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Abstract

Given a W*-algebra 901 with a W*-dynamics 7, we prove the existence of the
perturbed W*-dynamics for a large class of unbounded perturbations. We compute
its Liouvillean. If 7 has a -KMS state, and the perturbation satisfies some mild
assumptions related to the Golden-Thompson inequality, we prove the existence of a
B-KMS state for the perturbed W*-dynamics. These results extend the well known
constructions due to Araki valid for bounded perturbations.



1 Introduction

1.1 W*-dynamics and KMS states

Let 9t be a W*-algebra equipped with a W*-dynamics (a 1-parameter pointwise o-weakly
continuous group of x-automorphisms) R 3 ¢ — 7%. The pair (9, 7) is often called a W*-
dynamical system. Let () be a self-adjoint element of 9. A well known convergent power
series expansion, that can be traced back at least to Schwinger and Dyson, can be used
to define the perturbed W*-dynamics which we denote by R > ¢ — 7'52. The difference
of the generators of 7o and 7 equals i[Q, | —in fact, the W*-dynamics 7¢ is uniquely
characterized by this property.

Suppose in addition that 8 > 0 and that 7 possesses a S-KMS state w. Araki proved
that in this case the dynamics 7g also possesses a canonical 3-KMS state wg. More
precisely, if w(A4) = (Q|AQ), where 2 is the vector representative of the state w in the
standard positive cone, and L is the so-called Liouvillean of 7, then the vector {2g :=
e AUL+R)/2Q) is well defined and the state wg(A) = (Qg|AQ)/||Q0]? is B-KMS for the
W*-dynamics 7g.

The above two constructions play an important role in applications of operator algebras
to quantum statistical physics. Whereas the construction of the perturbed W*-dynamics
7o is relatively easy and not very surprising, the construction of the perturbed KMS state
wq is more subtle and has a far-reaching physical importance. The both constructions,
however, have one technical weakness which restricts the range of their applications: the
perturbation () is assumed to be bounded. In many physical applications the operator ()
is unbounded and is only affiliated to 9.

In this paper we extend the construction of the perturbed W*-dynamics 7o and the
(1g, B)-KMS state wq to a large class of unbounded perturbations () affiliated to 9. An
application of these results is discussed in [DJ2] and concerns spectral and ergodic theory
of Pauli-Fierz systems.

The proof of the first result—the construction of 7p—is again relatively simple and
does not involve much more than an application of the Trotter product formula. The
proof of the second result—the construction of wg—is more involved. Its main idea is
the use of the so-called Golden-Thompson inequality. The Golden-Thompson inequality
in its original form says that if A and B are self-adjoint matrices, then

Tredt? < Trete?.

Translated into the language of W*-algebras and KMS states, the Golden-Thompson
inequality can be put into the form

1920l < lle™#9720. (1.1)

In our approach, the Golden-Thompson inequality is used to control the perturbed KMS-
states and gives an upper bound, which combined with a weak convergence argument
enables us to construct {2 for a large class of unbounded Q.



In the literature there exists a different approach to the construction of the perturbed
KMS states for unbounded perturbations, which is restricted to perturbations bounded
from below. One of its versions has been developed by Sakai [Sa2|; another version
(applicable to generalized positive operators which may not have a dense domain) is due to
Donald [Don] (his method is also discussed in monograph [OP]). The Sakai-Donald theory
does not cover perturbations which are unbounded from both sides, and in particular is
not applicable to Pauli-Fierz systems.

The W*-algebraic form (1.1) of the Golden-Thompson inequality was first proven
by Araki [Ar2]. A different proof, based on an application of Uhlmann’s monotonicity
theorem for the relative entropy [Uh], was given in [Don].

1.2 Liouvilleans

The term Liouvillean has become quite popular in the recent literature on algebraic quan-
tum statistical physics. The meaning of this term can vary depending on the author.
Therefore, we would like to devote some space to a discussion of possible meanings of the
term Liouvillean in the context of W*-dynamical systems.

Let (9, 7) be a W*-dynamical system. It is often important to construct a represen-
tation of 9 equipped with a unitary implementation of the W*-dynamics 7. There are
two natural approaches to such construction.

The first approach presupposes that 7 has an invariant normal state w. In the cor-
responding GNS representation this state is represented by a cyclic vector (2. Then it is
easy to see that there exists a unique self-adjoint operator L such that

TH(A) = eF Ae7H LO = 0.

The operator L defined this way can be called the 2-Liouvillean of 7.

In the second approach one chooses a standard representation of 9t on a Hilbert space
‘H. One of the objects that go together with the standard representation is the positive
cone HT. A general theory of standard representations implies that there exists a unique
self-adjoint operator L such that

Tt(A) — eitLAe_itL, eitL%-i— C %-l—.

The operator L defined in this way can be called the standard Liouvillean of 7, or simply
the Liouvillean of 7.

The two setups overlap if the invariant state w is faithful and 2 € H ™. In this case the
Q-Liouvillean of 7 coincides with the standard Liouvillean of 7. This fact is important
for applications of W*-algebras to quantum statical physics.

If one is interested in the case of equilibrium, then the first approach to Liouvillean
suffices. In non-equilibrium situations one needs the second approach.

The (standard) Liouvillean encodes in a particularly convenient way the properties
of the dynamics. This has been demonstrated in many places in the recent literature



[BFS, DJ2, JP1, JP2, M]. The Liouvillean is also one of the main technical tools of our
paper.

If L is the Liouvillean for the W*-dynamics 7, then one may ask what is the Liouvillean
for 7. If @ is bounded, then the answer is Lo = L + @) — JQJ, where J is the modular
conjugation. We will establish the same result for unbounded () under some mild technical
assumptions.

1.3 Organization of the paper

We start our paper with a concise review of some aspects of the theory of W*-algebras.
The choice of topics is motivated by some recent applications of W *-algebras to quantum
statistical mechanics [BFS, DJ1, DJ2, JP1, JP2, M]. Among other things, we will discuss
the two possible definitions of the Liouvillean. For most of the proofs in Section 2 the
reader is referred to the literature, especially [BR1, BR2].

In Section 3 we describe the perturbation theory of W*-dynamics and Liouvilleans.
We describe in particular the case of unbounded perturbations, which goes beyond what
we could find in the literature.

To make our paper more accessible, we have included in Section 4 the proof of the
Uhlmann’s monotonicity theorem [Uh| and Donald’s proof of the Golden-Thompson in-
equality [Don]. A somewhat different presentation of this topic can be found in [OP].

Section 5 contains the perturbation theory of KMS states. The subject naturally
splits into three levels. The most restrictive level concerns analytic perturbations. In this
case the proofs are essentially algebraic and relatively simple. The next level concerns
bounded (). This is the case considered by Araki [Arl], see also [KL, BR2, Sal, Si|.
Finally, we develop perturbation theory for a class of unbounded (). In all the cases we
prove a number of properties of €)g, including the Peierls-Bogoliubov and the Golden-
Thompson inequalities. We stress that the Golden-Thompson inequality is at the same
time an important ingredient of our proof of the existence of )g. We also prove a number
of estimates that can be used to compare the vectors {2 and (2. Some of these estimates
appear to be new.

We have attempted to make the paper reasonably self-contained so that it can serve
as a brief introduction to some recent works on algebraic quantum statistical physics.
Our presentation is in some respects complementary to the presentation in the standard
literature such as [BR1, BR2, OP]. In particular, we tried to emphasize the use of the
standard representation and the Liouvillean.

In Appendix B we give a concise description of the Pauli-Fierz systems at positive
densities. The material of this appendix is based on [DJ2]. We include this material at
the request of referee to briefly explain the main physical motivation and application of
the results of our paper.
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2 General facts about W*-algebras

In this section we recall some basic definitions and facts about W*-algebras which will
play a role in our paper. For additional information and proofs we refer the reader to
[BR1, BR2, Sa3, StZs, St].

There are two approaches to the theory of W*-algebras: the concrete and the abstract
approach. In the concrete approach one starts with the notion of a concrete W*-algebra
(called also a von Neumann algebra), defined as a *-algebra of bounded operators on a
Hilbert space which equals its double commutant. This is in fact the original definition
that dates back to the works of von Neumann. In the abstract approach, due to Sakai
[Sa3], one defines an abstract W*-algebra as a C*-algebra that possesses a predual.

These approaches are essentially equivalent: every abstract W *-algebra can be repre-
sented as a concrete W*-algebra and every concrete W*-algebra is an abstract W*-algebra.

The concrete approach is historically the first and is used in most monographs, e.g.
[BR1, BR2, StZs|. The abstract approach has been developed in [Sa3]. In some respects
the abstract approach is more difficult from the pedagogical point of view—many ba-
sic properties of W*-algebras are more difficult to show starting from Sakai’s definition
than starting from von Neumann’s definition. Nevertheless, one can argue that Sakai’s
approach is conceptually superior: it helps to distinguish the notions that are intrinsic
from the notions that are representation dependent. In our presentation we will stress the
abstract approach.

2.1 Abstract W*-algebras

If X is a Banach space, then a Banach space ) is called a predual of X iff X’ is isomorphic
to the dual of ).

9N is an (abstract) W*-algebra if it is a C*-algebra which possesses a predual. It can
be shown that every W*-algebra 9t possesses a unique predual (up to isomorphism). It
will be denoted by 9. Elements of 9, will be called normal functionals on 9.

The topology on 90t generated by the seminorms |w(A)|, w € M., is called the o-weak
topology. The topology on 9t generated by the seminorms |w(A*A)|'/2, w € M, is called
the o-strong topology.

M denotes the set of positive elements of .. Elements of M} satisfying w(l) =1
are called normal states. The set of normal states is denoted 90U>!.



Let w € M and let 9 be a W*-subalgebra of 9. The support of w with respect to
N is defined as

s7:=inf{P € M : P is an orthogonal projection and w(1 — P) = 0}.

In particular, the support with respect to 99 will be called just the support of w and
denoted s,. The support of w wrt the center of 9t will be called the central support of w
and denoted z,.

w € M} is called faithful iff s, = 1. A W*-algebra is called o-finite if it possesses a
faithful state.

Let 9, 9t be W*-algebras and 7 : 90 — DT a homomorphism. We say that 7 is normal
iff 7 is o-weakly continuous.

2.2 Concrete W*-algebras

Let H be a Hilbert space. (¥|®) will denote the scalar product of the vectors ¥, ® € H.
We adopt ”physicist’s convention” and our scalar product is antilinear with respect to the
first argument.

If C C B(H), then the commutant of C will be denoted by C'.

We will say that 90T is a concrete W*-algebra (or a von Neumann algebra) iff 9 C B(H)
for some Hilbert space H and 9" = 9M. A concrete W*-algebra in B(H) is a W*-algebra
inside B(H) containing the identity of B(H). Every abstract W *-algebra is *-isomorphic
to a concrete W*-algebra.

Let 9 be an abstract W*-algebra and 7 : 9% — B(H) a representation. Then 7 (90t)
is a concrete W*-algebra iff 7 is unital and normal.

Given an injective unital normal representation 7 : 9t — B(#), we will often identify
M with 7 (M).

2.3 Concrete affiliations

In the following two subsections we recall the concept of operators affiliated to a W*-
algebra. This concept is well-known in the case of concrete W*-algebras, see e.g. [BR1].

Let 9t C B(#H) be a concrete W*-algebra. Let A be a closed densely defined operator
on H and D(A) its domain. We say that A is affiliated to 9 iff for all A’ € IM', A'D(A) C
D(A) and AA' = A'A, on D(A). Let 9™ be the set of operators affiliated to 9.

Theorem 2.1 (1) If A is self-adjoint on H, then A is affiliated to M iff all bounded
Borel functions of A belong to 9.

2) If A is a closed operator, then A is affiliated to 9 iff A(1+ A*A)~'/2 € M.
(2)



2.4 Abstract affiliations

The concept of affiliation can be introduced for abstract W *-algebras in a fashion indepen-
dent of representations. Our definition of an operator affiliated to an abstract W *-algebra
is directly inspired by the definition of the affiliation in the context of C*-algebras due
originally to Baaj and Jungl [BaJu] and elaborated by Woronowicz [Wo|. We are grateful
to S. L. Woronowicz for a discussion of this issue.

Let 9 be an abstract W*-algebra. In this subsection we will consider linear operators
acting on M. The domain of an operator A on 9t will be denoted by Dom(A). (We
reserve the notation D(A) to denote the domain of an operator A acting on a Hilbert
space.)

Let A be a linear mapping acting on 9. We say that A is affiliated to 9% and write
A e 9, iff there exists B € M such that ||B|| < 1, (1 — BB*)9M is o-weakly dense in 9
and, for any C, D € 9,

C € Dom(A) and AC =D <= BC = (1 - BB")'?D.

If such B exists, then it is unique. We set z(A) := B. In [Wo|, z(A) is called the
z-transform of A.

One can show that if A € 9", then Dom(A) is o-weakly dense and A is closed, both
in the norm topology and in the o-weak topology.

Note that every A € 9t may be identified with a linear map on 9 with Dom(A) = M
(given by A(C) = AC) and thus it is an element of 9". The z-transform of A € 9 equals

2(A) = (1+ AA*)7124A,

The following theorem describes the relationship between abstract and concrete affil-
iations. It shows that in the case of an injective normal representation we can identify
abstract and concrete affiliated operators.

Theorem 2.2 Let m : MM — B(H) be a normal representation preserving the identity.
Then there exists a unique extension of T to a surjective map 7 : M" — W(SJ?)(”) satisfying

(L+m(A)m(A)) 2 m(A) = m(=(4)).

If 7 is injective on M, then its extension on IM" is injective as well.

2.5 Vector representatives of states
Let 9 C B(H) be a concrete W*-algebra and Q a vector in H. Then
wa(A) := (2AQ), A e M,

defines a normal positive functional on 9. We say that €2 is a vector representative of
wq. wq 1s a state iff  is normalized.



The support and the central support of wg are also called the support and the central
support of 2 and denoted sq and zqg respectively. We thus have

Swa = Sq, Zyo = Za.
The support of 2 wrt the W*-algebra 9 will be denoted si. One shows that
Ransg = (M'Q)?,  Ransp, = (MNQ),

where cl stands for the closure.

A vector Q € H is called cyclic if s, = 1. A vector Q is called separating if so = 1, or
equivalently, if it is a vector representative of a faithful state.

The following construction, called after Gelfand, Naimark and Segal, associates to
every normal state a normal representation equipped with a cyclic vector.

Theorem 2.3 (The GNS construction) Let w be a normal state. Then there exist
a (unique up to a unitary equivalence) Hilbert space H, a normal unital representation
7 : I — B(H) and a cyclic vector Q € H, such that

w(A) = (Qr(A)Q).

The representation m is injective on z,9 and zero on (1 — z,)IM.

2.6 Automorphisms of W*-algebras

Let Aut(91) denote the group of x-automorphisms of a W*-algebra 9. We equip Aut(9)
with the following topology: if p, is a net in Aut(9) and p € Aut(9M), then p, — p iff
for all A € M, po(A) — p(A) o-weakly. This topology is called the pointwise o-weak
topology.

A one parameter pointwise o-weakly continuous group R 3 ¢ — 7% € Aut(9M) is called
W*-dynamics on 9. The pair (9, 7) is called a W*-dynamical system.

Let 9 C B(H) be a concrete W*-algebra and p € Aut(9M). We say that p is imple-
mented by U € U(H), where U(H) denotes the set of unitary operators on #, iff

p(A) = UAU*. (2.2)

Let t — 7° be a W*-dynamics on 9 and ¢ — U(t) € U(H) a strongly continuous group.
We say that 7 is implemented by U(t) iff

r(A) = U AU(t)*. (2.3)

In general, neither x-automorphisms nor W*-dynamics need be implementable. If
they are, the implementation is not unique. In the next subsections we will describe two
situations where there exist distinguished implementations.



2.7 Automorphisms with a fixed invariant state

Let w € M and p € Aut(9M). We define p*w € M by p*w(A) = w(p(A)). We say
that w is p-invariant if w = p*w. The automorphisms that leave w invariant form a group
denoted Aut,, ().

If p € Aut,(9M), then p(z,) = z, and p(s,) = s,. Thus p maps z,9M and (1 — z,)M
into itself, and without loss of generality we may assume that z, = 1. By passing to
the GNS-representation we may assume that 9% C B(H) and that Q is a cyclic vector
representative of w.

Theorem 2.4 There exists a unique representation
Aut, (M) 2 p— U%(p) € U(H)

such that
Ut(p)Q=Q, U (p)AU"(p)" = p(A).

It is continuous if we equip Aut,,(9M) with the pointwise o-weak topology and U(H) with
the strong operator topology.

Proof. One just sets
Up)AQ = p(A)Q, Ac.

O

U®(p) will be called the Q-implementation of p.

Suppose now that ¢t — 7t is a W*-dynamics that leaves w invariant. Then, by Theorem
2.4, 7 is implemented by a strongly continuous unitary group R > ¢t — U(7t) € U(H).
The self-adjoint generator of U () will be denoted L' and called the Q2-Liouvillean of
7. (Thus U%(7t) = eltL?).

The following fact is a corollary of Theorem 2.4:

Proposition 2.5 The operator L is the unique self-adjoint operator such that

L0 =0, 747" = 1H(4), A€M

2.8 The Tomita-Takesaki theory

Let w be a faithful state on 9. By passing to the GNS representation we may assume
that 9 C B(H) and that w has a vector representative 2 which is cyclic and separating.

The following theorem summarizes the results of the well known Tomita-Takesaki
theory.



Theorem 2.6 (1) Define the operator Sq with the domain INQ by
SqAQ = A*Q.

Then Sq is antilinear, closable, has a zero kernel and cokernel. Its closure will be
denoted also Sq. Let Sq = JASI{2 be its polar decomposition;

(2) J is an antiunitary involution;
o 1s a positive operator satisfying JAqJ = Ag" and Ao = €
3) Aq i it tor satisfying JAqJ = Ag' and AgQ = Q

(4) The map -
I (A) := APAAY e M, A e M,

1s a W*-dynamics on I and — log Aq is its Q2-Liouvillean.

The W*-dynamics R 3 ¢ — 7" is called the modular dynamics and Ag is called the
modular operator.

2.9 Standard form

One of the central notions of the theory of W*-algebras is the so-called standard form. It
has been introduced by Haagerup [Haal, following the work of Araki [Ar3] and Connes
[Col.

A W+-algebra in a standard form is a quadruple (9, H, J, H'), where H is a Hilbert
space, 9 C B(H) is a concrete W*-algebra, J is an antiunitary involution on # (that is,
J is antilinear, J? = 1, J* = J) and H" is a self-dual cone in A such that:

(1) JOmJ = M,

(2) JAJ = A* for A in the center of 9;
(3) JO =W for ¥ € HT;

(4) ATJTAHT C HT for A € M.

If 9 is an abstract W*-algebra, then we will say that (m,H,J,H") is its standard
representation if 7 : 9 — B(H) is an injective unital representation and (7w (9M), H, J, H™)
is a standard form.

3
4

Theorem 2.7 Let MM be a W*-algebra with o faithful state w. Let m : M — B(H)
be the corresponding GNS representation with the cyclic vector 2. Let J be the modular
conjugation obtained by the Tomita-Takesaki theory and H* := {m(A)Jr(A)Q : A € M}°.
Then H*' is a self-dual cone and (w,H,J,H') is a standard representation of M. If
(m, M, Ji, H) is another standard representation of M and Q € H, then H| = H* and
J=J.

Theorem 2.8 Fvery W*-algebra 9N possesses a standard representation. Moreover, if
(w1, H1, Ji, HY) and (m, Ha, Jo, Hy) are two standard representations of 9, then there
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ezrists a unique unitary operator W : Hy — Hs such that
Wi (A) = m(A)W,
WHT =HS.
We then automatically have W J, = JoW.

If 9 is o-finite, then Theorem 2.8 is proven e.g. in [BR1]. In this case the existence
part follows from Theorem 2.7.

If 9 is not o-finite, the theorem is proven using weights instead of states. The details
can be found in [Haa, St].

2.10 States and automorphisms in the standard representation

In this subsection we fix a W*-algebra in the standard form (9, H, J, H™T).

Theorem 2.9 (1)
HY 20— weeMS

15 a bijection. Its inverse will be denoted

M owr—Q, e HT.

(2) If U, ® € HT, then
¥ — ®|? < flwy — wal| < ([T — ]| T + @

(3) If Q € HT, then Q is cyclic < Q) is separating < wq is faithful.

(4) For Q € H*, s = Jsqd.
The vector Q, € HT will be called the standard vector representative of w.
A unitary operator U on H is called a standard unitary operator iff

(1) UMt = H,
(2) UMU* = 9.

Theorem 2.10 (1) IfU is a standard unitary operator, then JU = UJ and UM U* =
m'.
(2) There exists a unique unitary representation

Aut(OM) 3 p— U(p) € U(H) (2.4)

satisfying the following conditions:
(a) U(p)AU(p)* = p(A), A € M;
(b) U(p)HT C H™.

11



(3) The image of (2.4) is the group of all standard unitary operators.

(4) (2.4) is continuous if Aut(9M) is equipped with the pointwise o-weak topology and
U(H) with the strong operator topology.

(5) U(p)Qy = Qp-14,, for all w € M.

U(p) will be called the standard implementation of p.
Suppose that ¢ — 7¢ is a W*-dynamics on 9 and let U(7*) be as in Theorem 2.10.
Then there exists a unique self-adjoint L such that

U(Tt) =L,

The operator L will be called the standard Liouvillean of the W*-dynamics 7, or simply
the Liouvillean of 7.

Theorem 2.11 The Liouvillean of T is the unique self-adjoint operator L satisfying
PR CHT, e AeT =1Y(A), AeM,
for allt e R.

The final result we wish to mention follows easily from Theorems 2.9 and 2.10. It
has been a key tool in recent investigations of invariant states of a certain class of W*-
dynamical systems called Pauli-Fierz systems [BFS, DJ2, JP1, JP2, M].

Theorem 2.12 Let 7 be a W*-dynamics and L the corresponding Liouvillean. Then
{we : ® € HM NKerL} = {w € M} :w is 7" invariant}.

Consequently,
(1) dimKerL = 0 < there are no normal T-invariant states.

(2) dimKerL =1 < there ezists exactly one normal T-invariant state.

We will not make use of this result in our paper.

2.11 Comparison

In some circumstances the setups of Subsections 2.7 and 2.10 overlap. Recall that in
Subsection 2.7 we have a W*-algebra 91 with a faithful state w. We can assume that
M C B(H) and that w has a cyclic vector representative €.

By Theorem 2.7, we can construct J and H* so that (9, H, J,H") is a standard form
and Q € H.

12



Proposition 2.13 Let p € Aut,(9M). Suppose that U € U(H) implements p, that is
p(A) =UAU*, A € M. Then the following conditions are equivalent:

(

(

1) UQ=Q (U=U%p) is the Q-implementation of p);
2) UHt =HT (U ="Ulp) is the standard implementation of p).

Proof. We know from Theorem 2.4 that the (2-implementation of p exists and is unique.
We also know from Theorem 2.10 that the standard implementation of p exists and is
unique. Hence, it is sufficient to show the implication in one direction.

(2)=(1). The vector US2 determines the state p*w = w. Hence the vectors U,
belong to the cone H* and determine the same state. This implies U2 = Q. O

As a corollary, if the invariant state w is faithful, then the concepts of the Q2-Liouvillean

and the standard Liouvillean coincide.

Proposition 2.14 Let t — 7¢ be a W*-dynamics on I that leaves invariant a faithful
state w. Suppose that L is a self-adjoint operator such that T'(A) = el Ae L. Then the
following conditions are equivalent:

(1) LQ =0 (L = L? is the Q-Liouvillean of T);
(2) ForteR, et C Ht (L is the standard Liouvillean of T).

2.12 KMS states

In this subsection we recall basic properties of KMS states. Let (9, 7%) be a W*-dynamical
system.

Definition 2.15 Let 8 > 0. w € M5! is called a (7, 3)-KMS state if for any A,B € M
there exists a function Fu g(z), analytic in the strip {z : 0 < Imz < B}, continuous on its
closure, and satisfying the KMS boundary conditions for t € R:

Fap(t) = w(A'(B)),
Fap(t+iB) = w(r(B)A).

Theorem 2.16 Let w be a (1,5)-KMS state and 8 > 0. Then

1) w is T-invariant.

(

(2) s, = 2,. (In particular, w is faithful on z,9M).

(3) If B € zwf) where 3 is the center of M, then 7'(B) = B.

(4) Let 7, be the dynamics on z,9M generated by w. Then
=T

7,9~ W

13



Theorem 2.17 Let w be a faithful state on I and 7, the corresponding dynamics. Then
w is a (1,,1)-KMS state.

Let (9, H, J,H) be a standard form. We say that Q is a standard (7, 3)-KMS vector
iff it is a standard vector representative of a (7, 3)-KMS state.

Suppose that L is the Liouvillean of 7. The following theorem gives a criterium for
the KMS property expressed in terms of Hilbert spaces.

Theorem 2.18 Let Q2 € H* be a unit vector. Then
(1) Q is a standard (1, 8)-KMS vector iff M C D(e PL/2) and

e P2 AQ = JA*Q, Ae M.

(2) If in addition Q) is cyclic and Aq is the corresponding modular operator, then

AQ = e_'BL.

2.13 Convergence

It is often convenient to reduce the study of W*-dynamics and normal states to the study
of corresponding Liouvilleans and standard vector representatives. In this subsection we
apply this point of view to the convergence properties of W*-dynamics, invariant states
and KMS states.

Theorem 2.19 Assume that (MM, H,J, H') is a W*-algebra in the standard form.
(1) Suppose that 1, is a sequence of W*-dynamics with Liouvilleans L,,, L is a self-adjoint
operator, and L, — L in the strong resolvent sense. Then

Tt(A) = eitLAe—itL

1s a W*-dynamics on I and L s its Liouvillean.

(2) Assume in addition that w, € M} are 1,,-invariant and Q,, are their standard vector
representatives. Suppose also that w—1lim,, Q, = Q. Then Q € H™ and the functional
waq 18 T-tnvariant.

(3) Assume in addition that w, are (1,,)-KMS states and that Q # 0. Then wq)q| s
a (1, 8)-KMS state.

Proof. (1) Let A € 9. We have s— lim,,_,, e**» = e*L hence

s— lim el Ae7tn = oE g7 € 9.
n—o0
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Therefore 7 is a W*-dynamics.

Since H* is closed and e'*f»
of 7.

(2) Since H* is weakly closed, Q € H'. Moreover, since Q,, € D(L,) and L,Q, = 0,
by Proposition A.6, Q € D(L) and L2 = 0.

(3) Let A € M. Q, are (7,, )-KMS vectors, hence

reserve H T, el preserves Ht. Hence L is the Liouvillean
b)

exp(—pfL,/2)AQ, = JA™Q,.

Since exp(—/L,/2) — exp(—BL/2) in the strong resolvent sense, JA*Q2, — JA*Q weakly,
and AQ, — AQ weakly, it follows from Proposition A.6 that AQ € D(e~#*/?) and

e PLIZAQ = JA*Q. (2.5)
Hence Q/||?]| is a (7, 8)-KMS vector. O

2.14 Analytic elements

Let (9, 7) be a W*-dynamical system. An element A € 9 is called 7-analytic if there
exists a strip I(r) = {z : |Imz| < r} and a function f: I(r) — 9 such that:

(1) f(t) =74A) for t € R;

(2) I(r) > z = ¢(f(z)) is analytic for all ¢ € IM,.

Under these conditions we write f(z) = 7%(A). A standard argument based on the
uniform boundedness theorem shows that f(z) is actually analytic in the norm of 9.
If r = 0o, then we say that A is 7-entire.

For A € MM and n € N let
nyz —nt?_t
A, = <;) /Re (A)dt.

Theorem 2.20 A, is T-entire and A, /A in the o-strong topology. Thus the T-entire
elements form a o-strongly dense subspace of M. This subspace is denoted by IN,.

For additional discussion of analytic elements we refer the reader to [BR1].

3 The perturbation theory of W*-dynamics

In this section, given a W*-dynamics 7 and a perturbation (), we construct a perturbed
W*-dynamics 7. We also construct the so-called Araki-Dyson expansionals Ef,(¢) which
intertwine these two dynamics. We describe these objects in three cases: for analytic
perturbations, bounded perturbations, and for a large class of unbounded perturbations.
The constructions in the first two cases are well known, see [Ar6, BR2|.
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3.1 Bounded perturbations

Let (9, 7) be a W*-dynamical system and @ a self-adjoint element of 9. The following
formula defines the W*-dynamics 7¢ on 90:

=) i /0 @), [+, [7"(Q), T (A)] - - - ]]dty - - - . (3.6)

>0 <tn<.. t1<t

If § is the generator of 7, then the generator of 7 has the same domain as ¢ and
equals

dg(A) = 4(A) +i[Q, A].

Let Ef,(t) be a one-parameter family of elements of 90 given by

Z /0 Q) ---T(Q)dty - - - dt,. (3.7)

>0 <tn<.t1 <t

We will call E,(t) the Araki-Dyson expansionals. Whenever there is no danger of confu-
sion we will write Eq(t) for Ej(2).

We remark that integrals in (3.6) and (3.7) converge in o-weak topology and define a
norm-convergent series of bounded operators.

The expansions (3.6) and (3.7) played an important role in the works of Schwinger,
Tomonaga and Dyson on QED. The operators Ef(t) are closely related to the so-called
Connes cocycles [Co].

Let us list some properties of Araki-Dyson expansionals:

Theorem 3.1 Lett,t,to € R. Then

(1) Eq(t) are unitary elements of I,

(2) To(4) = E5(H)T" (A)EG ()7,

(3) Eq(t)™ = Eq(t)" = 7'(Eq(-1));

(4) Eq(t1 + t2) = Eq(t1)7" (Eq(t2));
Assume in addition that M is a concrete W*-algebra in B(H) and that L is a self-adjoint
operator on H such that T'(A) = el Ae L for A € M. Then

(5) TH(A) = L) Ae=HLHQ) for A € M;
(6) EQ(t) — eit(L+Q)efitL.

3.2 Analytic perturbations

In this subsection we assume that @) is 7-entire. Then 7y extends to C by the formula

B = [ Qb Q)] s ds, (38)

n>0
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valid for A € 9. Thus M, =M.
For r-analytic (), the Araki-Dyson expansionals can be defined for all complex z by

Ey() = Y (o) | P (Q) - T (Q)dsy - ds. (3.9)

>0 0<5, <51 <1

The series (3.8) and (3.9) converge in norm uniformly for z in compact sets and define
analytic functions with values in 91.

Theorem 3.2 Let z, 21,29 € C. Then
(1) Eq(z) € M,;
(2) 75(4) = Eg(2)m*(A)EG(2) Y
(3) Eq(2)™! =Eq(2)" = m*(Eq(—2));
(4) Eq(z1 + 22) = Eq(21)7 (Eq(22));

Assume in addition that M is a concrete W*-algebra in B(H) and that L is a self-adjoint
operator on H such that T'(A) = el'l Ae™'L' for A € M. Then

(5) 75(A)ei=E+Q) = e=(LH+Q) A for A € M, ;
(6) Eq(z)el*l = elx(1+Q),

3.3 Unbounded perturbations

In this subsection we consider a concrete W*-algebra 9t C B(#H) with a W*-dynamics
7 implemented by a self-adjoint operator L and assume that () is a selfadjoint operator
affiliated to 9. We formulate the following assumption on Q:

Assumption 3.A L+ Q is essentially self-adjoint on D(L) N D(Q).
Theorem 3.3 Suppose that Assumption 3.A holds and let
TH(A) = EHQ) 4o 1HI+Q), (3.10)

Then

(1) 7 is a W*-dynamics on I;

(2) If Q is bounded, then 1¢ defined by (3.10) coincides with ¢ defined by (3.6).
Proof. Let A € M. The Trotter product formula (Theorem A.1) yields that

79(A) =s — lim (eitL/neitQ/n)"A (efitQ/nefitL/n)n.

n—00
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Since exp(+itQ/n) € M, 75(A) € M. Therefore, 7 is a W*-dynamics and (1) is proven.
(2) follows from Theorem 3.1 (5). O

Under Assumption 3.A we set
EG(t) == lI+Q) g itl (3.11)
Again, for simplicity we will often write Eqg(t) for Ej, (). By the Trotter product formula
Eo(t) = s— lim exp(itQ/n) exp(itr"/"(Q)/n) - - - exp(itr"™~V/"(Q) /n),
hence Eg(t) € M.

Theorem 3.4 Suppose that Assumption 3.A holds. Then all the statements of Theorem
3.1 hold.

3.4 Perturbations of Liouvilleans

We continue with the setup of the previous subsection. In addition, we suppose that
(9N, H, J,H*) is a standard form and that L is the Liouvillean of 7.
Define
Lo=L+Q—-JQJ (3.12)

We set an additional hypothesis:
Assumption 3.B The operator L is essentially self-adjoint on D(L)ND(Q)ND(JQJ).

The main result of this section is:

Theorem 3.5 Assume that Assumptions 3.A and 3.B hold. Then L¢ is the Liouvillian
for 1.
Proof. We have to show that for ¢ € R:
(1) 7H(A) = ele de~e, A e MM,
(2) eltleHT C HT.
Clearly, ' .

797 = JeTR ] € M. (3.13)
By definition, D(L+Q) D D(L)ND(Q). Therefore, D(L+Q)ND(JQJ) D D(L)ND(Q)N
D(JQJ). Hence, by Hypothesis 3.B, L is essentially self-adjoint on D(L+Q)ND(JQJ),
and we can use the Trotter formula (Theorem A.1) to write

eltle — g — lim (eit(L+Q)/n€—itJQJ/n)"‘
n—0o0
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Therefore, for all A € 9N,
Té(A) — eit(L—i-Q)Ae*it(L—I-Q)

— s— lim (eit(L+Q)/ne—itJQJ/n)"A (eitJQJ/nefit(L-FQ)/n)n (3.14)

n—oo
— il gg-itle.
This yields (1).
To establish (2), note that since €@ and /97 commute

iH(Q—JQU) _ itQ 7,itQ 5

Hence
U @=IRN Y+ — 3+,

Moreover,

eLHT C HT.
By definition, D(Q) N D(JQJ) C D(Q + JQJ). Therefore, D(L) N D(Q — JQJ) D
D(L)ND(Q)ND(JQJ). Hence Lg is essentially self-adjoint on D(L) N D(Q — JQJ) and
it follows from Theorem A.1 that

ot — g _ lim (eitL/neit(QfJQJ)/n)".
n—,oo

This and the fact that H* is a closed set imply (2). O

The following formulas are sometimes useful:
Theorem 3.6 (1) Assume that Assumptions 3.A and 3.B hold. Then fort € R,
EQ(t) — eitLQe—it(L—JQJ),
e'te = JEq(t)Je""Eg(—t)~".
(2) Assume that @ is T-analytic. Then for z € C,

EQ(Z) — eizLQefiz(LfJQJ)’

e*le = JE(2)Je* Eq(—2)7".

4 Relative modular theory and relative entropy

One of the main tools used in our paper is the relative modular theory and relative entropy.
We devote this section to a concise introduction to this subject. Our presentation follows
partly [Ar4, Ar5, Don, Uh, OP].
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4.1 Relative modular operator

Let 9 C B(H) be a W*-algebra. Let ®, ¥ € #H. Following Araki [Ar5], we define the
operator Sg,y on domain MY + (1 — s )H by

S(p,\y(A\I/ + @) = S‘I;A*q),

where A € M and © € (1—sp)H = (M) It is easy to check that S ¢ is a well defined
antilinear closable operator. Its closure will be denoted by the same symbol.
It is useful to note that

MU = {AV : A € M, Asy = A},
and that for A € 9 satisfying Asy = A and O as above we have
Se.u(AV +0) = A" 0. (4.15)

The positive operator
Agy = Sy ySev

will be called the relative modular operator. The following facts are proven in [Ar5]:
Theorem 4.1 (1) KerAg gy = Kersysg;

(2) Arppw = g—iAM, A€ R;

(3) if B belongs to the center of I, then B commutes with Ag .

In the remaining part of the theorem we assume that (I, H,J,HT) is a standard form
and ®,¥ € Ht. Then

(5) AYp¥ = AdyseV = s ®;
(6) JAq;ycpJAcp,q; = A@q;JAq;@J = SI\I,Sq,.

The following convergence property of relative modular operators will be useful.

Theorem 4.2 Let (MM, H,J,H") be a standard form. Suppose that ¥, ®, € HT, that
As, w, = M in the strong resolvent sense, and that w—lim, ¥,, = ¥, s—lim, sy, = Sg
and w—lim, ®,, = ®. Then M = Ag v.

Proof. For A € 9N,
ALy AT, = Jsy, A*D,,.

Note that A¥,, — AV weakly and Jsy, A*®,, — Jsy A*® weakly. Hence, by Proposition
A.6 and remark after it, AV € D(M) and

MAV = Jsg A*®.

Now let © € (1 —s§)H and O, := (1 — sy _)O. Since sy, — sy strongly, ©, — ©
strongly. Since Ag, v,0, =0, © € D(M) and MO = 0. This yields M = Ag y. O
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4.2 Relative entropy

Let M be a W*-algebra. The relative entropy of two functionals 1, ¢ € 97, denoted
Ent(1|¢), is defined as follows. Choose a standard form (7, H, J,H*) of I and let ¥, @,
be the standard vector representatives of ¢/, ¢. Then

(\If| log Aq,yq;\lf) if Sy S S¢,
Ent(¢|¢) =

—00 otherwise.

The relative entropy was introduced by Araki in fundamental papers [Ar4, Ar5]. In the
above definition we used the sign and ordering convention of [BR2]|. The relative entropy
is discussed in detail in the monograph [OP].

We will need the following well-known facts [Ar4, Ar5, OP, Don].

Theorem 4.3 (1)
Ent(vlg) = lim ¢~ (A5 21* - []?) ; (4.16)
10 d
(2) for p, A € RY,

Ent(Ay|u¢) = AEnt(¢|¢) + Ay (1)(log 1 — log A);

(3)
Ent(|¢) < (1) (log d(s4) — logah(1)),

in particular, if ¢(sy) = P(1) then
Ent(]6) < 0
(4) if Q is a self-adjoint element in the center of M and Y(1) = 1, then

Ent(¢[¢) + ¢(Q) < log ¢(e?).

Proof. (1) Assume first that sy < sg. Then the statement follows from the spectral
theorem, monotone convergence theorem and the fact that

limt ™ (zf — 1) =1
im ™ (2" — 1) = logz,

decreasingly on ]0,00[. If s ¥ # WU, then ¥ = ¥y + ¥y, where ¥; # 0, ¥; 1 ¥, and
¥, € KerAg gy, and one easily shows that the limit in (4.16) is —oo.
Scaling property of Theorem 4.1 yields (2).
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We first prove the part (3) under the assumption ¢(sy) = 9(1) = 1. Using
loge <z-1, x>0, (4.17)

we get
log Agw < Apg — 1.

Thus
Ent(y]¢) < [|AYSP]? = [T]]2 = é(sy) — v(1) = 0.

(We used A;{?I,\Il =55P = Jsg®).
To extend (3) to arbitrary ¢, ¢, use (2).
To prove (4), note that since €% commutes with Ag g

log Mg,y + Q — log 6(e%s) = log (A,ue?/d(c%sy))
The inequality (4.17) yields

log (AQ,‘peQ/qﬁ(erw)) < Agwe?/p(esy) — 1.

Hence
Ent(v]0) + (@) — log o(e%sy) < [IAG5e T|1*/6(e%s,) — 1
— e/, B /6(e%54) — 1 = 0,
where we used [e9/2s®|| = [|e?/2 s, JB|| = || JeU/ 25, || = ||e?/25,D|. O

4.3 Uhlmann’s monotonicity theorem

In this subsection we prove a relative entropy inequality due to Uhlmann [Uh]. Our proof
follows the steps of an argument in [OP] and is based on an interpolation theorem for
self-adjoint operators (Theorem A.7 in the appendix). A different proof can be found in
[PuWo|.

Let 9, and 9Ny be WH*-algebras. A map v : IM; — I, is called a Schwartz map iff
7(1) =1 and y(A*A) > 7(A)*v(A).

Theorem 4.4 (Uhlmann’s monotonicity theorem) Let v;, ¢; be normal states on
M, 1 =1,2, and let v : My — My be a Schwartz map such that

o0y =1, (4.18)
Pa 0y = 1. (4.19)
Then
Ent (¢s|¢2) < Ent(t)1|61).
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The following inequality is a consequence of Uhlmann’s theorem:
Corollary 4.5 Let 0N C O be W*-algebras with common identity and v, ¢ € ML, Then

Enton(1|¢) < Ent(s]y, [ 4]y,)-

Proof. The inclusion map v : 91 — 91 is Schwartz and satisfies the conditions of Theorem
4.4 with respect to 1, ¢ and the restricted states w‘m, d"m' O

To prove Uhlmann’s theorem it is convenient to work in the standard representation
and to translate the problem into the language of operators on Hilbert spaces. Hence we
assume that 9U; C B(H;) and that (9, H;, J;, H;") is a standard form. Let y : 9, — 9N,
be a Schwartz map. Let ¢; € 97, satisfy (4.18) and let ¥; be the standard vector
representatives of ;. Set Dy := ¥y + (M ¥;)+. We define a linear map T : D; — Ho
by

T(A¥; 4+ O1) := y(A) ¥,

for A € 9, and ©; € (I, ¥,)L. Since y(1) =1, T, = Vs,
Lemma 4.6 The map T is well defined and extends to a contraction from Hi to Hs.

Proof.
Iy (A)Ts||* = 9 (y(A)"7(A))
< ha(v(A7A)) (4.20)
= 1(A"A4) = |AT,]*.

Hence if (A — B)¥; = 0, then (y(A) — v(B))¥y = 0. Therefore, T is well defined. By
(4.20), T is a contraction. O

Let ®; be the standard vector representative of ¢;. The main step of the proof of
Theorem 4.4 is the following interpolation estimate for the relative modular operator:

Lemma 4.7 For0<t<1,

t/2 t/2
”A‘I{z,‘%qj?“ < ”Acb/l,\lll\IIl”-
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Proof. The space D;, defined above, is a core for A(lp/f\l,l. Let A € M with A = Asy,.
For )y = AV, + ©, € D; we get

A<ll>/22,\1/2TQI = A}p/jwﬂ(A)‘I’Q = JS\IJQV(A)*‘PZ;
APy = AL AT, = JA*D,.
By (4.19)
[ 59,7(A)* @a|* < d2(y(A)7(A)") < d2(y(AAY)) = hu(AA") = || JTA P ||".

Hence
1/2 1/2
1AL 5, T || = [ A2, ]l

By Lemma 4.6, T is a contraction. Hence, by Theorem A.7, for ¢ € [0, 1]
2 2
1A%, 0, Tl < 11257 g, 2l

Setting €); = ¥, we derive the statement. O

Proof of Theorem 4.4. Using Theorem 4.3 (1), Lemma 4.7 and 1 = ||¥4|* = ||¥,]]?,
we obtain

Ent(tald) = lim ¢~ (1A%, Wa* — | %))
. — 2
<timt™ (1a77 g, Wl - [19:]?)

= Ent(¢)1¢1).

5 Perturbation theory of KMS states

Let § > 0. In this section, given a (7, §)-KMS state w and a perturbation ), we describe
the construction of the perturbed B-KMS state wg. We also prove various properties of
this state, including the Peierls-Bogoliubov and the Golden-Thompson inequalities. The
Golden-Thompson inequality plays an important role in our construction.

The construction is performed on three levels: for analytic perturbations, bounded
perturbations and a class of unbounded perturbations. Although the results on the first
two levels are well known, the method of the proof on the second level (bounded pertur-
bations) is new. The results concerning unbounded perturbations are new and they are
the main results of our paper.
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5.1 Bounded perturbations

Let (M, H,J,H") be a W*-algebra in the standard form. Let 7 be the W*-dynamics
on M with the standard Liouvillian L. Let w be a faithful (7, 8)-KMS state with the
standard vector representative ).

Let @ € 9 be self-adjoint and 7¢ the perturbed W*-dynamics defined by (3.6). By
Theorem 3.5, Lo = L + () — JQJ is the standard Liouvillean of 7¢.

The following two theorems summarize the (bounded) perturbation theory of KMS
states developed by Araki.

Theorem 5.1 (1) Q€ D(e ALAR)/2), Get

Qg 1= e PEFR20  wo(A) = (Q0]AQ0)/ 1190l

(2) Qg e H.

(3) Qg is a cyclic and separating vector for 9.
(4) The state wq is a (1g, B)-KMS state.

(5) log A, = —BLg.

(6)

6) For all self-adjoint @)1, Q2 € IN,

(20,)Q. = 20, +Q2 (WQ1) Q2 = WQ,+Q.-

(7) log AQQ,Q =logAq — 5Q.

(8) log Aqq, = logAq, + 5Q.

(9) Ent(w|wg) + Aw(Q) = —log||Qqll*.
(10) Ent(wg|w) — Bwe(Q) = log [|Qq]|*.

)

(11) The Peierls-Bogoliubov inequality holds:

e PIQY)/2 < 190]l-

(12) The Golden-Thompson inequality holds:

190l < lle=#972.

(13) Assume that Q, € M are self-adjoint and Q, — Q strongly. Then g, — Qg and
wQ, — WQ N Norm.
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Theorem 5.2 Let

Tﬂ,n:{(ﬁla“' :ﬁn) eRn : ﬂzzoa izla"'an: ﬁ1++ﬁn Sﬁ/Q}
Then Q € D(e™PLQ - e PrLQ) for (Bu,...,Bs) € Tpn, the function

Tﬂ’" 9 (Bl? A ,ﬂn) — e_BILQ- . .e_ﬂnLQQ

1S morm continuous,

sup  [le Qe EQ Q) < Q" (5.21)
(B1,+ Bn) €T,

and

QQ = zoo:(_l)n/ . -/eﬂlLQ .. .e*ﬂnLQQdﬁl ...dB,. (5.22)
n=0 Ts

We have separated Theorem 5.2 from the other results of Araki’s theory for several
reasons.

Theorem 5.2 contains the main idea of Araki’s original proof of Theorem 5.1. In fact,
his proof was centered around the expansion (5.22). Our methods are in a certain sense
orthogonal to Araki’s and we do not need Theorem 5.2 to prove Theorem 5.1.

The expansion (5.22) is an additional information about ¢ which, strictly speaking,
cannot be derived by our methods alone. Hence, for bounded perturbations our method
yields a slightly weaker result than the Araki method. On the other hand, our method is
simpler and easily extends to a large class of unbounded perturbations Q).

Both Araki and our methods start with analytic perturbations. In this case, the
proofs of Theorems 5.1 and 5.2 are essentially algebraic and relatively easy. For a general
bounded () one picks a sequence of analytic @), with ),, — @ and uses various limit ar-
guments to establish the theorems. The key difference between the two methods concerns
these limit arguments—we use weak limits while Araki uses strong limits. The use of
weak limits leads to some technical simplifications and the method naturally extends to
unbounded perturbations.

Finally, we mention some additional estimates which can be used to compare 2 with
Qg.

Theorem 5.3 (1) || — Q| < (efI9l/2 — 1),

(2)
BQIQQ)/2 = (10 - (QU2) > B(02Q2)/2

> (QUQ) — 101> > B(Q0|Q0Qq) /2.
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BQIQQ) = [12I” — 120l > B(Qe|Q%)-
1 — QII* < B(QIQQ)/2 — B(Qe|Q0Nq) /2-

192 — QI < BF(1Q]; Q%) /2,

where, for x,y > 0, we set

r—y .
f(x,y) — { log z—logy’ T F#Y;

x T =y.

The estimate (1) follows immediately from (5.21) and is of course well-known. The
estimates (2)—(5) appear to be new.

5.2 Analytic perturbations—proofs

In this section we prove Theorem 5.1 for analytic self-adjoint perturbations @) € 9%,. The
proofs are based on the algebraic arguments and are relatively easy.
Proof of Theorem 5.1 in the analytic case (1) For ¢ real,

Eq(t)Q = oit(L4Q) g —itL ey _ oit(L4+Q) ()

Since E¢(t) has an analytic continuation to an entire function z — Eq(2), Q2 € D(el*(L+Q))
for all z € C and Eg(2)Q2 = e*T+9)Q). In particular,

Qg = Eo(if/2)0. (5.23)
(2) We have
Eq(i8/2) = Eq(i8/4)7"/*(Eq(i5/4))
= Eq(iB/4) " (Eq(i8/4)").
Hence, by (5.23),
Qq = Eq(i8/4)e™"*/*Eq(i6/4)"Q)
= Eq(i8/4) JEq(iB/4)S2.

Therefore, Qg € H™.
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(3) Since Eg(i3/2) is an invertible element of 9, €2 is obviously a cyclic and sepa-
rating vector for 9.
(4) Theorem 3.6 yields

e PLl2 = JEq(=iB/2)Je P 2Eq(~iB/2) ",
and MQg = MO C D(ePLe/2). Moreover, for A € 9N,
e PLel2 AQq = JEq(—iB/2)Je PLI*Eq(-iB/2) tAEq(i8/2)Q
— JEq(—iB/2)Eq(i8/2) A"Eq(~i8/2) 0
= JEqg(—iB/2)Eq(—iB/2) "t A*Eq(i8/2)Q = JA*Qy.
(5) By Theorem 3.5, we know that Ly := L + @ — JQJ is the Liouvillean of 7. By

Theorem 2.18 we know that Aq, = e™#Le.
(6) follows from

E;Qzl (iﬁ/2)EEh (lﬂ/Q) = E7C-?1+Q2 (iﬁ/?),
which is an immediate consequence of Theorem 3.1 (6), where L + @ is to be used for L
in the expression for Eg‘-‘;l ().
(7) The relation
SaEq(i8/2)"AQ = A*Qq = Sa,,0AQ

implies that
Sag,a = SaFEq(iB/2)".

Hence

AQ,QQ = S;)Q,QSQQ,Q
— Eq(i8/2) AaEy(i8/2)

= (Bo(i8/2)e"M?) (e #212Eq (i6/2)°)

= ¢ AUFQ)

where we used Ag = e AL,
(8) follows from (7) if we note that, by (6), (Q2q) ¢ = .
(9) Set Q@ := Q + B ' 1og[|||*. Then wq = wg and Q := Qo/||Q||- Using (7) we
get -
log Ag, 0 =logAg — SQ,

which implies

Ent(wlwg) = —Auw(@).
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(10) Similarly, using (8) we get

log Ag 6, =log Ag, + BQ,
which implies B
Ent(wo|w) = Bug(@Q)-
(11) Since Ent(w|wg) < 0, (9) yields that

e B(21QQ)/2 < ||QQ||‘

This is the Peierls-Bogoliubov inequality.
(12) Let 9 be the Abelian von Neumann subalgebra of 9t generated by @. Then,

log [|Q]I” = Ent(wg|w) — fwe(Q)
< Ent(wQ|m|w‘m) — Bwg(Q)

5.24
< logw(e 79 .

= log [|le™?%/2Q||?,

and so
0]l < [le™#9/2Q)]|.

This is the Golden-Thompson inequality. In the first step of (5.24) we used (10), in the
second—Uhlmann’s estimate of Corollary 4.5 and in the third—Theorem 4.3 (4) with @
replaced by —BQ).

(13) is a general fact which has the same proof for analytic and bounded perturbations.
Its proof is given in the next section. O

We remark that the Golden-Thompson inequality was first proven by Araki [Ar2]. The
proof described in (12) is due to Donald [Don].

5.3 Bounded perturbations—proofs

In this subsection we prove Theorem 5.1. We assume that () is an arbitrary self-adjoint
element of 9. By Theorem 2.20, we can find a sequence (), of self-adjoint 7-analytic
elements such that @), — @ o-strongly. This implies that @), — @ strongly and the
following lemma holds:

Lemma 5.4 (1) L+ Q, = L+ Q in the strong resolvent sense.

(2) Lg, — Lg in the strong resolvent sense.
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Proof of Theorem 5.1. (1) Clearly, lim, e #@"/2Q = ¢=#9/2Q). Hence there exists C
such that for all n
||efBQn/2Q|| <C.

By the Golden-Thompson inequality for analytic perturbations,
19, |I < lle™79/2Q]|.

Hence ||Qq, || < C. Now by Proposition A.6, Q2 € D(e #L+9)/2) and

w— lim e ALA@)/2Q) — o AL+Q)2Q)

n—oo

(2) follows from the analytic case of (2) and the fact that H* is weakly closed.
(3) Let P:=1—sq,. Clearly, P € M, 75(P) = P and PQq = 0. Set

Q(z) = e 2LHAQ,

By Proposition A.2, the vector-valued function €(z) is analytic inside the strip 0 < Rez <
£/2 and norm continuous on its closure. Moreover, Q(3/2) = g and

A PO(it + B/2) = e+ peiLtAQ(5/2)

Thus, for all real ¢, PQ2(it + 3/2) = 0. This implies that PQ(z) = 0 for all z in the strip
0 < Rez < /2. In particular, PQ2(0) = P2 = 0. Since () is a separating vector for 9,
P = 0. Hence sq, = 1 and ) is a separating vector for 9. Since () is separating, (2)
and Theorem 2.9 (3) imply that g is also cyclic.

(4) follows from the analytic case of (4) and Theorem 2.19.

(5), (7) and (8) follow from their analytic versions and Theorem 4.2.

(6) Let now @1, Q2 be two self-adjoint elements and Q1,, @2, the sequences of the
corresponding analytic approximations. Then, by the analytic case of (6)

(QQl,m )Q2,n = QQl,m+Q2,n .

As n = 00, (91,m)@2m = (21,m)Q. Weakly, Qq, 40, = Q@1 m+q. weakly, and so

(QQl,m)Q2 = QQl,m+Q2' (5'25)

By the arguments of the proof of (1), as m — o0, Qg,,.+@. — Q.+, Weakly.

Moreover,
Q —B(L+Q1,m—JQ1,mJ+Q 2&2
( Ql,m)Q2 C ( b b 2)/ Q

1,m?
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Q9,,., = Qg, weakly and L + Q1 — JQ1,nJ + Q2 — L+ Q1 — JQ1J + Q2 in the strong
resolvent sense. Hence by Proposition A.6, Qg, € D(e P(E+Q1=JQ1J+@2)/2) and

—B(L —JQ1J 2
(Qq,)q, = e PUA@INTTRIRQH = Qg 1q,-

(9) and (10) follow from (7) and (8) precisely as in the analytic case.
(11) (The Peierls-Bogoliubov inequality) follows from (9) just as in the analytic case.
(12) lim,, e=#9/2Q) = ¢=P@/2Q) implies

Jim [Je#920] = [le 920 (5.26)
Moreover, w— lim,, Qg, = Q¢ implies
9]l < limnf g, | (5.27)
By the Golden-Thompson inequality for analytic perturbations,
120,11 < [le 7920 (5.28)
Now (5.26), (5.27) and (5.28) imply the Golden-Thompson inequality:
190l < lle=#972]]. (5.29)

(13) Let @, € 9 be an arbitrary sequence of self-adjoint elements which converges
strongly to (). The proof of (1) yields that Qg, — Qg weakly. Using first the chain rule
and then the Golden-Thompson inequality we get

190,11 = 11(20) @u-qll < [le™ @ =D72Qq||.

Hence, limsup,, ||, || < ||Q2¢]|- Combining this estimate with (5.27) we get |[|Qq, | —
I2]|, and so Qg, — g in norm. By Theorem 2.9, this implies that wg, — wg in norm.
O

5.4 Perturbative expansion of {J; and the estimates

In this subsection we prove Theorems 5.2 and 5.3. The proof of Theorem 5.2 is based on
the following technical result of Araki.

Theorem 5.5 (1) Set
Sgni={(21,...,2,) 1 Imz; >0, i=1,...,n, Imz; +---+Imz, < 3/2}.
Then for (21,---,2n) € Sgn, Q belongs to D(e*LQ, - - - LQ,), the function
Sgn 3 (2n,...,21) = € LQ, -+ FQ Q) (5.30)
s norm continuous on Sg,, analytic on its interior, and

sup [l Q- QU < [1Qull - @l (5.31)

(215.-»2n)ESp,n
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2,m

(2) Let Qiy — Q; strongly, QF,, — QF strongly. Then
m—00 m—0o0

lim e tQ, -+ € LQy Q2 = QL Q. 0, (5.32)

m— 00

uniformly for (z1,. .., z,) in compact subsets of Sp,.

Proof. The proof follows by induction wrt n. For n = 1, the statement follows from the
Proposition A.2 and the KMS condition (Theorem 2.18).
Suppose that the statement is true for n — 1. Set

Uz, .oy 2n1) 1= Quen=1LQ, - - e F Q1 Q,
D (21, s 2 1) = JQie A LQs - e Fn1LQr Q)
Consider ® € D(e#/2) and the function
F(z1,. 5 2n1) = (®|Q" (21, .- -, 2n-1)) -

By the induction assumption, the function F' is continuous on Sg, 1, analytic on its
interior, and satisfies the estimate

[E (21, - 2n1) | < (1NNl - (I Qull, (5.33)

which gives the estimate (5.31) for z, = 0.
The function

G(z1y .y 2nor) 1= (W T FE—1=BALG Q2 L. 21)) (5.34)

is also analytic and continuous on the same domain. (Here we used the induction assump-
tion, the assumption ® € D(e #L/2) and Proposition A.2).
For z1,...,2, 1 € R set so =21, 83: =29+ 21, ... S, = 2,1+ - -+ 21. Then

Fz,- 5 zma) = (RJQIT2(Q) - 77 (Q7))
= (Qle 2175 (Qn) -+ T (Q2)Q192)
= G(Zl, ceey anl),

and by the edge of wedge theorem, the functions F' and G coincide on their whole domains.
Thus, by (5.33)
G215 zn-1) | S ([RIQ: - - - [|Qnll- (5.35)

For z, =i8/2— 21 — -+ — z,—1 and (21,...,2n—1) € Sgn_1, this implies that

Q21 .., 20-1) € D(e*1),

32



and

(21, oy 2n1) = € EQ(21, ..o, 20 1) (5.36)
(5.35) gives also the estimate (5.31) for z, =i8/2— 21 — -+ — z,_1.
The estimate (5.31) for 0 < Imz, < /2 —Imz; — - -+ — Imz,_; follows from (5.33),

(5.35) and Proposition A.2.

By Proposition A.2 and Hartog’s theorem of holomorphy, (eZ"L®|Q(z1,...,2,)) is
analytic on the interior of Sg,,, for ® € D(e #L/2). Using the estimate (5.31) we see that
it is analytic for all . Hence we can conclude that the function (5.30) is weakly analytic.
Since the weak analyticity is equivalent to the norm analyticity, we have proven all the
statements of (1) except that (5.30) is norm continuous on the whole Sz ,.

Next we turn to the proof of (2) for n. Set

Q21,5 2p-1) 1= Qn,meiznflLQn—l m*" ‘eiZILQ1 mfl
(21, -0y 2nm1) = JQ e Qs el QL
By the uniform boundedness principle, independently of m, we have
IQiml <C, i=1,...,n. (5.37)
Now
198, (21, - - - 2n—1) — (21, - -+, Zn—1) ||
<N Qumlllle™™ Q5 1, - - e7Pnm22Qy Q2 — e EQS - eT b Q) Q|
Q1 — Q1)e Q5 - - e Fer by Q.

The first term on the right goes to zero uniformly on compact subsets of Sg,_1 by the
induction assumption and (5.37) for ¢ = 1. The second term on the right goes to zero
uniformly on compact subsets of Sg 1 by the induction assumption, Lemma A.3 and the
strong convergence Q7 ,, — Q7.

By the proof of (1) (see the identity (5.36)), we have for zq,...,2,-1 € Sg 1,

Q21 -y 2n-1) = Qu(21,. .-, 2n-1) € D(e(—izl—...—izn,1—5/2)L)’
Q*(zla HRI) Zn—l) - Q:n(Zh ey Zn—l)
= el ien1=B/AL (O (2 20s) — Q21 -+ -5 2ne1)).
Hence,

lim ||e( iz ——izn_1—6/2)L (Q(Zl,---,znfl) —Qm(zl,...,zn,l))” =0

m—0o0

uniformly on compact subsets of Sg, 1. By the induction assumption,

lim [|Q(z1,--,20-1) = Qnl21y- -+, 20-1)]| =0

m— o0
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uniformly on compact subsets of Sg,_1. Hence, by Proposition A.2

lim |[el*nl (Q(zl, ceyZno1) — Qml(z, .. Zn,l)) H =0
m—00
uniformly for 0 < Imz,, < 5/2—Imz; —---—Imz,_; and (21, ..., 2,-1) in compact subsets

of Sgn—1. In particular, the convergence is uniform on compact subsets of Sg,,. This ends
the proof of (2) for n.
It remains to prove the norm continuity part of (1). Let Q;,,, € M, such that Q;,,, —
m—ro0

Qi strongly and Q;,, — Q) strongly. The function
7 m—o00

C" 3 (21, 2n) = € 1Qp -+ €21Q 0

is entire analytic and in particular, it is norm continuous. By the uniform convergence
on compact subsets of Sz, proven in (2), and the local compactness of Sz, we conclude
that (5.30) is norm continuous on Sg,. O

Proof of Theorem 5.2. Let @, € 9, be such that @), — @ strongly. Since (g, =
Eq, (i8/2)S2, the expansion (3.9) yields that Theorem 5.2 holds for @,. Moreover,

QQ = W— hm QQn

n—0oQ

m=0

—w— lim (1) [ [eEQ, e Pt Qu0d5 - diy
n—oQ
T8,m

m=0

:i(_nm e*ﬂlLQ---efﬂmLQQdﬁl---dﬁm.
/-]

The first identity follows from Theorem 5.1 (recall the proof of (1) or use (13)), the second
is obvious, and the third follows from Theorem 5.5. O

Proof of Theorem 5.3. Theorem 5.2 yields (1). By Theorem 5.1 (13) it suffices to
prove (2)—(5) for Q € M.
(2)-(3). Our proof is motivated by [Sa2]. By Theorem 3.2, Q € D(e~*=+@) for all z

and
Eq(iz)Q = e 2F9Q

is an entire vector-valued function. Set

1(2) = (e~ Q) = (Q[Eq(i2)Q).
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Then f is an entire function, f”(z) > 0 for x € R, and
foy=er=1, f(8/2)=(92Q), f(B)=I|%%I"
f1(0) = =(QL + Q)2) = —(2UQW),
f1(8/2) = =(QI(L + Q)Qq) = —(Q[JQJQ0) = —(2]Q0),
F'(B) = =(Ql(L + Q)Qq) = —(Qp[JQIQ) = —(20|Q%0)

(we used L2 = 0 and (L + Q — JQJ)S29 = 0). These relations combined with the
mean-value theorem yield (2)—(3).

(4) follows easily from (2).

To prove (5), consider the function

F(2) = 5(Q)Eq ()%

Since 75(Q) and Eq(z) are uniformly bounded on the strip 0 < Imz < 3/2, F(z) is also
bounded on the this strip. Moreover,

|QQ| if Imz = 0;
TIETER S |
17" (@)l if Imz = §/2.
Since 7/%(Q)2q = e PLe2Q0q = JQNy,
IF()] < 1@l if Imz=p5/2.
Hence, by the three-line theorem, for 0 < ¢ < /2,

IE ()| < Q2" |Qa|/7.

Since
B/2
Qo —-0=- / 74(Q)Eq(it)Qdt,
0
we derive
2 .
199 — QI < [P |F(it)||dt
< B 11U *1QQ0 |5 ds = Bf(|QQ], |QQ0])/2-

O
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5.5 Unbounded perturbations

This subsection contains our main results. It extends the construction of KMS states to
a large class of unbounded perturbations.

Let @ be a self-adjoint operator affiliated to 9 satisfying Assumptions 3.A and 3.B.
Let 7¢ be the dynamics defined as in Subsection 3.3. Recall that by Theorem 3.5 its

Liouvillean equals
Lo=L+Q—-JQJ.

In order to construct the perturbed KMS state we will need an additional assumption:
Assumption 5.A  [|e ?9/2Q|| < co.

Theorem 5.6 Assume 3.A, 3.B and 5.A. Then
(1) Q € D(e AL+R/2). Get

Qg := e P2 4o(A) := (] AQ0)/]10]1%

(2) Qg e H.

(3) Qg is cyclic and separating.

(4) wq is a (1g, B)-KMS state.

(5) logAq, = —BLg.

(6) log Mgy = —BL — Q.

(7) Ent(wlwe) = —Bu(Q) — log [ Qg]
(8)

8) The Peierls-Bogoliubov inequality holds

e ARY)/2 190]l-

(9) The Golden-Thompson inequality holds:

120]] < [le72Q|.

(10) For any 0 < XA < 1, AQ satisfies the assumptions of the theorem, hence Qg is well
defined. Moreover, lim, g || — || = 0.

Remark. The formula for relative entropy of (7) requires a comment. Because of As-
sumption 5.A, w(Q-) is finite, where Q_ = 1j_o(Q)Q. Therefore, w(Q) is a finite
number or +oo.

Set

Qn = 1[—n,n] (Q)Qa

where 1), )(Q) is the spectral projection of @) on the interval [—n, n.
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Lemma 5.7 (1) L+ Q, — L+ Q in the strong resolvent sense.

(2) Lg, — Lg in the strong resolvent sense.

Proof. We prove only (2) (the proof of (1) is similar). Let Dy = D(L)ND(Q)ND(JQJ).
By Assumption 3.B, L is essentially self-adjoint on D,. Moreover, Lo V¥ — LoV,
U € Dy. Hence the statement follows from Proposition A.5. O

Proof of Theorem 5.6. Given the approximating sequence (), defined above and
Lemma 2, the parts (1)-(9) follow from Theorem 5.1 in the same way as the analogous
parts of Theorem 5.1 followed from the analytic case of Theorem 5.1.

The only part requiring a separate argument is (10). To prove it, note that L+AQ — L
in the strong resolvent sense as A | 0. This implies that Qo — €2 weakly as A | 0 and

2] < lim inf [[ x| < limsup gl < lim [l 90| = |
A0 ALO AL0

Hence, ||Qxg]| — [|€?]| as A | 0, and this implies that Qg — Qas A} 0. O

5.6 Perturbations of Liouvilleans revisited

In Theorem 3.5 we have shown that L is the Liouvillean of 7 by invoking Theorem 2.11
and checking that ' . .
TH(A) = e're e, etteyt c HT. (5.38)

Under the conditions of Theorem 5.6 (recall Proposition 2.14), the second relation in
(5.38) is equivalent to

In this section we give an elementary direct proof of (5.39). This verifies that L is the
Liouvillean of 7o without resort to Theorem 2.11.

We consider only the case of analytic perturbations @) € 9M,.. The extension to
bounded ) and unbounded @ satisfying conditions of Theorem 5.6 is immediate using the
strong resolvent convergence of Liouvilleans and the weak convergence of 5-KMS vectors.

First, the relation

DO, = Eg(t +iB)0

and analytic continuation yield that Qg € D(exp(iz(L + Q)) for all z, and so Qg €
D(L+ Q) =D(Lq). _ .
Since etMle L = M. JQJ € M, and e''*J = Je''r, the Trotter product formula
yields
eit(L+Q) JQJe—it(L—I—Q) — eitLJQJe—itL — JeitLQe_itLJ.

By analytic continuation, the relation

(PEHR2H| QI PIHD2Q) = (9ITP1(Q)IQ)
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holds for all ® in a dense domain D = UrsoRanl_, (L + Q). Using

JrB2(Q)J0 = JAZQQ = QQ,

we derive
(DR IQI0G) = (B|QQ).

This relation yields
(PHDLRO|(L +Q — JQI)) = (PHHID|(L + Q)0) — (2]Q)

= (2[(L + Q)Q) — (?|Q%Q)
= (B|LQ) = 0.

Since e/+@)/2D = D is dense in H, Ly = 0.

A Technical facts

In this appendix we collect some technical facts which have been used throughout the
paper.

A.1 Operators and resolvent convergence

First, we recall the Trotter product formula (see [RS1]|, Theorem VIIL.31).

Theorem A.1 If A and B are self-adjoint operators and A+ B is essentially self-adjoint
on D(A)ND(B), then
s — lim (eitA/neitB/n)" — ol(A+B)
n—oo

The next proposition follows easily from the spectral theorem and the three-line the-
orem (see also Lemma 4 in [Ar2]).

Proposition A.2 Let H be a self-adjoint operator and Q € D(e’®) for some § > 0. Then
the vector-valued function e* ) is analytic inside the strip 0 < Rez < 8, norm continuous
on its closure and

||ezHQ|| S ”eJHQ“Rez/J”Q”lfRez/é.

Lemma A.3 Let Z be a compact metric space and Z > z +— Q(z) € H a norm continuous
function. Let A, be bounded operators and assume that A, — A strongly. Then

lim |[(An — A)Q(2)[| = 0
n—o0

uniformly on Z.
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Proof. Note first that {Q(z) : z € Z} is a compact subset of H and that by the uniform
boundedness principle C' := sup, ||A,|| < co. Let € > 0 be given. Then there exists a
finite dimensional projection P such that sup,.,||(1 — P)S(2)]| < €. Since

1(An = A)Q2)[| < [[(An — A)P||sup,e, [|92(2)]]
+sup,, [|An — Al sup,ez [|(1 = P)Q(2),

we derive limsup,, || (4, — A)Q(2)|| < 2Ce.O

The following properties of the strong convergence of functions of self-adjoint operators
are proven e.g. in [RS1]:

Proposition A.4 Suppose that H,, H are self-adjoint operators. Then the following
conditions are equivalent:

(1) Let zo & (UZO:1 (I(Hn))Cl (for instance, Imzq # 0). Then

s— lim (29 — H,)™' = (2o — H)™".

n—oo

cl
(2) If f is a bounded continuous function on (Uf;la(Hn)) , then f(H,) — f(H)
strongly.

Note that (1) in the above proposition holds for any choice of zq if it holds for one
choice of z;.

If the conditions of above proposition are satisfied we say that H,, — H in the strong
resolvent sense.

Proposition A.5 Suppose that H,, H are self-adjoint operators, H is essentially self-
adjoint on D and lim, H,W = HWV for ¥ € D. Then H, — H in the strong resolvent
sense.

Proof. Let Imz # 0. Then (z — H)D =: D; is dense in H. For ¥ € Dy,

(z— H)™ "W — (z— H,) 'V = (2 — Hy) " Y(H - H,)(z — H)™'¥ — 0.

The following proposition plays an important role in several arguments in our paper.
Proposition A.6 Suppose that H,, H are self-adjoint operators and H, — H 1in the

strong resolvent sense. Suppose that Q,,Q2 € H such that Q, — Q weakly and | H,Qy|| <
C. Then Q € D(H), w—lim,, H,Q),, exists and HQ = w—lim,, H,,,.
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Remark. By the uniform boundedness principle, the condition ||H,$,|| < C can be
replaced by the existence of w— lim,,_,,, H,2,.
Proof. Since the ball of radius C in a Hilbert space is weakly sequentially compact, one
can find a weakly convergent subsequence H, (), . Set ¥ =w — limy_,o, Hy, 2y, .

Let D := J Ranl_,,j(H). Let ® € D and f € C§°(R) such that f(H)® = ®. Then

>0

&= f(H)® = lim f(H,)®

n—o0
H® = f(H)H® = lim f(H,)H,®,
n—oo
and

(HO|0) = lim (H, f (Ho,)B[2,)

= lim (f (Ho, )@ Hy, ) (A.40)

= (D] D).

Since D is a core for H, Q2 € D(H) and HQ =¥
Now assume that w— lim,,_,., H,{) does not exist. Then there exists ® € H and a
subsequence H,, (2 such that

(®|H,, ) — (BHQ)| > ¢ > 0. (A.41)

Using again the weak sequential compactness of the ball of radius C and passing to a
subsubsequence we may assume that w— limy_,, H,, {2 exists. Repeating the arguments
of (A.40), we see that w— limy_,o H,, Q2 = HQ. This contradicts (A.41). O

A.2 An interpolation theorem

Various versions of the following interpolation theorem for linear operators can be found
throughout literature, see e.g. [OP] (where a different proof is outlined) and [RS2].

Theorem A.7 Let Hi,Hy be Hilbert spaces and let H; be a positive (possibly unbounded)
operator on H;. Let Dy be a core of Hy. Let T € B(H1,Hs) with ||T|| = ¢y be such that:
(a) TD, C D(Hy).

(b) For W € Dy, ||HTY|| < c1||H Y|

Then, for any 0 < X <1, TD(H}) C D(H3) and for ¥ € D(H}),

[H;TO| < o~ ey | HM]. (A.42)
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Proof. Clearly, we may assume that ¢g = ¢; = 1.
First let us show that TD(H;) C D(H;) and

|HT9) < ||H0], @ e D(H,). (A.43)
Let ¥ € D(H;). Then there exist ¥,, € D; such that ¥,, - ¥ and H;V,, - H, V. Now
| Ho(TW — T)|| < [|Hi(Tn — Ta)l.

Thus H,TV, is Cauchy, hence convergent. TV, is obviously convergent. H, is closed.
Hence TV € D(H,). (A.43) follows by passing to the limit in | HoTW, || < ||H1 U, |-
Let ® € D(H;), 2 € H; and € > 0. For 0 < Rez <1 set

F.(2) :== (HZ®|T(H, + ¢)~*Q).
F(z) is a continuous function in the strip 0 < Rez < 1, analytic in its interior, and
[Fe(2)] < (|(Hz + 1) @le (|2

For Rez =0
[Fe(2)] < [|@]I[€2]-

For Rez =1, (Hy + €)7*Q € D(H,), and
|Fe(2)| < [[@[[[[H2T(Hy + €)7*Q|
< |2l Hy(H1 + €)7*2| < [[@|[|€2]]-
These estimates and the three-line theorem yield that for 0 < A <1
[Ee(N)] < [[@]ll1l-

Therefore, for Q € H,
|HT(Hy + )0 <[],

and for ¥ € D(H})

|HyT¥|| = 1%1 |HyT(Hy + €)™ (Hy + )|
< hf(l)l”(Hl —l—e))“I!H

= || 5.
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B Pauli-Fierz systems

B.1 Introduction

A large part of the motivation for the formalism and the results of our paper comes from
quantum statistical physics. A detailed description of their application to Pauli-Fierz
systems—a certain class of physically motivated W*-dynamical systems—can be found in
[DJ2]. In this appendix we briefly describe these applications.

Pauli-Fierz systems describe a small quantum system (an atom or a molecule) inter-
acting with a large bosonic reservoir. They arise as an approximation to non-relativistic
QED (see e.g. [DJ1, RZ]), and they have been widely used in physics literature as a basic
paradigm of an open quantum system [LCD, We].

We are interested in the case where the radiation density of the bosonic reservoir
is not zero (in particular, the reservoir is not at zero temperature). For example, the
radiation density can be given by the Planck law at the inverse temperature 8 < oo, see
(B.46) below. This corresponds to the case of bosons in thermal equilibrium. We are
also interested in situations outside thermal equilibrium. For example, the reservoir may
consist of several subreservoirs at distinct temperatures.

W*-dynamical systems provide a natural framework to describe Pauli-Fierz systems
with non-zero radiation density, as it will be sketched below.

B.2 Bose gas at density p—Araki-Woods algebras

If Z is a Hilbert space, then we will write I's(Z) for the bosonic Fock space over the
1-particle space Z. ) will denote the vacuum vector.

For definiteness, we will consider the Bose gas with the 1-particle space L*(R?). As-
sume that R¢ 3 £ — p(€) is a nonnegative real measurable function describing the density
of bosons with the momentum & € R?. To describe the Bose gas at density p one uses
a special von Neumann algebra first described by Araki and Woods in [ArW]. It can be
defined by its representation in the Hilbert space

HAVY = [ (L*(RY) @ L*(RY)).

We will write a;(§), af (£), ar(€), a(€) for the creation and annihilation operators corre-
sponding to the left and right L?(R?) resp. We define the left /right Araki-Woods creation
and annihillation opetators

ap (&) == 1+ p(€)af () + v/p(€)ar(§),
ap(§) == /1 + p(&)ar(§) + /p(€)ar(§),
a, (&) = /p(§)a(§) + /1 + p(&)az(§),



The left Araki-Woods algebra is denoted by im;ﬁv and defined as the W *-algebra generated
by the operators

exp(i [ (£€)03,(0) + F©an(©)).

Let JAW :=I'(¢), where ¢ is an antilinear involution on L2(R?) & L?(R?) given by

6(f1572) = (f?a?l)a

and T" is the second quantization functor, and let HﬁW* be the closure of the cone in
HAW generated by
AJAQ, Aemyy.

Then (Y, HAY, JAW 2 2W-F) is a von Neumann algebra in a standard form. It de-

scribes the Bose gas at density p.

B.3 Araki-Woods algebra coupled to a type I factor

We denote by IC the Hilbert space of the small quantum system. For simplicity, we assume

that dim IC < oo. We would like to describe the W*-algebra of the joint system consisting

of the small system with the algebra of observables B(K) and the Bose gas at density p.
One way to define this algebra is to identify it with the von Neumann algebra

M, == B(K) @ MY

acting on the Hilbert space K ® ['s(L?(R?) & L?(R?)). The identity representation of this
algebra on K ® T's(L}(R?) @& L?(R?)) will be called the semi-standard representation of
M,
It is easy to describe the standard representation of 9,. Let K be the Hilbert space
complex conjugate to K (see e.g. Section 4.6 in [DJ2]). The standard representation acts
on the space

K®K®Ty(L*(R%) @ L*(R?)) (B.44)

and is given by 7(A ® B) := A® 1x ® B for A € B(K), B € 9M5)". The modular
conjugation is given by

JU, 0,0 : =0, 00, ® JAVo.

Note that it is useful to consider the two representations of 91,—the semi-standard
and the standard representations in a parallel way. The semi-standard representation is
simpler whereas the standard representation has special mathematical properties.
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B.4 Pauli-Fierz W*-dynamical systems

Suppose that K is a self-adjoint operator on K describing the Hamiltonian of the small
system. Let |£| be the energy of the boson of momentum £. Let RY 3 & — v(€) € B(K)
describe the coupling of the small system to the Bose gas. We assume that the Bose gas
is at the density p. Let A € R

We introduce the following operators on K ® I'y(L?(R?) @ L?(R?)):

L= K@l+1e / €1(a1 (€)ar(€) — a(€)ar(€))de,

Q= [0 ®03,(O) +v7(O) ®a(©)de

The operator L¥™ will be called the free semi-Liouvillean. The full semi-Liouvillean for

the density p equals . ) _
Lzeml = L?fml + /\leoeml‘ (B45)

For A € M, we set
t o ithemi _ithemi
T (A) 1= e Ae7 e
T;(A) = ety Ao LY

We also introduce the following operators on K ® K ® TIs(L*(R?) @ L*(R?)):

Ih—Kolol 10Kolilole / (a5 (©)m(é) — a2 (E)ar(6))de.

Q, = / (0(6) ® 1® a2,(€) +v°(€) ® 1 ® apu(E))de.

It is easy to see that

18,0 = [(187(6) ® a3, (6) + 19 7(O) ® 4,09 de.

Set
L,:=Lg+2Q, — AQ,J.

We denote by I?(K) the vector space B(K) equipped with the inner product (A|B) =
Tr(A*B) (recall that dim I < 00). The following theorem describes the case of the free
dynamics.

Theorem B.1 (1) For any t, 1f. preserves the algebra M, and (M,, 1) is a W*-
dynamical system.

(2) Ly is the Liouvillean for the dynamics Tg.
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(3) Let B> 0,
p(€) = (8 — 1), (B.46)

and Uy, = e PEI2Q Q. Using the natural identification of P(K) with KQK, ¥y can
be understood as an element of the Hilbert space K@ K @ T's(L*(R?) & L*(R?)). Then
Ve 15 a B-KMS vector for 1.

The results of our paper are the main technical input in the proof of the following
theorem, which describes the interacting dynamics:

Theorem B.2 (1) Assume that

[+ igna+ peniuePas < . (B.17)

Then for any t, T; preserves the algebra M, and (M, 7,) is a W*-dynamical system.
(2) L, is the Liouvillean for the dynamics T,.
(3) Assume that (B.46) holds and that

e+ ieP© e < oo

Then (B.47) holds, and there exists a -KMS vector for T,.

The W*-dynamical system (9,, 7,) is called the Pauli-Fierz system at density p. It is
canonically defined given K, K, v and p.

The proof of Theorem B.2 is given in [DJ2]. To prove (1) we check that Q5™ is
affiliated to 9, and that L™ + AQ5*™ is essentially self-adjoint on D(LE™) N D(Q5™).
Then we apply Theorem 3.3. To prove (2), in a similar way we apply Theorem 3.5.
Finally, to show (3) we use Theorem 5.6. The details can be found in [DJ2].

We finish with several remarks.

The perturbation Qf,emi is unbounded from above and below, and the existing results
in the literature [Arl, Don, Sa2| are not applicable to Pauli-Fierz systems.

The first result about existence of KMS-states for Pauli-Fierz systems goes back to
[FNV] where the spin-boson system was considered. A result similar to Theorem B.2
was proven in [BFS] under a more restrictive infrared condition. Theorem B.2 covers
the physical infrared regime of non-relativistic QED (often called the ohmic case in the
context of Pauli-Fierz systems, see e.g. [DJ1, DJ2, LCD, We]).
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