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Abstract

We consider a general class of models consisting of a small quantum system
S interacting with a reservoir R. We compare three applications of 2nd order
perturbation theory (the Fermi Golden Rule) to the study of such models: (1) the
van Hove (weak coupling) limit for the dynamics reduced to S; (2) the Fermi Golden
Rule applied to the Liouvillean—an argument that was used in recent papers on
the return to equilibrium; (3) the Fermi Golden Rule applied to the so-called C-
Liouvillean. These three applications lead to three Level Shift Operators. As our
main result, we prove that if the reservoir R is thermal (if it satisfies the KMS
condition), then the Level Shift Operator obtained in (1) (often called the Davies
generator) and the Level Shift Operator constructed in (2) are connected by a
similarity transformation. We also show that the Davies generator coincides with
the Level Shift Operator obtained in (3) for a general R.



1 Introduction

In his 1949 Chigaco lecture notes [F], Fermi called the formulas for the 2nd order per-
turbative calculations of energy levels the Golden Rule. There exists a number of mathe-
matically rigorous implementations of the Fermi Golden Rule (FGR). One of them is the
so-called van Hove (or weak coupling) limit.

To describe the general structure of the van Hove limit, consider a family of operators
Ly := Ly + AQ. Let P be a projection commuting with the unperturbed operator L,
satisfying PQP = 0. Under appropriate assumptions [Dal, Da3|, one can show that
there exists an operator I' such that

lim Petho/N githa/N* p — il (1.1)
A—=0
We will call I' the Level Shift Operator (LSO).

In the literature one can find other rigorous forms of FGR. They usually express
the idea that LSO describes the shift of eigenvalues and resonances at the 2nd order
of perturbation theory. Some of these applications are discussed in [DJ2, DJ3]. For
shortness, in this note we will restrict ourselves to the dynamical form of FGR—the van
Hove limit.

There exist numerous papers studying a “small quantum system S interacting with a
reservoir R”. In many of them the Fermi Golden Rule plays a central role. Among these
applications of FGR to the study of & + R we would like to distinguish the following 2
types:

(1) Van Hove limit for the reduced dynamics. We assume that the reservoir is
initially in a stationary state for the unperturbed dynamics. We look at the evolution
of observables of the small system. One can then show that under mild conditions
the reduced dynamics in the van Hove limit is a completely positive semigroup [Dal,
LeSp]. The operator I' obtained in this way (the generator of this semigroup) is
often called the Davies generator. This construction is regarded as an example of
how irreversible behavior can emerge from a reversible Hamiltonian dynamics.

(2) Fermi Golden Rule used in recent works on the return to equilibrium.
The main goal of a number of recent papers [DJ2, BFS, JP1, M] is to prove that
if the reservoir is in thermal state, then the coupled system & + R has only one
normal stationary state. This problem can be reformulated into a question about
point spectrum of a certain naturally defined self-adjoint operator—the Liouvillean.
An argument based on FGR leads to an appropriate LSO. Analysis of this LSO is
the key step in the proof of a number of results related to the return to equilibrium
[DJ2].

Let us stress that both in (1) and (2) we consider the same physical system S + R.
Nevertheless, these two applications are quite different.



The difference that is visible at the first sight is that in (1) we use the van Hove limit,
whereas in (2) we use the spectral form of FGR. This difference is due to our physical
motivation. Mathematically, one can also consider the van Hove limit for the Liouvillean,
even though to our knowledge it does not have a clear physical significance.

The more important difference is that in (1) and (2) P and L) are different mathemat-
ical objects. In (1) exp(itL,) is the Heisenberg dynamics of the algebra of observables,
whereas in (2) L, is the so-called standard Liouvillean. In (1) P is the conditional expec-
tation onto the observables of S, whereas in (2) P is the orthogonal projection onto the
vacuum sector. The LSO obtained in (1) is different from the LSO obtained in (2). In
particular, the two LSO’s have different spectra. Note, however, that both LSO’s act on
the same space: the space of matrices describing the observables of the small systems S.

The main result of our paper is the proof of the following fact: if the reservoir is in
thermal equlibrium, then the two LSO’s are related by a similarity transformation. Thus,
in particular, in the thermal case, they are isospectral.

Our result is an example of special properties enjoyed by thermal equilibrium states
[BR2]. In order to formulate it we need to use some (relatively few) concepts belonging
to the area of operator algebras. In particular, the fact that the reservoir is in thermal
equilibrium is expressed by the KMS condition of the reservoir state wrt the unperturbed
dynamics.

In this note we also consider a 3rd application of the Fermi Golden Rule to the study
of small systems coupled to a reservoir. In this application the main object is the so-called
C-Liouvillean introduced in [JP5]. We show that this application is essentially equivalent
to (1).
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2 Small quantum system interacting with a reservoir

Consider a small quantum system S interacting with a reservoir R. The Hilbert space
of the system S is K and its Hamiltonian is a self-adjoint operator K. Its algebra of
observables is B(K), the Banach space of all bounded operators on K. Throughout the
paper we will assume that dim IC < oo.

The system R is described by a W*-dynamical system (IMgr, 7). We assume that
IMr is given in the standard form on the Hilbert space Hz, and we denote by 7-[7“;, IR,
and Ly the corresponding natural cone, modular conjugation, and standard Liouvillean.



We also assume that (9%, 7x) has a distingushed normal stationary state and we denote
by Q% its (unique) vector representative in Hi. [Qz)(2z| denotes projection on Qg.
The coupled system S + R is described as follows. Its algebra of observables is

M= B(K) @ Mg,
and its free W*-dynamics is

o(A) = eitLgemiAe’itLgemi, AeMm, (2.2)
where .
Ly =K®1+1Q Lg. (2.3)

Let V € 91 be a selfadjoint perturbation and A\ a real parameter. The assumption
that V' is bounded is made only for simplicity of exposition—the discussion of unbounded
perturbations affiliated to 91 is very similar except for a number of additional technical
assumptions (see Section 5). Let

Lg\emi — L%emi + )\V,
T; (A) = PltLE™ Ao itLS™

The W*-dynamical system (90, 7)) describes the interacting system S+ R in the so called
semistandard representation. This representation is commonly used in the literature on
Markovian semigroups of open quantum systems.

Following the terminology of [DJ3], the operators L™ and L™ are called the free
and full semi-Liouvilleans respectively.

A typical example of the reservoir system is a free Fermi or Bose gas in thermal
equilibrium at inverse temperature 8 > 0. The reservoir may also have a composite
structure and consist of N-subreservoirs at different temperatures (such reservoirs have
been studied in the literature on non-equilibrium quantum statistical mechanics, see [JP4,
JP5, LeSp, Ru]). For our purposes, it is natural to keep the reservoir system as general
as possible.

The effect of the reservoir on the dynamics of S in the weak coupling regime (A small)
has been subject of many studies. A traditional approach to this question has been to
integrate the variables of the reservoir and follow the reduced dynamics of the small system
on the Van Hove time scale £/\?. In the Van Hove weak coupling limit A — 0, the reduced
dynamics of & becomes Markovian and irreversible. Its generator—often computed by
a formal Fermi Golden Rule calculation—captures the basic physical processes (energy
emission/absorption) of open quantum system S to the 2nd order of perturbation theory.

This approach can be traced back to the works of Pauli, Wigner-Weisskopf and Van
Hove [Pal, Pa2, W, VH], and has become a source of many works in physics literature
(see e.g. [Haa, KTH] for references and additional information).



On the mathematical side, the first complete results concerning existence of the Van
Hove limit and form of the Markovian generator were obtained by Davies [Dal, Da2].
These papers were followed by a large body of mathematical physics literature (see
[GFVKS] for a review of early results). The Davies theory and early mathematical results
in the theory of Markovian generators of open quantum systems are discussed in detail
in the forthcoming article [DJ3].

The integration of the reservoir variables is formalized as follows. We will work in the
Heisenberg picture. For B® C € B(K ® Hr) let

Py(B®C) = (Qr|CQr)B® 1.

The map Py uniquely extends to a projection on the Banach space B(K ® Hz). We
identify B(K) with RanPy by B(K) 3 B — B ® 1. Obviously, for X, B € B(K),

TrlC@’HR (X®‘Q'R)(Q'R| TO_tT;\(B®1)) = TI‘K(XPHTO_tT;‘PHB).

The maps
Ty := Puty ' Py : B(K)—B(K) (2.4)

describe the reduced dynamics of S in the Heisenberg picture. The family {7} }+>¢ is not

a semigroup. However, one expects that T)t\/ A converges to a semigroup as A — 0. This
limiting semigroup describes the dynamics of open quantum system & in the Van Hove
weak coupling limit.

For our purposes, the only important thing is that the Van Hove weak coupling limit
exists and particular conditions which quarantee the existence of the limit are inessential.
Hence, we postulate:

Assumption 2.A There exists an operator I'y : B(K)—B(K) such that fort > 0,

lim PHT()_t/)\2T)t\/)\2PH = ¢ltln, (2.5)
A—=0

We will call the operator I'y the Davies generator in the Heisenberg picture. A Fermi
Golden Rule computation yields that

[y = lim D LK DAV Dle+ie = [LE™,-DTHV: - D LK, ) (2.6)

e€sp([K,])

(sp(A) stands for the spectrum of the operator A and 1.(A) for the spectral projection
onto e € sp(A)), and indeed one can prove this formula under very general conditions (see
[Dal, DJ3]). However, the specific form of I'y will not concern us here.

In the last several years there has been a revival of interest in rigorous mathemat-
ical study of the models (9, 7,). These studies were based on mathematical tech-
niques (Tomita-Takesaki modular theory, quantum Koopmanism, Mourre theory, spectral



complex deformations) which allowed for detailed understanding of the dynamics. The
emerging picture is that ergodic properties and thermodynamics of the system S + R
are controlled by spectral resonances of two operators, the standard Liouvillean and C-
Liouvillean, canonically associated to the pair (90, 7,) by Tomita-Takesaki modular the-
ory [JP1, JP2, JP4, JP5]. A natural and important question is how is the spectral Fermi
Golden Rule for these resonances related to the generator I'y. To describe the answer we
will consider separately the thermal equilibrium and the nonequilibrium case.

3 Thermal equilibrium case

We will freely use the language and notation of algebraic quantum statistical mechanics
and Tomita-Takesaki modular theory. The books [BR1, BR2, Ha, St, StZs| are standard
references. A modern exposition can be also found in the recent article [DJP].

In this section the distinguished invariant state Mz > A — (Qr|AQz) is a (&, 5)-
KMS state for some § > 0 (in other words, the reservoir is initially in thermal equilibrium
at inverse temperature 3).

The inner product (X|B) = Tr(X*B) makes B(K) into Hilbert space, denoted 1%(K).
Note that B(K) acts naturally on [?(K) by right multiplication. This defines a represen-
tation s : B(K) — B(I1*(K)). Let Js : I2(K)—1*(K) be defined by Js(X) = X*, and let
I2 (K) be the set of all positive X € [>(K). The algebra ms(B(K)) is in standard form on
the Hilbert space {*(K), and its natural cone and modular conjugation are {2 (K) and Js.

The representation 7s extends to a representation 7 : M—B(I?(K) ® Hr) by

T(B®C)=mns(B)®C. (3.7)

The von Neumann algebra 7(9) is in standard form on the Hilbert space I*(K) ® Hx.
The natural cone and the modular conjugation are

HT =1 (K) ® HE, J=Js® Jg.

The standard Liouvillean, Ly, is the unique selfadjoint operator on I?(K) ® Hz such
that
m(1i(A4)) = e (A)e A eTHT = HT.

(L) implements the dynamics in the representation 7 and preserves the natural cone).
One easily shows that

where
Ly=[K, |®1+1® Ly (3.9)

see e.g. [DJP].



Consider the projection P, := 1 ® |Qz)(Qx| on the Hilbert space I*(K) ® Hr. We
identify /2(K) with RanP, by I?(K) > B — B ® Q. Obviously, for X, B € I?(K),

(X ® Qrle e B ® Og) = Tryc(X* PLe troelfs P B).
We again postulate existence of the Van Hove limit.

Assumption 3.A There ezists an operator Ty, : I>(K)—I?(K) such that for t > 0,

}\ln(l) PLe_itLO/)\2eitL>\/)\2PL — eitFL- (310)
N

A Fermi Golden Rule computation yields that

My=lim > L(K, ))(r(V) = Jr(V)J)
e€sp([K,]) (3.11)

(e +ie — Lo) ™ (n(V) = Jm(V)J)L([K, - ]),

and indeed one can prove this formula under very general conditions [Dal, DJ3]. The
operator I'y, is called the Level Shift Operator for the standard Liouvillean. The operator
[K, -] + ATy, predicts location of eigenvalues and resonances of Ly to the 2nd order of
perturbation theory and has been an important tool in the recent works on return to
equilibrium [BFS, DJ1, DJ2, JP1, JP5, M].

We are interested in relation between I', and the Davies generator ['y. Obviously, as
algebras, B(K) = I?(K) =: V. Let v : V=V be the linear invertible map defined by

v(B) := Be PK/2, (3.12)

Theorem 3.1 Assumption 2.A holds if and only if Assumption 3.A holds. If the as-
sumptions hold, then
Ty=7'olyo0r. (3.13)

Remark. Explicitely, for B € B(K) = [2(K), we have T'y(B) = I',(Be #K/2)efK/2,
Proof. The Araki perturbation theory [BR2, DJP] yields that
U, = e PE/2 & Og € Dom(efﬂ(LoJrM(V))/?)’

that the vector
Ty = efﬂ(LoJr/\W(V))/?q;O (3.14)



belongs to KerLy, and that ¥, = ¥, + O()). For X, B € B(K) = I?(K) we have
Tricemg (X ® [Qr)(Qr| 75X (B®@ 1)) = (X* ® Qrle™ e (B @ 1)e 01 © Q)
= Trx (X Pe o™ (15(B) ® 1)e el ® Qg)
= Trg (PK/2X [Pre 06D (15(B) @ 1)e heitho] @ Qp] e #K/2)
= (X*eﬂK/2 ® Q| (1s (PLe e (15(B) @ 1)e el @ Q) ® 1) e PEI2 g Qr)
= (X*PK/2 @ QpleMhoeitha (1g(B) @ 1)e"threitloe™PK/2 @ ()
= (X*ePK2 @ Qple ey (B @ 1)e PK/2 @ Qr) + O())
= (X*PK2 @ Qg |PLe7 el PLBe K12 @ Q) + O(N)
= Try (X [Pre hoelts PLBe™PK/2] efK/2) + O())
uniformly for ¢ > 0. Hence, for X, B € B(K) = I*>(K),
Trye (X Pary 'TiPuB) = Trx (X [Pre "loe™ir P Be PX/2] f%/2) 1 O ()
uniformly for ¢ > 0. Since dim K < 0o, we conclude that for a given ¢ the limit

. . 2 . 2
lim Ppe tho/A gt /A" p =, T
A—0

exists iff the limit

. —t/AZ _t/N\? Lt
lim Pyry "7 7,/" Pa =: Ty
A—=0

exists. Moreover, if the limits exist, then

Tﬁ:ﬂyfloTﬁOfy.

In particular, T is a semigroup iff 7T} is a semigroup and their generators (I'y and I'y
respectively) satisfy (3.13). O

4 Nonequilibrium case

We now consider the case where the reservoir is not in thermal equilibrium, namely where

the invariant state



is not a (tg, 3)-KMS state for any 5. A typical example is a free Bose or Fermi gas
with quasi-free initial state whose energy density is different from Planck’s law. Another
example is a multithermal reservoir where

Wt’]z:m’Rl@"'@m'RMa
TR:TR1®"'®TRM:
QR:QR1®®QRM7

Mz, 2 A — (Qr,AQ%,) is a (Tr,, Br)-KMS state for some Sy > 0, and not all S
are the same. This case has attracted considerable attention in the recent literature on
nonequilibrium quantum statistical mechanics.

The standard Liouvillean is again well defined and given by (3.8). However, in
nonequlibrium case and for A # 0, L, typically will have no point spectra. In partic-
ular, zero will not be an eigenvalue of L). We recall that KerL, = {0} iff W*-dynamical
system (90, 7,) has no normal, invariant states. Hence, in nonequilibrium case one expects
that ', will have no real eigenvalues and hence that 'y and I'y, are not isospectral. In
fact, in nonequilibrium case one expects no direct relation between I'y and I'y,.

The spectral approach to nonequilibrium quantum statistical mechanics has been re-
cently proposed in [JP4]. The basic object is a non-selfadjoint generator of dynamics
called C-Liouvillean. This operator is defined as follows.

Assume that Qg is a cyclic (and hence separating) vector for MMz and let A be the
corresponding modular operator. We assume that the operator

1o A)r(V) 1A 12,

initially defined on 9 1 ® Qr C I*(K)®@Hxr, extends to an element of 9. We denote this
element by 7(V)a and set £y := Ly,

,8)\ = 20 + /\7T(V) - /\J’/T(V)AJ (416)

The operator £, is called the C-Liouvillean of the system S + R. Note that except in
trivial cases m(V)a is not self-adjoint, and hence £, is also not self-adjoint. Note also
that £, generates a Cy-semigroup on I(K) ® Hg, that £,(1 ® Qz) = 1 ® Qx, and that
for all A € 9N,

(7L (A)1 ® Qg = " 1(A)1 @ g,

see [JP4] for details.
Assumption 4.A There exists an operator U : I*(K)—1*(K) such that for t > 0,

lim Pre #9/2 (/A Py = elffe, (4.17)
—



10

A Fermi Golden Rule computation yields
Ic = lim Y LK, D(R(V) = Jn(V)ad)
ecsp([K,-]) (418)
(e +ie = Lo) T (m(V) = Jr(V)ad)Le((K, - ]),
and one can prove this formula under very general conditions [DJ3]. As expected, the
operator [K,-] + AT'¢ predicts the location of resonances of £, to the second order of

perturbation theory [JP4]. The operator I'c is called the Level Shift Operator for the
C-Liouvillean.

Theorem 4.1 Assumption 2.A holds if and only if Assumption 4.A holds. If the as-
sumptions hold, then
FH = Fc.

Proof: The identities
TTK(XPLT(;tT;\PL) = TrlC@'HR (X ® ‘QR)(QTd T(;tT;‘(B ® 1))

= (X* X QR‘e_itSOQit£>‘ (WS(B) X ].)]_ X QR)
— (X* ® QR|e—it,ﬂoeit£)\B ® QT\’,)
= Tr(X PLe "S0e" S Py),

yield that o
PHTJtTtPH = P e togittap, (4.19)
and the result is immediate. O

We remark that C-Liouvillean is also well-defined in the thermal equilibrium and that

in this case
£ = eﬁ(Lo+/\W(V))/2L}\efﬁ(LoJrM(V))/2, (4.20)

see [JP4]. Theorem 3.1 can be also proven using relations (4.19) and (4.20) and the
argument of Section 5.6 in [DJP].

5 Some remarks

Theorem 3.1 extends to a large class of unbounded perturbations V. All what is needed
is that (90, 7) and L, are well-defined and that the basic results of Araki’s perurbation
theory hold. The recent result [DJP] gives a set of sufficient conditions. Consider an



11

unbounded self-adjoint operator V on K ® Hx and assume:

(1) V is affiliated with 901.

(2) L™ is essentially self-adjoint Dom(L§™) N Dom(V) for |A| < 1.

(3) Ly is essentially self-adjoint on Dom(Ly) N Dom(x(V)) N Dom(Jx(V)J) for [A| < 1.
(4) [Jle=PV)/2W]| < oo for [A| < 1.

Then the results of [DJP] yield that Theorem 3.1 holds with the same proof for the
unbounded perturbation V. In particular, Theorem 3.1 holds for Pauli-Fierz systems
with bosonic reservoirs.

The proof of Theorem 4.1 requires no estimates and follows from the identity (4.19).
Obviously, this theorem holds whenever C-Liouvillean can be meaningfully defined, see
[DJ3].

The results of this note bridge the gap between the large body of literature on Marko-
vian semigroups for open quantum systems and the recent investigations of open quan-
tum systems based on algebraic and spectral techniques. The main objects of the two
approaches—the Davies generator and the Level Shift Operator for the standard and C-
Liouvillean— determine each other and hence the results of one approach can be used in
the context of the other. This link is exploited in detail in the forthcoming article [DJ3].

Finally, we mention an early work [JP3] where the relation between I'y and I'y, has
been studied. In this work one can find an algorithm how to construct I'y,;, from I'y /.
This algorithm can be also used to prove Theorem 4.1 [Pi]. The direct proof of Theorem
3.1 given in this note is however considerably simpler.
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