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Abstract

We propose a definition of entropy production in the framework of algebraic quantum
statistical mechanics. We relate our definition to heat flows through the system. We also
prove that entropy production is non-negative in natural nonequilibrium steady states.
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1 Introduction

Let ��� �� be a ��-dynamical system, where � is a ��-algebra with identity and � a
strongly continuous group of automorphisms of � (strong continuity means that the map
� � � �� � ���� is continuous in norm for each � � �). The elements of � describe
observables of the physical system under consideration. The group � specifies their time
evolution. A physical state of the system is described by a mathematical state on �, that
is, a positive linear functional � such that ���� � �. The set ���� of all states on � is a
convex, weak-� compact subset of the dual ��� A state � is invariant under the group � if
� Æ � � � � for all �. For our purposes we assume that in addition to ��� �� we are given a
� -invariant state �.

The triple ��� �� �� describes a physical system in a steady state. We are interested in
effects of local perturbations on such system. A local perturbation is specified by a self-
adjoint element 	 of � and in what follows we fix such a 	 . The perturbed time evolution
is given by

� �� ��� � � ���� �
�
���
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���	 �� �� � � �� ���	 �� �			�

The pair ��� �� � is also a ��-dynamical system. Following Ruelle [Ru2], we call the
weak-� limit points of the set

� �




� �

�
� Æ � �� ��

��� 
 � 

�
� �����

nonequilibrium steady states (NESS) of the locally perturbed system. The set ��� ��� of
NESS of ��� �� � is a non-empty, compact subset of���� whose elements are �� -invariant.

Our first assumption is:

(A1) There exists a strongly continuous group 
� of automorphims of � such that � is
�
��	��-KMS state.

Let Æ� be the generator of 
� (i.e. 
�� � ��Æ� ). We denote by 
�Æ�� the domain of Æ� .

�Æ�� is a norm-dense �-subalgebra of � and for ��� � 
�Æ��,

Æ����
� � Æ���

��� Æ����� � Æ����� ��Æ�����

Our second assumption is:

(A2) 	 � 
�Æ��.

We define the observable


� � Æ��	 ��

and for reasons which will soon become clear, we call


�� ��� � ��
� ��
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the entropy production (with respect to the reference state �) of the perturbed system
��� �� � in the state � � ����. Note that 
� , and hence 
�� ���, depend in a non-trivial
way on the state �.

Let ���� ������ be the GNS representation of the algebra � associated to �, and let

� be the set of ��-normal states on �, that is, the states represented by density matrices
on ��. Any � � 
� has a continuous extension to � � �����

�� which we denote by
the same letter. For �� � � 
�, we denote by 
���� � �� the relative entropy of � with
respect to �. (We use the definition of relative entropy given in [BR2], Definition 6.2.29.
This definition differs by a sign and the order of factors from the original Araki’s definition
[Ar].)

Our main result, which justifies the above definition of entropy production, is:

Theorem 1.1 Assume that (A1) and (A2) hold. Then, for any faithful state � � 
� such
that 
���� ��� � 	�, one has


���� Æ � �� ��� � 
���� ���	

� �

�

�� �� Æ �

�
� � ���

Remark. The same result (with the same proof) holds for ��-dynamical systems.
In the rest of this section we will discuss some elementary properties of 
�� ���. Let

��
� � ��

� ��� and 
� �� be such that

���
�

�


�

� ��

�
� Æ � �� �� � ��

� � (1.1)

Then, with the particular choice � � �, Theorem 1.1 gives

���
�

�


�

���� Æ ���� ��� � 	 ���

�

�


�

� ��

�
��� �� �
� �� �� � 	
�� ��

�
� �� (1.2)

Since the relative entropy is non-positive, we immediately get

Theorem 1.2 Assume that (A1) and (A2) hold. Then, for any NESS ��� � ��
� ���, one

has

�� ��

�
� � � 
�

With regard to (1.2), on physical grounds one expects that the ratio


���� Æ � �� ���
Æ
�

becomes independent of the choice of the reference state � as ���. More precisely, the
following result holds:
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Proposition 1.3 Assume (A1) and that � � 
� is faithful. Then there is a norm-dense set

 �

� � 
� such that for �� � 
 �
�,


���� Æ � �� ��
�� � 
���� Æ � �� ��� ������

as ���.

One also expects that in thermal equilibrium the entropy production is zero, that is, if
� � 
� is a ��� � ��-KMS state then 
�� ��� � 
. In fact, a much stronger result holds.

Proposition 1.4 Assume (A1), (A2) and that � � 
� is a faithful, �� -invariant state. Then


�� ��� � 
�

Remark. Again, this result also holds for ��-dynamical systems.
Let � be the CAR algebra over ������ describing a free Fermi gas on the lattice ��.

Using some technical results proven in [BM] it is easy to construct a large class of quasi-
free states � and local perturbations 	 such that (A1)-(A2) hold, and that ��� ��� consists
of a single state ��� . In these examples, 
�� ��

�
� � can be computed perturbatively (similar

calculations are done in [HTP]), and one easily constructs examples where 
�� ��
�
� � � 
.

In the next example we relate entropy production to heat flows.
Consider two independent systems ���� ��� ���, � � �� �, each of which is in thermal

equilibrium at temperature 
�. This means that �� is a ���� ���-KMS state on �� where
�� � ��
�. Let

� � �� ���� � � �� � ��� � � �� � ���

(� is the ��-tensor product, see Section 2.7.2 in [BR1]). Let Æ be the generator of � and Æ�
the generator of ��. Obviously, Æ � Æ� � Æ� (here we write Æ� for Æ� � �, etc). Let 	 � �
be such that 	 � 
�Æ��. Then

� Æ � �� �	 �	 ��	 � �

� �

�
� Æ � �� ������

where � is defined by

� �� ��� �
�

��
� �� �	 ��

Obviously, � � ����� where �� � Æ��	 � describes the energy flux out of the �-th system.
Since the states �� are KMS, (A1) holds with Æ� � Æ�� � Æ�� and Æ�� � 	��Æ�. Therefore,
(A1) and (A2) hold and

���� � ���� � 	
� �

It follows that in a NESS ��� � ��
� ���, the energy fluxes satisfy

��
� ����


�
�
��
� ����


�
� 	
�� ��

�
� � � 
�
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Since ��� ���� � ��
� ���� � 
, if 
� � 
�, then �� � 
 and the heat flows from the hot to

the cold reservoir. This calculation is easily generalized to the case where� -level quantum
system is coupled to several independent thermal resevoirs.

We finish this section with the following remarks.
In [JP1] we prove an analog of Theorem 1.1 for time-dependent perturbations and dis-

cuss the relation between entropy production and the second law of thermodynamics.
In the forthcoming paper [JP2], we will study NESS, entropy production and heat flows

for a model of an � -level quantum system coupled to several independent free Fermi gas
reservoirs (similar models have been studied in [D, Ru1]).

The entropy production for quantum spin systems has been studied in the recent preprint
[Ru2].

Acknowledgments. The research of the first author was partly supported by NSERC. Part
of this work has been performed during a visit of the second author to University of Ottawa
which was also supported by NSERC.

2 Proofs

We assume that the reader is familiar with the basic results of Tomita-Takesaki modular
theory as discussed, for example, in [BR1, BR2, H, OP]. We begin by setting the notation
and recalling some well-known facts.

���� ������ denotes the GNS representation of the algebra � associated to �. By
(A1), the vector �� is cyclic and separating for� � �������. Moreover, (A1) implies that
�� is injective. We respectively denote by �� , � and � the modular operator, the modular
conjugation and the natural cone canonically associated to the pair ������. We also adopt
the shorthands �� � ����� and ���� � ��� . Note that

���

�
����� � �����������

����� �

With a slight abuse of notation, we write 
����� � ������������ for � � �. By the
Tomita-Takesaki theorem, 
����� ��, ���� ��� and

������ � ������ � (2.3)

The Liouvillean � of the system ��� �� �� is the unique self-adjoint operator on �� such
that

����
����� � ����������

�����

��� � 
�
(2.4)

and one easily shows that

������ � ���
���

����� � ������
(2.5)
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The self-adjoint operator

�� � �� ���	 �	 �����	 ���

is uniquely specified by the following two requirements:

����
�
� ���� � ����� ������

�����

������ � � ��
(2.6)

The dynamical groups � and �� have natural extensions to� for which we use the same
notation. Note also that ��� � �� � � 
, and therefore

����� � � ������ � (2.7)

A state � � 
� has a unique vector representative �	 � � . Relations (2.6) yield that

�	Æ
 �
�

� ������ �	� (2.8)

The relative entropy of two faithful states �� � � 
� is defined as


���� � �� � ��	� ������	�	��

where ���	 is the relative modular operator. Relative entropy is more conveniently ex-
pressed in terms of the Radon-Nikodym cocycle ��� � ��	� as


���� � �� � ���
���

����� � ��	� 	 ��

��
� (2.9)

Proof of Theorem 1.1. Let us denote by

���� � ��������������� ���

the propagator in the interaction representation. ���� is the unique solution of

�

�

�

��
���� � ����

���	 �������

with initial data ��
� � �. It has a norm convergent Dyson expansion

���� � ��

��
�	�

��
� �

�
���

� ��

�
��� � � �

� ����

�
�������

����	 �� � � � ����
����	 ���

from which we conclude that ���� � �����. With a slight abuse of notation, we will write
Æ� for �� Æ Æ� . A simple calculation shows that ���� � 
�Æ�� and

�����Æ������� � 	Æ���
��������� � �

� �

�
����

��
� �
� ����� (2.10)
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We claim that

���������� � ������������ (2.11)

To prove this fact, note that after differentiation with respect to � both sides satisfy the same
differential equation with the same initial condition at � � 
.

To compute the relative entropy 
���� Æ ��� ���, we will use Equation (2.9) and the fact
that the Radon-Nikodym cocycle can be expressed as

��� � �� Æ � �� 	
� � ���

���Æ
 �
�

����
	Æ
 �

�
��Æ
 �

�

� (2.12)

By definition of the relative modular operator, for any � �� we have

��
�
�

	Æ
 �
�
��Æ
 �

�

���Æ
 �
�

� ���	Æ
 �
�

�

Using Relations (2.6) and (2.8), we further obtain

��
�
�

	Æ
 �
�
��Æ
 �

�

������� �� � �������� �	�

It follows that

��
�
�

	Æ
 �
�
��Æ
 �

�

������ � �� ����� � ������ � �� ���
��	

� ������ ��
�
�
	���

�
� �����

� ������� �
�
�
	���

�
� ������

where we used (2.7). Since��� is a core for ��
�
	�� and ��������� ����Æ
 �

�

is a core

for ��
�

	Æ
 �
�
��Æ
 �

�

, we derive the relation

�	Æ
 �
�
��Æ
 �

�

� ������ �	���
���� � (2.13)

We now deal with ����Æ
 �
�

. First, for any � ��,

��
�
�

���Æ
 �
�

���Æ
 �
�

� �����

Equations (2.8), (2.11) and (2.4) yield that

��Æ
 �
�

� ����������������

and since �������� ���, we derive

��
�
�

���Æ
 �
�

���������������� � ����

� ����������������

� ��������
�
� ��������

� �����������
�
� ���������
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Since ��� is a core of ��
�
� and ����������� � ���Æ
 �

�

is a core of ��
�

���Æ
 �
�

we

conclude that

����Æ
 �
�

� ������������������ (2.14)

Going back to (2.12), we derive from Equations (2.13) and (2.14)

��� � �� Æ � �� 	
� � �����������

� ��������
����� ����

	���
����

� �����������
��

�������������
	���

����

� ��������
����
�������������

��
���
	���

���� �

where we used (2.11) and (2.5). Since 
����
����� � �, it commutes with �������� and

another application of (2.11) (together with Relation (2.12) at � � 
) gives

��� � �� Æ � �� 	
� � 
����

������������� ���� � ��	��� (2.15)

We can therefore write

� Æ � �� ���� � �� Æ � �� 	
�� � ������ �����
���������

����� �	� ��� � ��	��	�� (2.16)

Since ���� � 
�Æ��, the estimate

����� �����
���������
����� �	 � �	 � ������ �����Æ��������

����� �	 � �����

holds in the norm of �� as � � 
. Furthermore, Equation (2.10) is easily rewritten as

����� �����Æ��������
����� � �

� �

�
����

�
� �
� �����

Equation (2.16) leads to the estimate

� Æ � �� ���� � �� Æ � �� 	
�� � ����� � ��	��

	 ��

� �

�
��	� ����

�
� �
� ����� � ��	��	� ��� ����� (2.17)

as � � 
. Since the cocyle ��� � ��	� is strongly continuous, insertion in Equation (2.9)
gives the result. �

Proof of Proposition 1.3. For any self-adjoint  ��we define a group of automorphisms
of� by


�� ��� � �������� ����������� ��

Araki’s perturbation theory yields that there is a state �� � 
� which is a �
� �	��-KMS
state. Let 
 �

� be the set of all states obtained in this manner. It is well-known that 
�
� is

dense in 
� (see, e.g., [R]). By the result of Araki (see Proposition 6.2.32 in [BR2]),


���� Æ � �� ��� � � 
���� Æ � �� ��� � ��� �� � ��	 ��� ������� �
����
��
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The statement follows from this relation, the obvious estimate ������ � ��� � � � and the
fact that 
 ! ������� �
���� !�. �

Proof of Proposition 1.4. Since � Æ ��� � �, Relation (2.17) yields that for all � � 
,

� �

�
��	� ����

�
� �
� ����� � ��	��	� �� � "����

Taking � � 
 we get that for all �,

� �

�
��
� ��� � ���
� � � 
�

and so 
�� ��� � 
. �
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