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Abstract

We propose a definition of entropy production in the framework of algebraic quantum
statistical mechanics. We relate our definition to heat flows through the system. We also
prove that entropy production is non-negative in natural nonequilibrium steady states.
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1 Introduction

Let (O, 1) be a C*-dynamical system, where O is a C*-agebra with identity and 7 a
strongly continuous group of automorphisms of O (strong continuity means that the map
R > t — 7!(A) is continuous in norm for each A € O). The elements of O describe
observables of the physical system under consideration. The group = specifies their time
evolution. A physical state of the system is described by a mathematical state on O, that
is, a positive linear functional w such that w(1) = 1. Theset E(O) of all stateson O isa
convex, weak-+ compact subset of the dual 0*. A state w isinvariant under the group 7 if
w o 7! = w for al ¢. For our purposes we assume that in addition to (O, 7) we are given a
T-invariant state w.

Thetriple (O, 7, w) describes a physical system in a steady state. We are interested in
effects of local perturbations on such system. A local perturbation is specified by a self-
adjoint element V' of O and in what follows we fix such aV'. The perturbed time evolution
isgiven by

t tl tnfl
¢ =7t i" rin [t .
i (4) = (A”n%:l /0 at: /0 dts /0 dtalr'™ (V) L. [r (V), AT]

The pair (O, ) is aso a C*-dynamica system. Following Ruelle [Ru2], we call the
weak-x limit points of the set

{%/Twont/dt‘T>0} c E(0),
0

nonequilibrium steady states (NESS) of the locally perturbed system. The set %-(w) of
NESSof (O, 7v/) isanon-empty, compact subset of £(O) whose elements are ry-invariant.
Our first assumption is:

(A1) There exists a strongly continuous group g,, of automorphims of O such that w is
(0w, —1)-KMS state.

Let 6., be the generator of o, (i.e. o!, = e!%). We denote by D(d,,) the domain of 6.
D(6,,) isanorm-dense *-subalgebra of © and for A, B € D(4,),

dw(A)* =0,(A"), dw(AB) = 6,(A)B + Ad,(B).
Our second assumption is:
(A2) V € D(dy).

We define the observable

and for reasons which will soon become clear, we call

Epy (1) = n(ov),



the entropy production (with respect to the reference state w) of the perturbed system
(O,1v) inthe state n € E(O). Note that oy, and hence Epy,(-), depend in a non-trivial
way on the state w.

Let (H,,, m,, Q) be the GNS representation of the algebra O associated to w, and let
N,, be the set of 7,,-normal states on O, that is, the states represented by density matrices
on H,. Any n € N, has a continuous extension to M = =, (O)"” which we denote by
the same letter. For n,¢ € N, we denote by Ent(n |¢) the relative entropy of n with
respect to ¢. (We use the definition of relative entropy given in [BR2], Definition 6.2.29.
This definition differs by asign and the order of factors from the original Araki’s definition
[Ar].)

Our main result, which justifies the above definition of entropy production, is:

Theorem 1.1 Assumethat (A1) and (A2) hold. Then, for any faithful state , € A, such
that Ent (7 | w) > —oo, one has

t
Ent(y o - [w) = Bnt(n|w) — [ Boy(nori)ds.
0

Remark. The same result (with the same proof) holds for W*-dynamical systems.
In the rest of this section we will discuss some elementary properties of Ep-(-). Let
wir € B (w) and T;, — oo be such that

N
hTILnT_n/o wOT‘t/dt:(,d$. (1.2)

Then, with the particular choice n = w, Theorem 1.1 gives

1 I
lim —Ent(w o T‘J;” |w) = — lim—/ w(ry (o)) ds = —Epy (wy)). 1.2
n T, n T, 0

Since the relative entropy is hon-positive, we immediately get

Theorem 1.2 Assume that (A1) and (A2) hold. Then, for any NESS w{} € E‘“;(w), one
has

Epy (wyr) > 0.

With regard to (1.2), on physical grounds one expects that the ratio
Ent(no 1 |w)/t

becomes independent of the choice of the reference state w ast — oo. More precisely, the
following result holds:



Proposition 1.3 Assume (A1) and that € A, isfaithful. Then there is a norm-dense set
N, € N, such that for o' € M/,

Ent(n o 7, | ') = Ent(n o 7, |w) + O(1),
ast — oo.

One aso expects that in thermal equilibrium the entropy production is zero, that is, if
n € N, isa(ry, B)-KMS state then Epy-(n) = 0. In fact, a much stronger result holds.

Proposition 1.4 Assume (A1), (A2) and that € A, isafaithful, ry-invariant state. Then

Epy(n) = 0.

Remark. Again, this result also holds for W*-dynamical systems.

Let O be the CAR algebra over 1?(Z?) describing a free Fermi gas on the lattice Z?.
Using some technical results proven in [BM] it is easy to construct a large class of quasi-
free states w and local perturbations V' such that (A1)-(A2) hold, and that % (w) consists
of asingle state w; In these examples, Epv(w"i}) can be computed perturbatively (similar
calculations are done in [HTP]), and one easily constructs examples where Epv(w;;) > 0.

In the next example we relate entropy production to heat flows.

Consider two independent systems (O;, 74, w;), i = 1,2, each of which isin thermal
equilibrium at temperature 7;. This means that w; is a (7;, 3;)-KMS state on O; where
Bi = 1/T;. Let

O =01 R 0,, T=1T7 Q To, W= w1 Q ws.

(® isthe C*-tensor product, see Section 2.7.2 in [BR1]). Let ¢ be the generator of = and
the generator of 7;. Obvioudly, § = §; + do (here wewrite §; for 6; ® 1, etc). Let V € O
be such that V' € D(;). Then

t
worh (V) — w(V) :/0 wo s (B)ds,

where ® is defined by

(@) = S v).

Obviously, ® = &, 4+, where ®; = ¢; (1) describes the energy flux out of the ;-th system.
Since the states w; are KMS, (A1) holds with §,, = d,,, + du, and é,,;, = —B;0;. Therefore,
(A1) and (A2) hold and

B1®1 + 2Py = —oy.

It follows that in aNESS wy; € X (w), the energy fluxes satisfy

+ +

wy (P wy (P
V( 1) + V( 2) — —Epv(w‘t) <0.
T Ty




Since w‘t(@l) + w{;(%) =0, if T} > Ty, then ®; > 0 and the heat flows from the hot to
the cold reservoir. Thiscalculation iseasily generalized to the case where N-level quantum
system is coupled to severa independent thermal resevairs.

We finish this section with the following remarks.

In [JP1] we prove an analog of Theorem 1.1 for time-dependent perturbations and dis-
cuss the relation between entropy production and the second law of thermodynamics.

In the forthcoming paper [JP2], we will study NESS, entropy production and heat flows
for amodel of an N-level quantum system coupled to severa independent free Fermi gas
reservoirs (similar models have been studied in [D, Rul]).

Theentropy production for quantum spin systems has been studied in the recent preprint
[Ru2].

Acknowledgments. The research of the first author was partly supported by NSERC. Part
of thiswork has been performed during avisit of the second author to University of Ottawa
which was also supported by NSERC.

2 Proofs

We assume that the reader is familiar with the basic results of Tomita-Takesaki modular
theory as discussed, for example, in [BR1, BR2, H, OP]. We begin by setting the notation
and recalling some well-known facts.

(Hu, 70, €2,) denotes the GNS representation of the algebra O associated to w. By
(A1), the vector €, iscyclic and separating for 9t = ,,(O)". Moreover, (A1) implies that
T, iSinjective. We respectively denote by A,,, J and P the modular operator, the modular
conjugation and the natural cone canonically associated to the pair (91, €2,). We al so adopt
the shorthands £, = log A, and j(A) = JAJ. Note that

(0l (A)) = elCon, (A)e 1HEw,

w

With a dlight abuse of notation, we write o (A) = el*“w Ae~1"4w for A € 9. By the
Tomita-Takesaki theorem, o, (91) = M, 5(9M) = M’ and

eltbw J = Jelthw, (2.3)
The Liouvillean L of the system (O, 7, w) is the unique self-adjoint operator on #,, such
that

Ww(Tt(A)) = eithw(A)efitL,
(2.4)

and one easily shows that

eitLﬁw _ EweitL
25
eitLJ — JeitL. ( )



The self-adjoint operator
Ly = L+ 7,(V) — j(mu(V)),
isuniquely specified by the following two requirements:
T (Tl (A)) = eV (A)e 1PV
. (2.6)
e VP C P

The dynamical groups 7 and 7, have natural extensions to 9t for which we use the same
notation. Note also that J Ly + Ly J = 0, and therefore

v J = Jeltbv (2.7)
A state ) € N, has aunique vector representative 3, € P. Relations (2.6) yield that
Qyport, = e v Q. (2.8)

Therelative entropy of two faithful states 7, ¢ € A, isdefined as

Ent(n | £) = (2] log Agpy),

where A, is the relative modular operator. Relative entropy is more conveniently ex-
pressed in terms of the Radon-Nikodym cocycle [D¢ : D) as

n([D¢ : Pn]s -1

18

Ent(n[¢) = limn (2.9)

Proof of Theorem 1.1. Let us denote by

U(t) = efitLeit(L+7rw 2)]

the propagator in the interaction representation. U (¢) is the unique solution of

1d

= SU(0) = (e (V)U),

with initial data U (0) = 1. It has anorm convergent Dyson expansion
o0 t t1 tn—1
Uit)=1+ Z i"/ dty / dty - - / Aty (17 (V) -, (17 (V)),
1 Jo 0 0

from which we conclude that U (¢) € =, (O). With adlight abuse of notation, we will write
d,, for m, o 6,,. A simple calculation shows that U (t) € D(d,,) and

t
U ()5,(U(1) = —8u(U* () U () = /0 7oy (o)) ds. (2.10)



We claim that
e teltlv — (1) (U (1)). (2.12)

To prove thisfact, note that after differentiation with respect to ¢ both sides satisfy the same
differential equation with the same initial condition at ¢ = 0.

To compute the rel ative entropy Ent(no 71, | w), we will use Equation (2.9) and the fact
that the Radon-Nikodym cocycle can be expressed as

[Dw: Dporh]* = Al AT (2.12)

wlwory, Tnorl, |worl, *

By definition of the relative modular operator, for any A € 97t we have

JAMN2 L AQe = AT
v \% \%

noti, lwor

Using Relations (2.6) and (2.8), we further obtain

JAL?

—itL —itL
noT€,|on‘t/Ae PV, = A%e MV Q.
It follows that

TALZ o€ YT A = e VA (A)

noti, lwor

= v JAM21E ()0,

njw "V
= Je MV A2 (4)Q,
where we used (2.7). Since M), isacore for A}]‘/ﬁ and e "PVONQ, = MQ,,..« isacore
for AI/Qt ., wederive the relation
not{, |wor{,
Aport fwort, = e VA, ety (2.13)

We now dea with A

w|woT,

t. First, for any A € 901,

JAME AQ . = AFQ,.

w|woT!, v
Equations (2.8), (2.11) and (2.4) yield that

Qport, = U (1)5(U" (1))

WOoT,
and since j(U*(t)) € M, we derive

JAj/ﬁm6 F(U* (1) AU* (£)Q = A*Q
= U"(t)(AU"(1))" Ly
= U*(t)JAL2AU* (1),
= Jj(U*(t) AL AU* ().



Since MQ,, is a core of AY? and j(U*(£))MQ,, = M, IS a core of A}U/‘ZW we
%
conclude that
A wort, = (U () Auj(U(1)). (214)

Going back to (2.12), we derive from Equations (2.13) and (2.14)
[Dw: Dno ﬁt/]s =j(U* (t))Ajjj(U(t))e_itLV A;'i:eitLV
= §(U* (1) ASU* (t)e~ 1L A;'lj oitLv

= (U (1) (U (§)e AL A, s,

where we used (2.11) and (2.5). Since of(U*(t)) € 9, it commutes with 5(U*(¢)) and
another application of (2.11) (together with Relation (2.12) at ¢ = 0) gives
[Dw : Dyo ] = o (U*(#)U(8)r ([Dw : Difl). (2.15)
We can therefore write
no i ([Dw: Dyorl]?) = (VU (£)ol (U (1) Q. [Dw : Dy*Qy).  (2.16)
Since U(t) € D(d,,), the estimate
etV (1) o

w

(Ut))e v Q, = Q, + se™VU* ()0, (U (t))e v Q, + o(s),

holds in the norm of H,, as s | 0. Furthermore, Equation (2.10) is easily rewritten as
et LV U*(1)6, (U (t))e v = i/olt 7w (T (ov)) du.
Equation (2.16) leads to the estimate
no 1y ([Dw: Dyor]*) = n([Dw: Dn]°)
s /Ot (@, (7 (00 ) [Dw : D" Q) du +o(s),  (2.17)

ass | 0. Sincethe cocyle [Dw : Dnl® is strongly continuous, insertion in Equation (2.9)
givestheresult. O

Proof of Proposition 1.3. For any self-adjoint P € 2t we define agroup of automorphisms
of 9t by

ot (A) = oHt(Lu+P) go—it(LotP)

Araki’s perturbation theory yields that thereisa state wp € N, whichisa (op, —1)-KMS
state. Let V], be the set of all states obtained in this manner. It is well-known that A/, is
densein N, (see, eg., [R]). By theresult of Araki (see Proposition 6.2.32 in [BR2]),

Ent(n o i |wp) = Ent(n o {7 |w) + n(r{:(P)) — log [lel“ 720, >



The statement follows from this relation, the obvious estimate |n(#,(P))| < ||P|| and the
fact that 0 < [|e(“«tP)/2Q || < c0. O

Proof of Proposition 1.4. Sincen o 7{, = 7, Relation (2.17) yields that for al s > 0,

/0 (Qy, (v (0v)) [Dw : Dn]*Qy) du = o(1).

Taking s | 0 we get that for all ¢,

t
/0 0oy )du = tn(oy) =0,

and so Epy-(n) = 0. O
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