nity	 we

show that the wave operators ���H�H�� are complete on ��H�� P �a�s�

�



� Introduction

This paper deals with spectral and scattering theory of the discrete Laplacian limited
to a half�space� The interesting properties of such operators stem from the imposed
boundary condition� We refer the reader to �KP� JMP� for the history of the problem and
to �AM� BS� G� JM�� JM�� JM�� JM	� JMP� KP� M� P� for some recent rigorous work on
the subject�

In this section we de
ne the model and state our results�

��� The model

Let d � � be given� and let Zd��
� � Zd�Z�� where Z� � f�� �� � � �g� We denote the points

in Zd��
� by 
n� x�� for n � Zd and x � Z�� Let V � Zd �� R be a given function and let

H be the discrete Laplacian on the Hilbert space H �� l�
Zd��
� � with boundary condition

�
n���� � V 
n��
n� ��� When V � �� this operator reduces to the Dirichlet Laplacian
which we denote by H�� The operator H acts as


H��
n� x� �

��
�
P

jn�n�j��jx�x�j�� �
n
�� x�� if x � �

�
n� �� �
P

jn�n�j��� �
n
�� �� � V 
n��
n� �� if x � ��

where jnj� �
Pd

j�� jnjj� Physically� the boundary condition V models the corrugated
surface of the medium and one is interested in its e�ects on propagation properties of
wave packets�

Note that the operator H can be viewed as the Schr�odinger operator

H � H� � V� 
����

where the potential V acts only along the surface �Zd��
� � Zd� that is� 
V ��
n� x� � � if

x � � and 
V ��
n� �� � V 
n��
n� ��� For many purposes it is convenient to adopt this
point of view and we will do so in the sequel� Since H� is bounded� the operator H is
properly de
ned as a self�adjoint operator�

We recall that the spectrum of H� is purely absolutely continuous and that

�
H�� � ���
d � ��� �
d� ����

A simple Weyl�s sequence argument yields that for any V � �
H�� � �
H�� In this paper
we will study spectral and scattering properties of H on the set �
H��� We will consider
the cases where V is a deterministic and a random potential on Zd�

��� Deterministic results

Unless otherwise stated� all the results of this section hold for an arbitrary surface potential
V �

The starting point of our work is the following result�
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Theorem ��� The wave operators

�� � s� lim
t���

eitHe�itH� 
����

exist� In particular� �
H�� � �ac
H��

Remark �� Note that the existence of the limits 
���� implies that for every s � R�

eisH�� � ��eisH��

Therefore� H preserves the subspaces Ran��� and its restrictions to these subspaces are
unitarily equivalent to H�� This implies that �
H�� � �ac
H��
Remark �� After this work was 
nished we have learned from J� Sahbani that a result
similar to Theorem ��� has been recently proven in �CS��

Due to the free propagation along the x�axis� the above theorem is certainly expected�
Somewhat subtler results are related to the question of when and where the wave operators
are complete and the spectrum of H is purely absolutely continuous� Before we state our
theorems� we need some additional notions�

We decompose Zd�Z� � �� ���� where �� � Zd�f�g and �� � Zd�f�� �� � � �g� Let
Hs �� l�
��� 	� l�
Zd�� Hb �� l�
���� 
����

We will refer to these Hilbert spaces as the surface and the bulk� Clearly�

H � Hs 
Hb� 
��	�

With respect to this decomposition the operator H can be written as a �� � matrix�

H �

�
Hss Hsb

Hbs Hbb

�
� 
����

Here� Hss � h� � V � where h� is the usual discrete Laplacian on l�
Zd�� and Hbb is the
Dirichlet Laplacian on l�
���� Note that H

bb is unitarily equivalent to H�� The operators
Hsb and Hbs couple the surface and the bulk� Clearly� Hsb � 
Hbs��� Hbs��n�x� � � if
x � � and Hbs��n��� � ��n����

We will use notation similar to 
���� for other operators on H� For example� �ss is the
projection onto the surface and �bb is the projection onto the bulk�

For any z �� �
Hbb�� we de
ne

Ws
z� �� Hsb
Hbb � z�bb���Hbs�

Gs
z� �� Hss �Ws
z�� z�ss�

����

In physics literature� the operator Ws
z� is sometimes called the self�energy� Following
�DJ�� we will call Gs
z� the resonance function� Its importance stems from the identity

�ss
H � z����ss � G��
s 
z�� 
����
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which is a consequence of the Feshbach formula for 
H � z��� 
see Section ����� One
can also show that the Hilbert space Hs is a cyclic set for H 
see Section ����� It then
follows from Relation 
���� that the spectral properties of H are encoded by the resonance
function Gs
z��

We remark that the objects 
���� appear naturally in many di�erent problems in
mathematical physics� In particular� they have been recently used in �DJ� in the study
of some Hamiltonians of quantum 
eld theory� Our notation and some of our abstract
results in Section � are motivated by �DJ��

In the sequel� we will use the short�hand C� �� fz � �Im z � �g� We will show in
Section ��� that the operator�valued function C� 
 z ��Ws
z� extends by continuity to a
norm�continuous function on C�� Thus� for e � R� we can de
ne Gs
e� by 
����� Clearly�
Gs
e� is a closed operator with domain D
V �� We de
ne the resonant spectrum of the
operator H by

R
H� �� fe � R � � � �
Gs
e��g�
The basic properties of this set are summarized in

Proposition ���

i� R
H� is a closed set�

ii� R
H� � �
H��

iii� �
H� n �
H�� � R
H��

The existence of the resonant spectrum is linked to the surface potential V � For example�
we will show that if kV k � � then R
H� � ��

We now recall some basic notions of scattering theory� Let A and B be self�adjoint
operators on a Hilbert space H and assume that the wave operators

U� �� s� lim
t���

eitBe�itA��
A�

exist� The relation eisBU� � U�eisA yields that for any bounded Borel function f �
f
B�U� � U�f
B�� and in particular that RanU� � Ran��
B�� The wave operators
U� are complete on � if RanU� � Ran ��
B�� If � � R� we simply say that the wave
operators U� are complete� The wave operators U� are complete on � i� the wave
operators

W� �� s� lim
t���

eitAe�itB��
B�

exist� If the wave operators are complete on � and �� is such that Ran���
H� �
Ran��
H�� then the wave operators are also complete on ���

Recall that the wave operators �� are given by 
����� Our next result is

Theorem ��� The wave operators �� are complete on �
H� nR
H�� In particular� the
spectrum of H on this set is purely absolutely continuous�

	



Remark� There are examples of surface potentials V 
which even vanish at in
nity�
such that H has eigenvalues in R
H�� �
H�� �MV��� It is likely that these examples can
be modi
ed to produce potentials V for which R
H� � �
H�� �� � and �pp
H� � R
H�
�N� S�� MV��� Thus� we believe that Theorem ��� is an optimal result in the sense that
it holds for an arbitrary surface potential V �

We proceed to obtain some information on the location of the set R
H�� In the sequel�
if X� Y � R� we write X � Y � fx� y � x � X� y � Y g� If either X � � or Y � �� we set
X � Y � �� If V is a constant surface potential� V � a� then R
H� � � if jaj � � and

R
H� � ���d� �d� � fa � a��g�

if jaj � �� Motivated by this observation� we set

S
V � �� ���d� �d� � fa� a�� � a � �
V �� jaj � �g� 
����

We also de
ne

Sext
V � �� S
V � � 
���d� �d� � f�a � a � �
V �� jaj � �g� � 
����

Here� �
V � � fV 
n� � n � Zdg� Note that if infn jV 
n�j � �� then S
V � � Sext
V ��

Theorem ���

i� �
H� � �
H�� � S
V ��

ii� R
H� � Sext
V ��

iii� If kV k � �� then R
H� � ��
This result and Theorem ��� imply that on the set �
H� n Sext
V �� the spectrum of H is
purely absolutely continuous and the wave operators �� are complete� If kV k � �� the
operatorH has only absolutely continuous spectrum and the wave operators are complete�

It appears di�cult to say substantially more about spectral theory of H without mak�
ing some further assumptions on the model� For example� one can proceed by assuming
that V has suitable decay or growth properties and we will brie�y pursue this direc�
tion in Section ��	� The case where V is the Maryland potential has been studied in
�KP� JM�� JM	�� In the next section� we will consider the case where V is a random
process on Zd� This case is of particular physical importance�

��� Random boundary condition

Let us describe the random surface model we will study� Let � be the set of all surface
potentials� that is� the functions V � Zd �� R� The set � can be identi
ed with

� � RZ
d

��
Zd

R�

�



Let F be the ��algebra in � generated by the cylinder sets fV � V 
n�� � B�� � � � � V 
nk� �
Bkg� where B�� � � � � Bk are Borel subsets of R� The model is speci
ed by the choice of
probability measure P on 
��F��

In this work we will consider measures P of the form

P � �
n�Zd

	n�

where each 	n is a probability measure on R� Note that 	n is the probability distribution
of the random variable � 
 V �� V 
n�� We say that the random variable V 
n� has
density� if the measure 	n is absolutely continuous w�r�t� Lebesgue measure� Obviously�
the random variables fV 
n�g are independent� and we say that they are i�i�d� if all the
measures 	n are equal to 	� We recall that the topological support of 	� supp	� is the
complement of the largest open set B such that 	
B� � �� We set

S �� ���d� �d� � fa � a�� � a � supp	� jaj � �g� 
�����

As usual in the theory of random Schr�odinger operators� we are interested in the spectral
properties of H � H� � V which hold P �a�s�� that is� for a set of V �s of P measure ��

We discuss 
rst the i�i�d� case� Note that if Tj is the shift operator on the probability
space �� 
TjV �
n� � V 
n� j�� and 
Uj��
n� x� � �
n� j� x�� then

UjHU�
j � H� � TjV� 
�����

Therefore� H � H� � V is an ergodic family of random operators and it follows from the
well�known argument 
see �CFKS� for details� that there exist closed sets �� �ac� �pp�
�sc such that P �a�s�� �
H� � �� �ac
H� � �ac� �pp
H� � �pp� �sc
H� � �sc� Obviously�
� � �ac � �pp � �sc� Note that P �a�s�� �
V � � supp	� Thus�

S
V � � S P � a�s�

We can now complement Theorem ��	 with the following result�

Theorem ��� Assume that the random variables fV 
n�gn�Zd are i�i�d� Then�

i� � � �
H�� � S�

ii� There is a set R such that R
H� � R P �a�s� Moreover� S � R�

Remark� Although Part 
i� of this theorem is known to workers in the 
eld� its com�
plete proof is not available in the literature� For completeness� we include the proof here�

Combining Theorems ��	 and ���� we show that if supp	�
��� �� � �� then R
H� � S
P �a�s�� Of course� if supp	 � 
��� ��� then R
H� � � P �a�s��

Our next result concerns the structure of the spectrum of H in �
H��� As we have
already discussed� it is known that for some surface potentials V � H may have embedded
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eigenvalues in �
H��� The general wisdom� however� suggests that a singular spectrum
embedded in an absolutely continuous spectrum is unstable with respect to �generic per�
turbations � In the random case� the vague notion of �generic could be replaced with a
precise P �a�s� statement� and a natural conjecture is that P �a�s� the spectrum of H in
�
H�� is purely absolutely continuous� This is indeed the context of our next and perhaps
deepest result�

Theorem ��� Assume that the random variables fV 
n�gn�Zd have densities� Then� the
spectrum of H in �
H�� is P �a�s� purely absolutely continuous�

Remark �� Independence of fV 
n�g is not needed� It su�ces that for all n the condi�
tional distribution of V 
n�� conditioned on fV 
m�gm	�n� has density�
Remark �� This theorem is a special case of a general result concerning the structure of
the spectrum of Anderson�type models recently proven by the authors in �JL���
Remark �� The proof of Theorem ��� gives some additional information� For exam�
ple� from our arguments it follows that the spectrum of H in �
H�� is P �a�s� transient
absolutely continuous in the sense of Avron�Simon �AS��

Our 
nal result deals with the case where either V or V �� vanishes at in
nity�

Theorem ��� Assume that the assumption of Theorem ��� holds� and that either

lim
jnj��

V 
n� � � P � a�s� or lim
jnj��

jV 
n�j �� P � a�s� 
�����

Then�

i� The resonant spectrum of H has Lebesgue measure zero P �a�s�

ii� The wave operators �� are complete on �
H�� P �a�s�

Remark� Under the assumptions 
������ the spectrum of H outside �
H�� is P �a�s�
discrete� See Section ��	�

It is interesting to compare Theorem ��� with some recent results about localization
for H proven in �JM�� JM��� For simplicity� we will consider only the i�i�d� case� Let
d	 � p
x�dx� It is convenient to introduce a �disorder parameter 
� that is� to consider
the family of operators

H� � H� � 
V�

We set �c � �ac � �sc� If d � �� p � L�
R� and the topological boundary of supp	 is a
discrete set� it was shown in �JM�� that for all 


�c � fe � jej � 	g � �� 
�����

In �JM�� it was shown that for any d there are constants 
d and !d� which depend only
on d and the density p� such that for j
j � 
d and j
j � !d

�c � fe � jej � �
d� ��g � � 
���	�

�




weaker results are proven in �AM� G��� The conditions on the density p for which this
result hold are the same as in �AM�� Thus� whenever 
����� or 
���	� hold� it follows from
Theorem ��� that

�ac � �
H��� �sc � �� 
�����

and
�pp � � n �
H�� � S n �
H��� 
�����

��� Some remarks

The spectral theory of random operators H � H� � V on the set R n �
H�� is reasonably
well understood� The remaining open problems in this direction are closely linked to some
fundamental open problems in the theory of random Schr�odinger operators� For example�
the question whether H has some absolutely continuous spectrum outside �
H�� is related
to the phenomenon of Anderson delocalization 
see �JM����

In this paper we have concentrated on a much less studied subject� namely� the spectral
theory of H on the set �
H��� Our goal has been to understand spectral and scattering
properties ofH which follow essentially from the structure of the model and are insensitive
to details of the surface potential� It is perhaps surprising how far one can go in that
direction using only relatively simple operator�theoretic means� For example� if V is
a random process� Theorem ��� gives complete characterization of the structure of the
spectrum in the set �
H���

For reasons of space� in this paper we have restricted ourselves to an essentially time�
independent approach to the spectral and scattering theory of the model 
����� The
dynamical aspects of the model will be discussed in the continuation of this paper �JL���

The paper is organized as follows� In Section �� we extract the key structural properties
of the model 
���� and prove Proposition ��� and Theorem ��� in an abstract framework�
In fact� practically all the results of our paper follow from these few structural properties
and can be cast into an abstract form� In Section �� we illustrate how that could be done�
Besides 
����� there are many other �surface type models which appear in physics 
see
e�g� �KP� JMP�� and the results of Section � indicate how the techniques of our paper can
be used in the study of such models� The basic tools used in Section � are Kato�s theory
of smooth perturbations and the Feshbach formula�

In Section �� we verify the assumptions of the abstract approach of Section � and
establish the results described in Section ���� In Section ��	� we study surface potentials
which vanish at in
nity�

Random surface potentials are studied in Sections 	 and �� In Section 	� we prove
Theorem ���� In Section �� we prove Theorems ��� and ����

Our 
nal remark concerns some technical aspects of the paper� Our arguments are
based on techniques of scattering theory and the theory of random Schr�odinger operators
and� it is likely that future developments will also be based on the fusion of techniques of

�



these two 
elds� Since these techniques are rarely combined together� we have attempted
to make the paper essentially self�contained�
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� Abstract framework

��� Smooth perturbations

Let V be closed and A a self�adjoint operator on a Hilbert space H� We say that V is
A�smooth if D
A� � D
V � and

sup
z 	�R

jIm zjkV 
A� z���k� ��� 
�����

The condition 
����� has a number of equivalent reformulations� The one which will
concern us below is that V is A�smooth i� there exist C � � such that for all � � H�Z

R

kV e�itA�k�dt � Ck�k�� 
�����

Let � � R be a Borel set� We denote by ��
A� the spectral projection of A onto ��
We say that V is A�smooth on � i� V ��
A� is A�smooth� One can show 
see Theorem
XIII��� in �RS��� that V is A�smooth on � if D
A� � D
V � and

sup
e���y��

kV 
A� e� iy���V �k ���

Now let H be a Hilbert space decomposed into direct sum H � H
s 
 Hb� We will refer

to the Hilbert space Hs as the surface and to Hb as the bulk� The projections onto Hs and
H
b we denote by �ss and �bb�
We now describe the main result of this section which reduces the proof of Theorem

��� to a number of easily veri
able conditions�

Theorem ��� Let H and H� be self�adjoint operators on H and let � be a bounded open
interval� Assume that

a� �ss is both H and H��smooth on ��

�




b� H�bb��bbH� � V TV � where T is a bounded operator� V is bounded and self�adjoint�
and V is both H and H��smooth on ��

c� The operators �H� �ss�� �H�� �

ss� are bounded�
Then the wave operators

U� � s� lim
t���

eitHe�itH���
H��

exist and are complete on ��

Remark �� This theorem is a variant of the well�known results concerning completeness
of wave operators in Kato�s theory of smooth perturbations 
see e�g� Theorem XIII��� in
�RS����
Remark �� For the above theorem to hold we do not need that either H or H� have
purely absolutely continuous spectrum on ��
Proof� We 
rst show that

s� lim
t���

eitH�sse�itH���
H�� � �� 
�����

Let � � Ran��
H�� and
�
t� �� eitH��sse�itH���

Obviously�
keitH�sse�itH��k � k�
t�k�

By 
a�� the function �
t� is square�integrable and by 
c� its derivative is uniformly bounded�
These two facts yield that limjtj�� �
t� � � 
see e�g� Exercise �� in �RS����

We now show that the limits

s� lim
t���

��
H�eitH�bbe�itH���
H�� 
�����

exist� Let � � H be given and let

w
t� �� ��
H�eitH�bbe�itH���
H����

Then for any � � H�
d

dt

�jw
t�� � i
V ��
H�e�itH�jTV e�itH���
H�����

where we used the assumption 
b�� Therefore� if t � s�

j
�jw
t�� w
s��j � kTk
�Z t

s
kV ��
H�e�i�H�k�d


� �
�
�Z t

s
kV ��
H��e

�i�H��k�d

� �

�

�

��



It follows from Proposition ��� that for some constant C��Z
R

kV ��
H�e�i�H�k�d
 � C�k�k��
Thus� for some constant C�

kw
t�� w
s�k � C
�Z t

s
kV ��
H��e

�itH��k�dt
� �

�

�

By the assumption 
b�� the integrand on the right hand side of the last equation is in
L�
R�� Therefore� the sequence w
t� is Cauchy as t � � and t � �� and the limits

����� exist�

Let I � �a� b� be an interval contained in � and let � be a simple closed curve in the
complex plane that separates �a� b� and R n � and encloses �a� b�� Let R
z� � 
H � z����
R�
z� � 
H� � z���� Then for any � � H�

�Rn�
H�eitH�bbe�itH��I
H��� �

� 
��i���
I
�
�Rn�
H�eitH

�
R
z��bb � �bbR�
z�

	
e�itH��I
H���dz

� �
��i���
I
�
�Rn�
H�eitHR
z�
H�bb � �bbH��R�
z�e

�itH��I
H���dz�

It follows that for some constant C�

k�Rn�
H�eitH�bbe�itH��I
H���k � C
I
�
kVR�
z�e

�itH��I
H���kdz�

Let
l
z� t� �� VR�
z�e

�itH��I
H����

The function l
z� t� is uniformly bounded on ��R and has a uniformly bounded derivative
in t� Moreover� by the assumption 
b�� for all z � �� l
z� t� is square�integrable in t� It
follows that limjtj�� l
z� t� � �� This implies that

s� lim
t���

�Rn�
H�eitH�bbe�itH��I
H�� � ��

and since � is a countable union of closed intervals� that

s� lim
t���

�Rn�
H�eitH�bbe�itH���
H�� � ��

This fact� 
����� and the existence of limits 
����� imply that the wave operators U� exist�
To prove that the wave operators U� are complete on � it su�ces to show that the

wave operators
"U� �� s� lim

t���
eitH�e�itH��
H�

exist� However� since 
b� implies that H��
bb��bbH � �V T �V � the proof of the existence

of "U� is the same as the proof of the existence of U�� �

��



��� The Feshbach formula and the resonant spectrum

In this section we consider the operators H on H � H
s 
 Hb of the form

H �

�
Hss Hsb

Hbs Hbb

�
� 
�����

where Hss and Hbb are self�adjoint operators on Hs and Hb� Hbs � Hs �� H
b is a bounded

operator and 
Hbs�� � Hsb� Clearly� H is a self�adjoint operator and D
H� � D
Hss�

D
Hbb��

For any z �� �
Hbb� we de
ne

Ws
z� �� Hsb
Hbb � z�bb���Hbs�

Gs
z� �� Hss �Ws
z�� z�ss�

�����

We will call Gs
z� the resonance function� Note that for e � R n �
Hbb� the operator
Gs
e� is selfadjoint and that Gs
z� is an analytic family of type A on C n �
Hbb��

The following result is known as the Feshbach formula� For the proof we refer the
reader to �DJ�� Proposition ����

Proposition ��� Assume that z �� �
Hbb�� Then�

i� z �� �
H� i� � �� �
Gs
z���

ii� If � �� �
Gs
z�� then


H � z��� �
�
�ss � 
Hbb � z�bb���Hbs�

	
G��

s 
z�
�
�ss �Hsb
Hbb � z�bb���

	
�
Hbb � z�bb����

The spectral consequences of the Feshbach formula are discussed in detail in �DJ�� On
one occasion we will make use of the following result 
Theorem ��� in �DJ���

Theorem ��� Assume that e � R n �
Hbb�� Then e is an eigenvalue of H i� � is an
eigenvalue of Gs
e�� Moreover� dim�feg
H� � dim�f�g
Gs
e���

We make the following hypothesis�

	A�
 For any e � R� the norm�limit

lim
y
�

Ws
e � iy� �� Ws
e� 
�����

exists� and the function C� 
 z �� Ws
z� is norm�continuous�

��



Notation� It is common to denote the value of the limit 
����� by Ws
e � i��� Since we
will never deal with the boundary values limy��Ws
e � iy�� for notational simplicity we
write e for e� i��

Until the end of this section we assume that Hypothesis 
A�� holds�
We set

Gs
e� �� Hss �Ws
e�� e�ss� e � R�

Gs
e� is a closed operator and D
Gs
e�� � D
Hss�� We de
ne the resonant spectrum of
the operator H by the formula

R
H� �� fe � R � � � �
Gs
e��g�
Proposition ���

i� R
H� is a closed set�

ii� R
H� � �
H��

iii� �
H� n �
Hbb� � R
H��

Proof� Part 
iii� is an immediate consequence of Proposition ����
We will prove Part 
i� by showing that the set R n R
H� is open� Let e� � R n R
H�

be given� Then� it follows from Hypothesis 
A�� that there exists � � � such that

sup
je�e�j��

k
Gs
e��Gs
e���G
��
s 
e��k � �� 
���	�

For e � 
e� � �� e� � �� we write

Gs
e� � T 
e�Gs
e��� 
�����

where
T 
e� � � � 
Gs
e��Gs
e���G

��
s 
e���

It follows from 
���	� that T 
e� is a bounded� invertible operator� Relation 
����� yields
that Gs
e� is invertible and that G��

s 
e� � G��
s 
e��T 
e�

��� Therefore�


e� � �� e� � �� � R n R
H��

and Part 
i� follows�
To prove Part 
ii�� note 
rst that for z � C� the Feshbach formula yields

�ss
H � z����ss � G��
s 
z�� 
�����

Therefore� if e �� �
H� then the function C� 
 z �� G��
s 
z� has an analytic extension

to a neighborhood of e� We denote this extension by Q
z�� Clearly� for z � C� and
any �� Gs
z�Q
z�� � � 
in particular� RanQ
z� � D
Hss��� Moreover� it follows from
Hypothesis 
A�� that 
Gs
z��Gs
e��Q
z�� � as z � e� Thus� for any �� Gs
e�Q
z�� �
� as z � e� Since Gs
e� is a closed operator� we conclude that for any �� Q
e�� �
D
Gs
e�� and Gs
e�Q
e�� � �� It follows from the closed graph theorem that � ��
�
Gs
e��� �

The next observation we need is

��



Lemma ��� The function

C� n R
H� 
 z �� G��
s 
z��

with values in bounded operators on Hs� is continuous in the norm topology�

Proof� Let z� � C� n R
H� be given� It follows from Hypothesis 
A�� that there exists
� � � such that if jz � z�j � � and z � C� then

k
Gs
z��Gs
z���G
��
s 
z��k � ����

If in addition z �� R
H�� this relation and the identity

G��
s 
z��G��

s 
z�� � G��
s 
z�
Gs
z���Gs
z��G

��
s 
z�� 
�����

yield that

G��
s 
z� � G��

s 
z��
�
�� 
Gs
z��Gs
z���G

��
s 
z��

	��
�

In particular� we get that
kG��

s 
z�k � �kG��
s 
z��k�

Going back to the equation 
����� we derive that if z � C� nR
H� and jz� z�j � �� then

kG��
s 
z��G��

s 
z��k � �kG��
s 
z��k�kGs
z��Gs
z��k

� �kG��
s 
z��k�kWs
z��Ws
z�� � 
z � z���

ssk�
The result follows from this relation and Hypothesis 
A��� �

The following technical result will be used on several occasions in this paper�

Proposition ��� Let T be a closed operator of the form T � A�iB� where A and B are
self�adjoint operators and B is bounded� Assume further that B � �� Then�

i� KerT � KerA �KerB�

ii� If � � �
T � then � � �
A� � �
B��

iii� If � � �
T � and y � � then k
T � iy���k � y���

Proof� Let � � KerT � Then 
�jT�� � 
�jA��� i
�jB�� � � which yields 
�jB�� � ��
Since B � �� B� � � and A� � 
T � iB�� � �� Therefore� KerT � KerA �KerB� The
inclusion � is obvious� and Part 
i� follows�

To establish Part 
ii�� we note 
rst that D
T � � D
T �� � D
A� and that the numerical
range of T is contained in C�� By the numerical range theorem 
see e�g� Lemma 	�� in
�JP�� we have that �
T � � C�� Therefore� if � � �
T � then � is on the topological
boundary of �
T �� It follows 
see e�g� �VH�� Theorem ���� that there exists a sequence
�n� k�nk � �� such that

lim
n
T�n � �� 
�����

�	



Now� 
����� yields that limn
�njB�n� � �� and since B � �� that limnB�n � �� This
and 
����� yield that limnA�n � �� Thus� �n is Weyl�s sequence of A and B and � �
�
A� � �
B��

Finally� to prove 
iii�� let �n� with k�nk � �� be such that limn T�n � �� Set �n ��
T�n� Then

�n � 
T � iy����n � iy
T � iy����n�

which yields that
k
T � iy���k � y�� � k
T � iy����nk�

Letting n�� we conclude that k
T � iy���k � y��� Since the numerical range theorem
implies that k
T � iy���k � y��� 
iii� follows� �

Our next result is

Proposition ��� e � �
H� n R
H� i� there exists � � � such that

sup
x��e���e����y��

k�ss
H � x� iy����ssk ��� 
�����

In particular� the projection �ss is H�smooth on any compact subset of �
H� n R
H��

Proof� If e � �
H� n R
H� then the relation 
����� follows from Lemmas ��	 and ����
Assume now that e � R
H�� Since


Gs
e� � iy��� � G��
s 
e� iy�

�
�� 
Ws
e� iy��Ws
e��
Gs
e� � iy���

	
and

k
Gs
e� � iy�k�� � y��


we used Proposition ����� it follows that

kG��
s 
e� iy�k � 
y � l
y����� 
�����

where l
y� �� kWs
e�iy��Ws
e�k� By Lemma ���� limy
� l
y� � �� and 
����� implies that
for e � R
H� the relation 
����� does not hold for any � � �� This yields the statement�
�

The last proposition does not imply that the spectrum of H on the set �
H� n R
H�
is purely absolutely continuous� Indeed� the fact that �ss is H�smooth on any compact
subset of �
H� n R
H� implies only that

Ran 
���H�nR�H�
H��ss� � Hac
H�� 
�����


see Theorem XIII��� in �RS���� To establish that the spectrum of H on �
H� n R
H� is
purely absolutely continuous we need an additional assumption on our abstract model�
We recall that a set � is called cyclic for H if the linear span of the set fg
H�� � g �
C�
R�� � � �g is dense in H� Our hypothesis is�

	A�
 The surface Hilbert space Hs is a cyclic set for H�

��



Proposition ��� Assume that A
�� holds� Then the spectrum of H on the set �
H� n
R
H� is purely absolutely continuous�

Proof� By 
������ for any g � C�
R�� g
H����H�nR�H�
H��ss � Hac
H�� This observation
and Hypothesis 
A�� imply that Ran ���H�nR�H�
H� � Hac
H�� �

� Deterministic results

��� Basic facts

In this section we establish a number of technical results which will be used throughout
the paper� we verify Hypotheses 
A���
A�� of Section � and prove Proposition ��� and
Theorem ����

Let T � R���Z be the circle and Td the d�dimensional torus� We denote the points in
Td by � � 
��� � � � � �d�� and by d� the usual Lebesgue measure� In the sequel we identify
Hs with l�
Zd�� Let F � l�
Zd� �� L�
Td� be the usual Fourier transform�


F��
�� � 
����
d
�

X
n�Zd

�
n�ein�	�

In the sequel we will use the shorthand #
�� �� �
Pd

k�� cos�k� For z � C n �
H��� let


�� z� be the solution of the quadratic equation

X �X�� � #
�� � z� 
�����

which satis
es j

�� z�j � �� This solution also satis
es �Im

�� z� � � if z � C� 
write

 in the polar form��

We adopt the shorthand R
z� � 
H � z���� and� for m�n � Zd��
� � we set

R
m�n$ z� �� 
�mj
H � z����n�� 
�����

Let
%R

m� ��� 
�� x�$ z� � 
����

d
�

X
n�Zd

R

m� ��� 
n� x�$ z�ein	�

We set R�
z� � 
H� � z��� and de
ne R�
m�n$ z� and %R�

m� ��� 
�� x�$ z� analogously�

Proposition ��� Let x � � and m � Zd be given� Then�

i� %R

m� ��� 
�� x�$ z� � %R

m� ��� 
�� ��$ z�

�� z�x�


ii� %R�

m� ��� 
�� x�$ z� � �
���� d
� eim	

�� z�x���

��



Proof� For 
xed m the matrix elements 
����� satisfy the equation

R
m� 
n� x� ��$ z� �R
m� 
n� x� ��$ z� �
P

jn�n�j���R
m� 
n�� x�$ z�

� �mn � zR
m� 
n� x�$ z��

���	�

if x � �� and

R
m� 
n� ��$ z� �
X

jn�n�j���

R
m� 
n�� �$ z� � 
V 
n�� z�R
m� 
n� ��$ z� � �mn 
�����

if x � �� The 
rst equation is equivalent to

%R
m� 
�� x� ��$ z� � %R
m� 
�� x� ��$ z� � 
#
��� z� %R
m� 
�� x�$ z� � �� 
�����

Of course� this equation is easily �integrated and it follows that

%R
m� 
�� x�$ z� � %R
m� 
�� ��$ z�

�� z�x� 
�����

This yields Part 
i��
If V � � the equation 
����� is equivalent to

%R�
m� 
�� ��$ z� � 
#
��� z� %R�
m� 
�� ��$ z� � 
����
d
� eim	� 
�����

Combining this relation with 
����� we derive the equation

%R�
m� 
�� ��$ z�


�� z� � #
��� z� � 
����
d
� eim	�

which yields that
%R�
m� 
�� ��$ z� � �
���� d

� eim	

�� z�� 
�����

Combining 
����� with 
����� we arrive at Part 
ii�� �

For z � C n �
H�� the self�energy operators Ws
z� can be computed� We denote by


z� the operator of multiplication by the function 

�� z�� Then

Proposition ��� Ws
z� � �F��

z�F �
Proof� Note 
rst that for any n�m � Zd�


��m���jHsb
Hbb � z�bb���Hbs��n���� � 
��m���j
H� � z�����n����� 
��	��

This observation and Part 
ii� of Proposition ��� yield


��m���j
H� � z�����n���� � 
����
d
�

Z
Td

%R�
m� 
�� ��$ z�e�in	d�

� �
����d
Z
Td


�� z�ei�m�n�	d�

� �
����d
Z
Td


�� z�ei�n�m�	�

��



where we used that � �� 

�� z� is an even function� Thus�


��m���j
H� � z�����n���� � �
F��m���j

z�F��n����� 
��	��

Relations 
��	�� and 
��	�� yield the statement� �

Proposition ��� The projection �ss is H��smooth�

Proof� For z � C��

k�ss
H� � z����ssk � kWs
z�k � sup
	�Td

j

�� z�j � ��

This yields the statement� �

Note that the function 

�� z� is analytic in Td � 
C n �
H��� and that the operator�
valued function 

z� is analytic in C n �
H��� We proceed to show that these functions
have continuous extensions from Td�C� to Td�C� and C� to C�� For e � R we de
ne


�� e� as the solution of the equation 
����� which satis
es j

�� e�j � �� Im

�� e� � ��
Explicitly� for z � C��



�� z� �
�

�

�
#
��� z �

q

#
��� z�� � 	

�
�

where the branch of the square root is 
xed by Im
p
w � � if Imw � �� If w � x � iy�

y � �� this branch is given by

p
w �

�p
�

�q
jwj� x� i

q
jwj � x

�
�

Thus� we clearly have

Lemma ��� The function Td �C� 
 z �� 

�� z� is continuous�

For e � R we set Ws
e� �� �F��

e�F � An immediate consequence of the previous
lemma is

Lemma ��� The function C� 
 z ��Ws
z� is norm�continuous�

Proof� Since the function 

�� z� is continuous on Td � C� 
and therefore uniformly
continuous on Td � compacts�� the statement follows from the formula

kWs
z���Ws
z��k � sup
	�Td

j

�� z��� 

�� z��j�

�

��



The above results allow us to compute the resonance functionGs
z�� For z � Cn�
H���
we de
ne the operator h�
z� on Hs by

h�
z� � �F��
��
z�F � 
��	��

Then�
Gs
z� � h�
z� � V� 
��	��

For e � �
H��� Gs
e� � h�
e� � V � where h�
e� � �F��
��
e�F � Note that the operator
Gs
e� is self�adjoint i� e � R n int�
H���

For later reference we prove

Lemma ��� Let n � Zd and e � int�
H��� Then

lim
y
�

Im 
��n���j
H� � e� iy�����n���� � �
Z
Td

Im

�� e�d� � �� 
��		�

Proof� That the limit exists and that the limit and the integral in 
��		� are equal follows
from Lemmas ���� ��	 and Relation 
��	��� Because for e � int�
H�� the set

fe � j#
��� ej � �g
has positive Lebesgue measure� the inequality in 
��		� follows from the de
nition of


�� e�� �

Lemma ��� veri
es Hypothesis 
A�� of Section � for the model 
���� with respect to
decomposition 
��	��

We shall also need the following technical results which are slight generalizations of
Lemmas ��� and ���� For R � Z� let

�R �� f
n� x� � n � Zd� � � x � Rg�
and let �R be the orthogonal projection on l�
�R�� Clearly� �� � �ss�

The next two results hold for an arbitrary R�

Lemma ��� The operator�valued function

C� 
 z �� �R
H� � z����R�

extends by continuity to a continuous function on C�� In particular� the projection �R is
H��smooth�

Proof� If R � � then the result follows from Lemma ���� The case R � � follows by
induction from the Feshbach formula� �

Let V be surface potential and H � H� � V � The next two propositions hold for all
V �

��



Proposition ��� The projection �R is H�smooth on any compact subset of �
H�nR
H��

Proof� If R � � then the result follows from Lemma ���� The case R � � follows from
Lemma ��� and the Feshbach formula� �

We now verify Hypothesis 
A���

Proposition ��� The surface Hilbert space Hs is a cyclic set for H�

Proof� It su�ces to show that the linear span of the vectors

fHm��n��� � n � Zd� m � �� �� � � �g� 
��	��

is dense in H� Since V acts only along Hs� to prove this fact it su�ces to show that the
linear span of the vectors

fHm
� ��n��� � n � Zd� m � �� �� � � �g 
��	��

is dense in H� To prove the last statement� note that

H���n��� �
X

jn�n�j���

��n���� � ��n����

Thus� the vectors ��n���� n � Zd� belong to the linear span of the set 
��	��� An obvious
induction yields the statement� �

To summarize� all the assumptions of Section � hold for the model 
���� with respect
to the decomposition 
�����
����� In particular� Proposition ��� follows from Proposition
��	� We 
nish this section with
Proof of Theorem ���� Let T be a linear operator de
ned by

T��n�x� �

�
�

�
���n��� if x � �
��n��� if x � �
� if x � ��

Note that kTk � � and
H�bb � �bbH� � �H�� �

bb� � T� 
��	��

Moreover� T � ��T�� and �H� �ss� � �H�� �
ss� is a bounded operator� Thus all the condi�

tions of Theorem ��� are satis
ed and Theorem ��� follows� �

��



��� Wave operators

In this section we prove Theorem ����
Let h be the usual discrete Laplacian on l�
Z� and hD the discrete Laplacian on l�
Z��

with Dirichlet boundary condition� The operator hD acts as follows�


hD��
n� � �
n � �� � �
n� �� if n � ��

and 
hD��
�� � �
��� We will use the shorthand hxi � 
� � x��
�

� �

Lemma ���
 There is a dense set of vectors T � l�
Z� such that for � � T � n � Z and
k � ��

j
�nje�ith��j � C
�khtikhni�k� 
��	��

The constant C
�k does not depend on n�

Proof� In the Fourier representation�


�nje�ith�� � �

��

Z
T

e�in	e��it cos	 %�
��d��

Let T be the set of all � such that %� is C�
T�� Then the estimate 
��	�� follows from
integration by parts� �

Lemma ���� There is a dense set of vectors R � l�
Z�� such that for � � R� x � �
and k � ��

j
�xje�ithD��j � C
�x�khti�k 
��	��

Proof� We de
ne a unitary map U � l�
Z�� �� l�
Z� by


U��
n� �

�
�

�

��
�
��
n� if n � �
� if n � ��

��� �
��
�n� �� if n � ���

Set "l �� Ul�
Z��� The Hilbert space "l is preserved by h and UhDU
�� � h� If F � l�
Z� ��

L�
T� is the usual Fourier transform� then the unitary map W � FU identi
es l�
Z��
with the subspace "L of L�
T� which consists of the functions which satisfy

f
��� � �e�i	f
��� 
�����

Moreover� WhDW
�� acts on this subspace as multiplication by � cos�� Thus� for any

� � l�
Z���


�xje�ithD�� � ��
�
� 
�����

Z
T


e�ix	 � ei�x���	�e��it cos	
W��
��d�� 
�����

��



Let "R be the subspace of "L which consists of C� functions which satisfy 
����� and which
are equal to zero in neighbourhoods of � and �� Clearly� "R is dense in "L� and therefore
R � W�� "R is dense in l�
Z��� Moreover� it follows from 
����� that Relation 
��	�� holds
for any � � R 
integrate by parts�� �

Proposition ���� There exists a dense set D � H such that for � � D� R � � and
k � �

k�Re�itH��k � O
hti�k��

Proof� Let R be given� We take D � R�T � � � ��T � where R and T are as in Lemmas
���� and ����� The set D is dense in l�
Zd��

� � and consists of 
nite linear combinations of
the vectors

f � �� � � � �� �d� f � R� �k � T � 
�����

Note that
k�Re�itH��k� � X

�
x
R

X
n�Zd

j
��n�x�je�itH���j��

If � has the form 
����� and n � 
n�� � � � � nd�� then


��n�x�je�itH��� � 
�xje�ithDf�
dY

j��


�nj je�ith�j��

It follows from Lemmas ���� and ���� that for any positive integers k�� k� there exist
constant C
�x�k��k�� which does not depend on n� such that

j
��n�x�je�itH���j � C
�x�k��k�htidk��k�
dY

j��

hnji�k��

Taking k� � �d� � and k� � � we derive the result� �

Proof of Theorem ���� We will consider only the case t��� It follows from Propo�
sition ���� that

s� lim
t��

�sse�itH� � ��

and so� by Cook�s criterion� to prove the existence of �� it su�ces to show that for a
dense set of ��s� Z �

�
k
H�bb � �bbH��e

�itH��kdt ��� 
�����

By 
��	���
k
H�bb � �bbH��e

�itH��k � k��e�itH��k�
and 
����� follows from Proposition ����� �

��



��� The resonant spectrum

In this section we prove Theorem ��	�

Lemma ���� Let A and B be self�adjoint operators� Assume that A is bounded and that
�
A� is a connected set� Then �
A�B� � �
A� � �
B��

Proof� By adding a constant to A we may assume that �
A� � ��kAk� kAk�� Let z be
real and assume that z �� �
A� � �
B�� Then z �� �
B� and

k
z � B���Ak � kAk
dist
z� �
B��

� ��

The identity
z � 
A�B� � 
z � B�
� � 
z � B���A��

yields that z �� �
A�B�� �

We recall that Sext
V � is de
ned by 
���� and that h�
e� is de
ned by 
��	���

Lemma ���� � � �
Reh�
e� � V �� e � Sext
V ��

Proof� In the Fourier representation Reh�
e� acts as operator of multiplication by
�Re

�� e���� Since this function is continuous� �
Re h�
e�� is a connected set� Thus
if � � �
Reh�
e� � V � then� by Lemma ����� � � �
Re h�
e�� � �
V �� Therefore� there
exist �� � Td and a � �
V � such that

Re

��� e�
�� � a�

If jaj � � then 

��� e� must be real� and we have that

a � a�� � 

��� e� � 

��� e�
�� � e� #
���� 
���	�

If jaj � � then j

��� e�j � � and

�a �
�


��� e� � 

��� e�

��
	
� e� #
���� 
�����

The identities 
���	� and 
����� yield the statement� �

We are now ready to 
nish the
Proof of Theorem ���� To prove Part 
i� we have to show that

�
H� n �
H�� � S
V � n �
H��� 
�����

First� we observe that �
Hbb� � �
H��� so the Feshbach formula 
Proposition ���� yields


�e �� �
H��� e � �
H� � � � Gs
e��

��



It follows from Lemma ���� that �e �� �
H���

�
Gs
e�� � �
h�
e�� � �
V ��

Thus� if e �� �
H�� and � � �
Gs
e�� then for some �� � Td and a � �
V ��



��� e�
�� � a�

It follows that
a � a�� � 

��� e� � 

��� e�

�� � e� #
����

Therefore� �e �� �
H��� � � �
Gs
e��� e � S
V �� This relation yields Part 
i��
It follows from Proposition ��� that

� � �
Gs
e�� � � � �
ReGs
e���

Since ReGs
e� � Re h�
e� � V � Part 
ii� of the theorem follows from Lemma ���	� To
prove Part 
iii�� we write

Gs
e� � h�
e�
� � h��� 
e�V ��

Thus� � � �
Gs
e�� i� �� � �
h��� 
e�V �� Since

kh��� 
e�k � sup
	�Td

j

�� e�j � ��

kh��� 
e�V k � �� and � �� �
Gs
e��� This yields that R
H� � �� �

��� Repulsive surfaces

Physically� the surface is repulsive if it repels the wave packets with energies in �
H��� We
make this heuristic notion mathematically precise by saying that the surface is repulsive
if the set R
H� � �
H�� has Lebesgue measure ��

In this section we will show that the surface is repulsive if the surface potential V
satis
es

lim
jnj��

V 
n� � � or lim
jnj��

jV 
n�j ��� 
�����

Roughly� if V � �� H� � V is �close to H�� and the surface is repulsive due to the
Dirichlet boundary condition� When jV j � �� the surface is repulsive due to the force
exerted by the surface potential� The goal of this section is to justify this rough picture�

First� we have

Proposition ���� Assume that ���	
� holds� Then �ess
H� � �
H���

�	



Proof� If V � �� then V is a compact operator� and the result follows from Weyl�s
theorem�

Assume that jV j � �� Then the spectrum of Gs
z� � h�
z� � V consists of a
discrete set of eigenvalues of 
nite multiplicity which can accumulate only at��� Assume
that there exist e� � R n �
H�� and a sequence ek such that ek � e� and � � Gs
ek��
Since z �� Gs
z� is an analytic family of type A in a neighborhood of e�� by analytic
perturbation theory 
see e�g� �Ka�� Chapter VII� Theorem ������ � � �
Gs
z�� for z in
some neighborhood of e�� However� for z � C�� ImGs
z� � � and � �� Gs
z�� Thus� the
set

E � fe � R � e �� �
H��� � � �
Gs
e��g�
is discrete and ��
d� ��� �� are its only possible accumulation points� By Proposition
��� and Theorem ���� the spectrum of H outside �
H�� is the set E� and each point of E
is an eigenvalue of H of 
nite multiplicity� Therefore� the spectrum of H outside �
H��
is discrete� �

The main result of this section is

Theorem ���� If V is a surface potential which satis�es ���	
� then R
H� has Lebesgue
measure ��

An immediate consequence of this result and Theorem ��� is

Theorem ���� Let V be a surface potential which satis�es ���	
�� Let � � �
H�� be
a Borel set such that the spectrum of H on � is purely absolutely continuous� Then
Ran��
H� � Ran���H�nR�H�
H� and the wave operators �� are complete on ��

Remark� Theorem ��� follows from Theorems ��� and �����
Before we prove Theorem ����� we recall

Proposition ���� Let C� 
 z �� A
z� be a function with values in compact operators on
a separable Hilbert space H� Assume that A
z� is continuous in C� and analytic in C�� Let
w � C be given� Then either w � �
A
z�� for all z � C� or the set fe � R � w � �
A
e��g
is a closed subset of R with Lebesgue measure ��

For the proof of this proposition we refer the reader to �RS��� Section XI���
Proof of Theorem ����� We recall that for z � C�� Gs
z� � h�
z� � V � and that the
operator�valued functions C� 
 z �� h�
z�� C� 
 z �� h��� 
z�� are continuous in C� and
analytic in C�� Moreover� Imh�
z� � � for z � C� and limIm z�� kh��� 
z�k � ��

Assume 
rst that limjnj�� V 
n� � �� Clearly� V is a compact operator on Hs and
since

Gs
e� � h�
e�
� � h��� 
e�V ��

� � �
Gs
e�� i� �� � �
h��� 
e�V �� For z � C� we set A
z� �� h��� 
z�V � The function
A
z� satis
es all the conditions of Proposition ���� and limIm z�� kA
z�k � �� Thus�

��



if Im z is large enough� �� �� �
A
z�� and it follows from Proposition ���� that the set
fe � R � �� � �
A
e��g has Lebesgue measure �� This yields the statement�

Assume now that limjnj�� jV 
n�j ��� Since

Gs
z� � 
V � i�
� � 
V � i���
h�
z�� i���

� � Gs
z� i� �� � �

V � i���
h�
z�� i��� Set A
z� �� 
V � i���
h�
z�� i�� The function
A
z� satis
es all the conditions of Proposition ����� Since jV j � �� the spectrum of
Gs
z� consists of a discrete set of eigenvalues which can accumulate only at ��� Since
Imh�
z� � � if Im z � �� this implies that � �� Gs
z� for z � C� and so �� �� �
A
z��� It
follows from Proposition ���� that the set fe � R � �� � �
A
e��g has Lebesgue measure
� and this yields the statement� �

Finally� we discuss the case where jV 
n�j grows exponentially fast�

Proposition ���� Assume that for n � Zd� jV 
n�j � C�e
�jnj � C�� where C� and � are

positive constants� Then R
H� � 
�cd� cd� � ��
Proof� Assume that e � 
�cd� cd� and � � �
Gs
e��� Then there exists a vector �� with
k�k � �� such that h�
e�� � V � � �� Since V is increasing exponentially� � is decaying
exponentially and its Fourier transform %� is an analytic function on Td� On the other
hand� it follows from Proposition ��� that � � Ker Imh�
e�� and so %� has to vanish on
the set f� � Td � Im

�� e� �� �g� Since this set has positive Lebesgue measure� � � �� �

� The i�i�d� random potentials

In this section we prove Theorem ����
Clearly� for any V � �
H�� � �
H�� and since for i�i�d random variables S
V � � S

P �a�s�� it follows from Theorem ��	 that

� � �
H�� � S�
To show that S � � and to prove Part 
ii� of Theorem ��� we need some additional facts�

Lemma ��� Let a � supp	 be given� Then� P �a�s� there exist a sequence of �V �
dependent� disjoint boxes

Bk � fn � Zd � jn� ckj� � Lkg�
where jckj� ��� Lk ��� such that

�n � Bk� jV 
n�� aj � dk� 
	����

where dk � ��

��



Proof� A standard application of the Borel�Cantelli lemma establishes the result� �

Lemma ��� Let Vk be a sequence of surface potentials such that �n � Zd� limk Vk
n� �
V 
n�� Then H� � Vk � H� � V in the strong resolvent sense�

For any real constant a we denote by Va the constant boundary potential Va
n� � a�
We use the shorthand Ha � H� � Va and Sa � ���d� �d� � fa� a��g
Lemma ��� Let a� jaj � �� be given� Then�

i� �
Ha� � �
H�� � Sa�

ii� R
Ha� � Sa�
The proofs of the last two lemmas are elementary and we will skip them�

Recall that for j � Zd the shift operator Tj is de
ned by 
TjV �
n� � V 
n � j� and
that Uj is the unitary operator which acts as 
Uj��
n� x� � �
n� j� x��

Proposition ��� There exists a set R such that R
H� � R P �a�s�

Proof� Let B
H� � �
H� n R
H�� We will prove the equivalent statement� namely that
there exist a set B such that B
H� � B P �a�s� Let H � H� � V and� for e � �
H�� let

�V 
e� � lim
�
�

sup
x��e���e����y��

k�ss
H � x� iy����ssk�

By Lemma ���� e � B
H� i� �V 
e� ��� It is not di�cult to show that � 
 V �� �V 
e�
is a measurable function 
see e�g� �CL��� Moreover� the relation 
����� yields that for all
j� �TjV 
e� � �V 
e�� It follows 
see e�g� Proposition ��� in �CFKS�� that �V 
e� is constant
P �a�s� and so either e � B
H� P �a�s� or e �� B
H� P �a�s� Therefore� there exists a set
F � Q such that F � Q � B
H� P �a�s� Since B
H� is a relatively open subset of �
H���
the statement follows� �

We say that a bounded operator A on H is translationally invariant if for all j� AUj �
UjA�

Proposition ��� Let A and B be bounded� translationally invariant operators on H and
let a � supp	 be given� Then for all y �� � and e � R

kA
H � e� iy���Bk � kA
Ha � e� iy���Bk�

Proof� Let � be a unit vector� let V be given and let Bk be the sequence of boxes from
Lemma 	��� Let ck be the center of Bk and

�k �� Uck�� Vk �� UckV U�ck �

��



We write Hk � H� � Vk� Since for every n � Zd� limk Vk
n� � a� Hk � Ha in the strong
resolvent sense� This fact and the identity

A
H � e� iy���B�k � U�ckA
Hk � e� iy�����

yield that
lim
k��

kA
H � e� iy���B�kk � kA
Ha � e� iy���B�k�
It follows that

kA
H � e� iy���Bk � kA
Ha � e� iy���B�k�
Taking the supremum over � we derive the statement� �

Proof of Theorem ���� It remains to prove that S � � and S � R� Let a � supp	�
jaj � � be given and let e � Sa� Taking respectively A � � and A � �ss in Proposition 	��
we deduce from this proposition and Lemmas 	�� and ��� that e � �
H� and e � R
H�
P �a�s� Since �
H� � � and R
H� � R P �a�s�� we derive that Sa � � and Sa � R� and
since

S �
�

a�supp��jaj��

Sa�

that S � � and S � R� �

� The absence of singular spectrum on ��H��

In this section we prove Theorem ���� Theorem ��� is an immediate consequence of
Theorems ��� and �����

The proof of Theorem ��� consists of three technically and conceptually distinct steps�
Step �� Using Theorem ��� and general properties of the essential supports of subres�
olutions of the identity� we show that the essential support of the absolutely continuous
spectrum of H � H� � V contains �
H�� for any surface potential V �
Step �� Using an argument based on the rank�one perturbation theory we show that
P �a�s� the essential supports of the absolutely continuous components of the spectral
measures of ��n��� for H are equal for all n� It then follows from Step � and cyclicity of
Hs that P �a�s� these essential supports contain �
H���
Step �� Parts � and � yield that for all n � Zd� the singular spectrum of H� restricted
to the cyclic subspace generated by ��n���� P �a�s� has Lebesgue measure zero on �
H���
Spectral averaging 
Simon�Wol� theorem� then yields that P �a�s� the operator H has
purely a�c� spectrum on �
H���

The principal novelty of our approach is Step � whose key technical ingredient is
Theorem ��� below� In this step we were guided by an elegant argument of Simon �S���

��



��� Step �

We 
rst recall several basic facts concerning various supports of Borel measures and
subresolutions of the identity of a Hilbert space� Our discussion will follow closely �CL��
In the sequel� all Hilbert spaces are assumed to be separable�

Let B be the ��algebra of Borel sets on R and H a Hilbert space� A function E on B
with values in the space of projections on H is called a subresolution of the identity of H
if the following holds�

a� E
�� � ��

b� For any sequence An of disjoint Borel sets� E
�An� �

P
E
An�� where the series

converges in the strong topology of H�
Notation� In the sequel� m stands for Lebesgue measure on R� As usual� we write
dm � de� and say simply a�e� e for m�a�e� e�

Let E be a subresolution of the identity of a Hilbert space H� We say that E is
supported on a Borel set S if E
R n S� � �� The complement of the largest open set
B such that E
B� � � is denoted by suppE and called the 
topological� support of E�
Somewhat less common in the literature is the notion of the essential support� An essential
support of E is a Borel set S which satis
es the following�

c� There exists Borel set B� with m
B�� � � such that E is supported on S �B��

d� For any Borel set B� E
S � B� � � i� m
S �B� � ��
We will write S � ess�suppE� Clearly� the essential support is de
ned up to a set of
Lebesgue measure zero�

Let 	 be a Borel measure on R and H � L�
R� d	�� In the sequel� unless otherwise
stated� all measures are assumed to be 
nite and nonnegative� We say that the measure
	 is supported on a Borel set S if 	
R n S� � �� Let E
B�f � �Bf � where �B is the
characteristic function of the Borel set B� Then E is a subresolution of the identity of
H� and its support and essential support are the support and the essential support of the
measure 	 
denoted respectively by supp	 and ess�supp	�� More explicitly� supp	 is the
complement of the largest open set such that 	
B� � �� and the set S is an essential
support of 	 if

f� There exists a Borel set B� with m
B�� � � such that 	 is supported on S � B��

g� For any Borel set B� 	
S �B� � � i� m
S �B� � ��
Notation� To avoid repeating the phrase �up to a set of Lebesgue measure zero � in the
sequel we write B� � B� if the set B� nB� has Lebesgue measure zero� Thus� B� � B� if
the set 
B� nB�� � 
B� nB�� has Lebesgue measure zero�

Let us state an obvious but useful fact�

Lemma ��� If d	 � h
e�de then ess�supp	 � fe � � � h
e� ��g�
For our purposes� the Borel transform 
sometimes called the Borel�Stieltjes or the

Stieltjes transform� of a measure provides a convenient way to track its essential support�
Let 	 be a 
nite complex Borel measure on R� Its Borel transform is de
ned for z � C�

��



by

G
z� ��
Z d	
e�

e� z
�

The Borel transforms are studied in detail in �S��� We summarize some results which we
will need in the sequel�

Theorem ��� Assume that 	 is a �nite complex Borel measure on R and let G
z� be
its Borel transform� Then�

i� The non�tangential limit

lim
z�e

G
z� �� G
e � i���

exists and is �nite for a�e� e � R�

ii� Assume that for some z� � C�� G
z�� �� �� Then for all w � C the set

fe � R � G
e � i�� � wg
has Lebesgue measure ��

Proof� The measure 	 can be written as a linear combination of the four positive mea�
sures� Thus� G
z� can be written as a linear combination of the four Herglotz functions�
For the Herglotz functions� however� the existence and 
niteness of the non�tangential
limit are well�known facts 
see e�g� �Koo���

Part 
ii� is a consequence of the Lusin�Privalov theorem 
see Section III�� in �Koo���
�

We can say more if 	 is a Borel measure 
hence 
nite and non�negative�� Let 	ac� 	pp�
	sc be the absolutely continuous� pure point and singular continuous parts of 	� We set
	sing � 	pp � 	sc�

Theorem ��� Let 	 be a Borel measure and G
z� its Borel transform� Then�

i� For all z � C�� ImG
z� � �� so Part 
ii� of Theorem 	�
 holds for G
z��

ii� The absolutely continuous component of 	 is given by

d	ac � ���ImG
e� i��de�


iii� ess�supp	ac � fe � � � ImG
e� i�� ��g�

iv� 	sing is supported on fe � limy
� ImG
e� iy� ��g�

We now collect a few general results concerning the essential support of a subresolution
of the identity�

Proposition ��� Let H be a Hilbert space and E a subresolution of the identity of H� Let
f�k� k � �g be an orthonormal basis of H� We de�ne Borel measures 	k and 	 by

	k
B� � 
�kjE
B��k�� 	
B� �
�X
k��

��k	k
B��

��



Then�

i� ess�supp	 � ess�suppE�

ii� ess�supp	ac � ��k��ess�supp	k�ac�
Proof� Part 
i� is the exercise I����� in �CL�� so we prove only 
ii��

Let G be Borel transform of 	 and Gk Borel transform of 	k� Since

	ac �
�X
k��

��k	k�ac�

it follows from Theorem ��� that for a�e� e�

ImG
e� i�� �
�X
k��

��k ImGk
e � i���

Since ImGk
e � i�� � ��

fe � ImG
e� i�� � �g �
��
k��

fe � ImGk
e� i�� � �g� 
�����

Finally� since the sets fe � ImG
e � i�� � �g� fe � ImGk
e � i�� � �g have Lebesgue
measure zero� the result follows from Relation 
����� and Theorem ���� �

We will need

Lemma ��� Let A be a self�adjoint operator on a Hilbert space H and �� � � H� Assume
that � is a cyclic vector for A� and let 	
� 		 be the spectral measures of � and � for A�
Then�

ess�supp	
�ac � ess�supp		�ac�

Proof� H is unitarily equivalent to L�
R� d		� so that � � �� The L��function associated
to the vector � will be denoted by �
e�� If G is the Borel transform of 		� then

d		�ac � ImG
e� i��de� d	
�ac � j�
e�j�ImG
e� i��de�

and the statement follows from Lemma �����

Let A be a self�adjoint operator on a Hilbert space H� The spectral theorem for A
yields that H can be decomposed as

H � Hac 
 Hpp 
 Hsc
so that Aac �� AjHac has only absolutely continuous spectrum� App �� AjHpp only pure
point spectrum� Asc �� AjHsc only singular continuous spectrum� and A � Aac
App
Asc�

��



The spectral theorem further associates to A a subresolution of the identity E of H�
Moreover�

E � Eac 
 Epp 
 Esc�

where Eac is the subresolution of the identity associated to Aac� etc� We also have that
�
A� � suppE� �ac
A� � suppEac� etc�

Proposition ��� Let A be a self�adjoint operator on a Hilbert space H and Eac the sub�
resolution of the identity associated to the absolutely continuous part of A� Assume that
H � H

s
Hb and that Hs is a cyclic set for A� Let f�k� k � �g be an orthonormal basis for
H
s� and 	k the Borel measures de�ned by 	k
B� � 
�kjEac
B��k�� Then

ess�suppEac �
�
k

ess�supp	k�

Proof� The relation
ess�suppEac �

�
k

ess�supp	k�

follows from Proposition ��	� so we have only to prove the inclusion ��
For notational simplicity we will assume that dimH

s � �� Let Hk be the cyclic
subspace generated by �k� We set k� � � and H� � Hk� � Assume that Hj and kj are
de
ned for j � �� � � � � n� �� We set

kn � min
n
j � Hj �� 
n��

j��Hj

o
�

Hn � Hkn �
��

n��
j��Hj

	
� Hkn

	
�

Obviously� the subspaces Hj are mutually orthogonal and invariant under A� Moreover�

Hj � Hkj �
kn�
j��

Hj � 
n
j��Hj� 
�����

It follows that the Hilbert space
K � 
jHj

contains Hs and is invariant under A� hence K contains the cyclic subspace generated by
H
s� Since Hs is a cyclic set for A� K � H� It follows that there exists an orthonormal basis
f�ig of H� so that each vector �i belong to some Hj� Let �i be the Borel measures de
ned
by �i
B� � 
�ijEac
B��i�� Now� let �i be given and assume that �i � Hj� Then� �i is an
absolutely continuous measure� and by Lemma ��� and 
�����

ess�supp�i � ess�supp	kj �

��



It follows from Proposition ��	 that

ess�suppEac �
�
i

ess�supp�i�

therefore
ess�suppEac �

�
k

ess�supp	k�

�

Proposition ��� allows us to complete the 
rst step in the proof of Theorem ����

Proposition ��� Let V be an arbitrary surface potential� H � H� � V � and Eac the
subresolution of the identity associated to absolutely continuous part of H� Let 	n� n � Zd�
be the spectral measures of ��n��� for H� Then�

i� �
H�� � ess�suppEac�

ii� ess�suppEac � �ness�supp	n�ac�
Proof� It follows from Lemma ��� that for any e � int�
H�� and n � Zd�

lim
y
�

Im 
��n���j
H� � e� iy�����n���� � ��

Therefore� by Lemma ��	� the essential support of the subresolution of the identity asso�
ciated to H� is �
H��� Let �

� be the wave operator from Theorem ���� The operator H
preserves Ran�� and its restriction to Ran�� is unitarily equivalent to H�� Since the
subresolutions of the identity associated to unitary equivalent operators have the same
essential support� we derive that

�
H�� � ess�suppEac�

Part 
ii� follows from Propositions ��� and ���� �

��� Step �

In this section we study the behavior of the essential support of a�c� measures under
rank�one perturbations�

Theorem ��� Let A be a self�adjoint operator on a Hilbert space H and � � H� Let
A� � A � 

�j � ��� 
 � R�

and let 	� be the spectral measure of � for A�� Then�

i� For all 
� ess�supp	��ac � ess�supp	��ac�

ii� Let � be a Borel measure de�ned by

�
B� ��
Z 	�
B�

� � 
�
d
�

Then � is mutually equivalent to Lebesgue measure�

��



Proof� Part 
ii� is a theorem of Simon�Wol� 
Theorem � in �SW��� so we prove only Part

i��

Let G�
z� be the Borel transform of 	�� The resolvent identity yields

G�
z� �
G�
z�

� � 
G�
z�
� 
�����

By Theorem ���� for a�e� e � R the boundary values G�
e � i��� G�
e � i�� exist� are

nite� G�
e� i�� �� �
��� and

ImG�
e� i�� �
ImG�
e � i��

j� � 
G�
e� i��j� �

Therefore� for a�e� e � R�

ImG�
e� i�� � � � ImG�
e� i�� � ��

This yields the statement� �

Our next result is a generalization of Part 
i� of the previous theorem�

Theorem ��� Let A be a self�adjoint operator on a Hilbert space H and let ��� �� be two
vectors in H� Assume that there exist complex numbers zij � C� such that


�ij
A� zij�
���j� �� � for i� j � �� �� i �� j� 
�����

Let
A� �� A� 

��j � ���� 
 � R�

and let 	�i be the spectral measure of �i for A�� Then� for a�e� 
�

ess�supp	���ac � ess�supp	���ac� 
�����

Proof� For z � C� we set

Gij��
z� � 
�ij
A� � z����j��

When 
 � � we write simply Gij
z�� By assumption 
������ none of the functions Gij
z�
is identically equal to zero� Therefore� by Theorem ���� the set

Sij �� fe � Gij
e� i�� � � or jGij
e� i��j �� or lim
y
�

Gij
e� iy� does not existg� 
���	�

has Lebesgue measure ��

�	



The resolvent identity yields

G����
z� �
G��
z�

� � 
G��
z�
�

G����
z� � G��
z�� 
G����
z�G��
z��

Substituting� we get

G����
z� � G��
z�� 

G��
z�G��
z�

� � 
G��
z�

Rearranging this identity� we derive

j� � 
G��
z�j�G����
z� � 
�a
z� � 
b
z� � c
z�� 
�����

where
a
z� � jG��
z�j�G��
z��G�

��
z�G��
z�G��
z�

b
z� � G��
z�ReG��
z��G��
z�G��
z��

c
z� � G��
z��


�����

Let
S �� fe � R n 
�Sij� � ImG��
e � i�� � �g� 
�����

If e � S� setting z � e � iy in 
����� and taking y � �� we derive that

j� � 
G��
e� i��j�ImG����
e� i�� � 
�Im 
e� i�� � 
Im b
e� i�� � Im c
e� i��� 
�����

Assume now that for e � S we have

ImG����
e� i�� � �� Im a
e � i�� � �� Im b
e � i�� � �� 
�����

It then follows from 
����� and the third relation in 
����� that

ImG��
e� i�� � �� 
�����

Then� the second relation in 
����� yields

Im 
G��
e� i��G��
e� i��� � �� 
�����

The 
rst relation in 
����� and 
����� yield

ImG��
e � i��Re 
G��
e� i��G��
e� i��� � �� 
�����

By the choice of e� G��
e� i��G��
e � i�� �� �� and 
����� implies that

Re 
G��
e� i��G��
e� i��� �� ��

��



Thus� 
����� implies that
ImG��
e� i�� � ��

which contradicts the choice of e� Therefore� if ImG����
e � i�� � � for some e � S� we
must have that either a
e � i�� �� � or b
e � i�� �� ��

Let
T �� f

� e� � R� S � ImG����
e � i�� � �g�
P 
e� �� f
 � R � ImG����
e� i�� � �g�
Q

� �� fe � S � ImG����
e� i�� � �g�

Since ImG����
e � i�� � �� for 
xed e the function


 �� 
�Im a
e � i�� � 
Im b
e� i�� � Im c
e � i���

is either identically equal to zero for all 
 or has at most one zero� If either Im a
e�i�� �� �
or Im b
e� i�� �� �� then clearly this function is not identically zero� Therefore� for e � S
the set P 
e� consists of at most one point� By Fubini�s theorem� the set T has Lebesgue
measure zero� and then� by Fubini�s theorem again� for a�e� 
 the set Q

� has Lebesgue
measure zero� Therefore� for a�e� 
�

ImG����
e� i�� � � for e � S nQ

�� 
�����

Since Q

� has Lebesgue measure zero� it follows that for a�e� 
�

S � ess�supp	���ac�

On the other hand� by Lemma ��� and 
�����

ess�supp	���ac � S 
���	�

for all 
� The statement follows from 
����� and 
���	�� �

We now proceed to verify that condition 
����� of Theorem ��� holds for our model�
To that end we need two lemmas�

Lemma ���
 Let A be self�adjoint operator on a Hilbert space H and �� � � H two
orthogonal vectors� Assume that � � �n��D
An�� and that

�z � C�� 
�j
A� z����� � ��

Then� for all l � �� 
�jAl�� � ��

��



Proof� We will prove by induction that the pair of statements


�jAl�� � � and �z � C�� 
�jAl
A� z����� � �� 
�����

holds for all l � �� Clearly� this is true for l � �� Assume that 
����� holds for some l�
Then� the identity

z
�jAl
A� z����� � 
�jAl�� � 
�jAl��
A� z������

yields that
�z � C�� 
�jAl��
A� z����� � �� 
�����

Since
s� lim

���
�i

A� i
��� � ��


����� implies that

�jAl���� � ��

�

Our next lemma concerns the Dirichlet Laplacian H�� For n � 
n� x� � Zd
� we set

jnj� � x �
Pd

j�� jnjj� We denote by �nm the number of paths in Zd��
� of the length

jn�mj� which connect n and m� Obviously� �nm � ��

Lemma ���� Let n� m be two sites in Zd��
� � Then


�njH l
��m� �

��
�

� if l � jm� nj��
�nm if l � jm� nj��

Proof� An elementary induction with respect to k � jm� nj�� �
We now verify the condition 
����� of Theorem ����

Proposition ���� Let V be a surface potential� H � H��V � and n�m � Zd� Then there
exists z � C� such that


��n���j
H � z�����m���� �� �� 
�����

Proof� Clearly� we may assume that n �� m� Assume that

�z � C�� 
��n���j
H � z�����m���� � ��

Let l � jm� nj�� Then� it follows from Lemmas ���� and ���� that


��n���jH l��m���� � �� 
��n���jH l
���m���� � �� 
�����

��



Expanding 
H� � V �l� we write 
��n���jH l��m���� as a sum of the term


��n���jH l
���m�����

and the terms

��n���jH l�

� V
l� � � �H

l�k��

� V l�k��m����� 
�����

where lj � ��
P
lj � l� and at least one of l�j�s is bigger then zero� It follows from Lemma

���� that each of the terms 
����� is zero� Therefore� the 
rst identity in 
����� yields that


��n���jH l
���m���� � ��

which of course contradicts the second identity in 
������ �

We will need the following measurability result� Recall that m stands for the Lebesgue
measure�

Proposition ���� Let 	n be the spectral measure of ��n��� for H � H��V � Then for any
n�m � Zd� the function

� 
 V �� m 
ess�supp	n�ac n ess�supp	m�ac�

is measurable�

Proof� Let

�n � f
V� e� � � � lim
l��

Im 
��n���j
H � e� il�������n���� ��g�

Since for every l the function

��R 
 
V� e� �� 
��n���j
H � e� il�����n�����

is P �m is measurable 
see e�g� �CL��� the sets �n are measurable� Therefore� by Fubini�s
theorem� the function

� 
 V ��
Z
R


�� ��m
V� e����n
V� e�de � m 
ess�supp	n�ac n ess�supp	m�ac� �

is measurable� �

We are now ready to complete the second step in the proof of Theorem ����

Proposition ���� Let H be as in Theorem ��� and� for n � Zd� let 	n be the spectral
measure of ��n��� for H� Let Eac be the subresolution of the identity associated to absolutely
continuous part of H� Then�

i� �n � Zd� ess�supp	n�ac � ess�suppEac P �a�s�

ii� �n � Zd� �
H�� � ess�supp	n�ac P �a�s�

��



Proof� Part 
ii� is an immediate consequence of 
i� and Proposition ���� To prove 
i��
we 
x two sites n�m � Zd and potential V� � � and consider the operator

H� � H� � V� � 

��n���j � ���n����

Let 	�n be the spectral measure of ��n��� for H�� Then� it follows from Theorem ��� that
for a�e� 
�

ess�supp	�n�ac � ess�supp	�m�ac�

Since the random variable V 
n� has a density� it follows from Lemma ���� and Fubini�s
theorem that Z

	
m 
ess�supp	n�ac n ess�supp	m�ac� dP 
V � � ��

Therefore�
m 
ess�supp	n�ac n ess�supp	m�ac� � � P � a�s�

and
ess�supp	n�ac � ess�supp	m�ac P � a�s�

Reversing the roles of n and m� we derive that the opposite inclusion also holds� Thus�

ess�supp	n�ac � ess�supp	m�ac P � a�s� 
�����

Since by Proposition ����

ess�suppEac �
�
n

ess�supp	n�ac�

we derive Part 
i� from 
������ �

��� Step �

We are now ready to complete the third step in our argument and 
nish the proof of
Theorem ���� We will use the notation of Proposition ���	� Fix n � Zd and let V� � � be
such that

�
H�� � ess�supp	n�ac� 
�����

Here� 	n is the spectral measure of ��n��� for H � H��V�� Let Gn be the Borel transform
of 	n and

Sn �� fe � � � ImGn
e� i�� ��g�

All these quantities depend on V��� Since Sn � ess�supp	n� the set

Tn �� �
H�� n Sn
has Lebesgue measure zero�

��



Let
H� � H� � V� � 

��n���j � ���n���� 
 � R�

Let 	�n be the spectral measure of ��n��� for H� and G�n
z� its Borel transform� The
relation

G�n
z� �
Gn
z�

� � 
Gn
z�
�

yields that for all 
�

fe � �
H�� � lim
y
�

ImG�n
e� iy� ��g � Tn�

Therefore� by Theorem ���� for all 
�

supp	�n�sing � Tn� 
�����

It follows from the Simon�Wol� theorem 
recall Proposition ���� that the Borel measure

�
B� ��
Z 	�n
B�

� � 
�
d
 
�����

is equivalent to Lebesgue measure� Therefore� �
Tn� � �� and by 
������ for a�e� 
�

	�n
Tn� � ��

This relation and 
����� yield that for a�e� 
 the measure 	�n is absolutely continuous on
�
H���

Let �sing� 
H� be the spectral projection of H onto � associated to the singular spec�
trum� It is known 
see e�g� �CL�� that the function

� 
 V �� �sing� 
H��

is weakly measurable� Since the random variable V 
n� has density and Relation 
�����
holds P �a�s�� it follows from Fubini�s theorem that

Z
	

��n���j�sing��H��


H���n����dP 
V � � ��

Thus� P �a�s� the spectral measure 	n is absolutely continuous on �
H��� Therefore� the
operator H restricted to the cyclic subspace Hn generated by ��n��� has P �a�s� purely a�c�
spectrum on �
H��� By Lemma ���� the linear span of �Hn is dense in H� It follows that
the operator H has P �a�s� purely a�c� spectrum on �
H��� The proof of Theorem ��� is
complete� �

	�
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