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Abstract. We study self adjoint operators of the form H, = Hy + > A, (n){(dn,)0n,
where the §,,’s are a family of orthonormal vectors and the A\, (n)’s are independently dis-
tributed random variables with absolutely continuous probability distributions. We prove
a general structural theorem saying that for each pair (n,m), if the cyclic subspaces cor-
responding to the vectors §,, and Jd,, are not completely orthogonal, then the restrictions
of H, to these subspaces are unitarily equivalent (with probability one). This has some
consequences for the spectral theory of such operators. In particular, we show that “well
behaved” absolutely continuous spectrum of Anderson type Hamiltonians must be pure,

and use this to prove the purity of absolutely continuous spectrum in some concrete cases.



1. Introduction

Let H be a separable Hilbert space and Hy a bounded self adjoint operator on H. Let
{6n}nen C H be a set of orthonormal vectors, where A is either finite or a countable
infinite set. Let {p,}neca be absolutely continuous (w.r.t. Lebesgue measure) probability
measures on R, and consider the probability space (€2,dP), where @ = X » R and
dP = X prdpy, . For each w = (A, (1), A,(2),...) € Q, define

Hy,=Ho+ Y Ao(n)(n,)0n . (1.1)
neN

Operators of the form (1.1) often arise as discrete Schrodinger operators with random

potentials in models of condensed matter physics. Perhaps the most famous example of this
type is the d-dimensional Anderson model, which has the form (1.1) on H = ¢*(Z%), with
Hy = A being the discrete Laplacian on ¢2(Z%) ((Ay)(n) = Doljon=1 ) N = z,

the §,,’s being the standard basis of KQ(Zd) (namely, 6,(m) = d,m, where d,, is the
Kronecker delta), and p, = p for some fixed measure p and all n’s. There are also

many variants of this model, such as operators where H, is the Laplacian plus some

fixed potential, operators where the potential is supported on a subset of Z?, operators

where the potential is random-decaying (e.g., dp,(\) = f(a,A) d(ap,A) for some fixed f

and a, — co as |n| — oo0), operators on graphs other than Z%, etc... While we discuss
below some concrete examples of this kind, our main results here involve general random
operators of the form (1.1), and are thus valid in this more general context.

Our main result in this paper is the following structural theorem:

Theorem 1.1. Let {H,},ecq be a family of operators of the form given by (1.1), and
for each n € N let H,, be the cyclic subspace spanned by H, and 6,. Let n,m € N,
and suppose that for a.e. w € §2, the subspaces H,, , and H, n, are not orthogonal. Then

for a.e. w €, the restrictions H,, [H, ., and H, [H, » are unitarily equivalent.

Remarks. 1. One easily verifies that for any w € Q, H, is essentially self adjoint.

The cyclic subspaces are defined by H, ., = {f(Hw)0n | f € Cx(R)}, where = denotes a

closure, and C(R) is the set of (complex valued) continuous functions on R with the

property that for any € > 0, there exists a compact set D, C R such that |f(z)] < € if
r ¢ D,.



2. The assumption that Hy is bounded can be relaxed, as long as we separately
require that the 4,,’s obey 6,, € D(Hy) (where D(-) denotes the domain of the operator),
and that the H,’s are essentially self adjoint (for a.e. w € Q).

3. The assumption that the A, (n)’s are completely independent can also be relaxed.
Theorem 1.1 (along with its Corollaries 1.1.1-1.1.3 below) would remain true if we consider
any probability measure P on {2 that has the property that for each n, the conditional
probability distribution of A, (n), given any {A, (M)}, is absolutely continuous.

4. We note that by the spectral theorem [18], each of the restriction operators
H, |H, n is unitarily equivalent to multiplication by F on L*(R, dite, s, ), where p, 5, is
the spectral measure for H, and §,, namely, the unique (regular) Borel measure on R
obeying (6, f(H, = [ f(E)dpg.s,(E) for any bounded Borel function f. Thus, the
unitary equlvalence of H,Hy,n and H, [Hy m is the same as the mutual equivalence of
the two spectral measures p,, 5, and i, s, (where we say that two measures are equivalent

if they have the same sets of zero measure).

While we are mainly interested here in random operators of the form (1.1), and we have
thus formulated our main result in this context, we will see that the core of Theorem 1.1 is,
in fact, a theorem about rank-two perturbations which is itself an immediate consequence
of a theorem about rank-one perturbations. Recall that the (by now, classical) theory of
rank-one perturbations [21] deals with families {H)}xcr of self adjoint operators of the
form Hy = Hp+ A{(¢,-)1p. The theory concentrates on the cyclic subspace spanned by H)
and ¢ (which is independent of \) and deals with the behavior of the spectral measure
pry (for Hy and 9) as A is varied. In this paper we treat a somewhat different question
in the same context: We will consider an additional vector ¢, and show that if the cyclic
subspace spanned by H) and v is not orthogonal to the cyclic subspace spanned by H)
and ¢, then for Lebesgue a.e. A, the spectral measure py  is absolutely continuous with
respect to the spectral measure py . This fact is the core of Theorem 1.1. Our proof of

it is an extension of an argument of Simon [20] (see more on this below).

In what follows, we are mostly interested in cases where the family {6, },ecar is a cyclic
family for the H,’s. Given a self adjoint operator H on H and a (finite or infinite) family
of orthonormal vectors {¢p}nez (where Z C N), we denote by H,, the cyclic subspace
spanned by H and ¢, , and we say that {¢,}.cz is a cyclic family for H if the set of
all finite sums {¢1 + @2+ ... + ¢n |G € My, } is dense in H. We note that such cyclic

families always exists, since every orthonormal basis of H is a cyclic family for H. Given
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such a cyclic family, we define a Borel measure p on R by

P ST (1.2)

nezl

where for each n, pu,, is the spectral measure for H and ¢,. Such a measure pu
completely determines the spectral properties of H, since any spectral measure of H
must be absolutely continuous with respect to it. In particular, the Borel decomposition
[ = flac + fsc + ppp Of p into absolutely continuous, singular continuous, and pure point
parts determines the corresponding spectra of H. The absolutely continuous spectrum
oac(H), singular continuous spectrum og.(H), and pure point spectrum o, (H), are the
topological supports of the corresponding parts of . We call the class of measures that
are equivalent to p (namely, those measures having the same sets of zero measure) the
spectral measure class of the operator H .

Theorem 1.1 immediately implies the following:

Corollary 1.1.1 Let {H,},cq be as in Theorem 1.1, and suppose that for a.e. w € 2,
the following two conditions hold:
(i) The family {0n}nen is a cyclic family for H, .
(ii) For every n,m € N, the subspaces H, n, and H, ., are not orthogonal.
Then for a.e. w € Q, for every n € N, the spectral measure p, 5, (for H, and 6, ) is in

the spectral measure class of H,, .

Corollary 1.1.1 indicates that the spectral theory of operators of the form (1.1) (in cases
where the assumptions of the Corollary hold) is somewhat simpler than what one might
a priory expect, since it is sufficient to study the restriction of H, to any of the cyclic
subspaces H, . More importantly, we will show that Corollary 1.1.1 imposes some re-
strictions on the kind of spectral properties that such operators might have as well as on
the behavior of certain spectral objects when w is varied. It is tempting to think that
Corollary 1.1.1 has something to do with the spectrum of H, being simple and the §,’s
being cyclic vectors. Indeed, if this where true, then Corollary 1.1.1 would have followed
from it. Furthermore, it has been shown by Simon [20] that for {H, },cqo as in Corollary
1.1.1, the §,,’s are indeed cyclic vectors (and thus the spectrum is simple) in case that
the H,’s have only pure point spectrum. In fact, our proof of Theorem 1.1 (and thus of
Corollary 1.1) is an extension of Simon’s argument. In the pure point case, the mutual
equivalence of the g, s ’s along with the existence of resolution of the identity in terms

of normalized eigenvectors imply the cyclicity of the §,,’s. However, this argument breaks
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down for continuous spectrum. Moreover, we will see below that there are simple examples
where the spectrum is not simple, and so Corollary 1.1.1 holds irrespectively of spectral
multiplicity issues.

Given an operator H,, of the form (1.1), let

o =Y 2 " tus, - (1.3)

neN
We will prove the following:

Corollary 1.1.2 Let {H, },ecq be as in Corollary 1.1.1. Then for P-a.e. pair w,w’ € 2,

the singular parts of the measures p,, and p, are mutually singular.

Remarks. 1. Corollary 1.1.2 is related to the known [4,5] fact about Schrédinger operators
with ergodic potentials that {w € Q| F is an eigenvalue of H, } has zero measure (and
thus the pure point parts of p, and p, are almost surely mutually singular). Of course,
our result does not cover general Schrodinger operators with ergodic potentials, while it
does cover many operators that are not ergodic. For the case of Schrodinger operators
with i.i.d. random potentials (which are ergodic), our result generalizes the above fact by
handling the singular parts of the measures rather than just their pure point parts. Deift-
Simon [6] have proven precisely the same kind of result (namely, for the singular parts of
the measures) for Schrodinger operators with ergodic potentials in one dimension.

2. Tt is interesting to note that Corollary 1.1.2 can potentially be used to prove the
existence (and even purity) of absolutely continuous spectrum, since it would be enough
to show the mutual equivalence of spectral measures for different realizations (with pos-
itive probability) in order to establish their absolute continuity. Indeed, this strategy, in
conjunction with the Deift-Simon analog of Corollary 1.1.2, had been used by Gordon et.
al. [7] (and more recently, through direct application of their results, by Jitomirskaya [11])

to establish purely absolutely continuous spectrum for the almost Mathieu operator.

Our next result is a natural complement of Corollary 1.1.2, involving the essential
supports of absolutely continuous spectral measures. Given an absolutely continuous Borel
measure v on R, a measurable set A is said to be an essential support of v if it supports
v (namely, if (R \ A) = 0) and if any set of strictly smaller Lebesgue measure does
not support v. Equivalently, A is an essential support of v if and only if there exists
f € LY(R,dz) such that A = {x € R| f(z) # 0} and dv = f(x)dz (as measures). We

note that if A is such an essential support, then every measurable set which differs from
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A by a set of zero Lebesgue measure is also an essential support. Thus, such an essential
support can be viewed as an equivalence class of measurable sets (where equivalence here
means up to sets of zero Lebesgue measure) rather than as some concrete set. However,
one can still talk of concrete sets as being (or not being) essential supports. A possible

concrete candidate to represent the essential support is the set

A={FeR| lirr(l) ¢ 'W(E — ¢, E + ¢) exists and is finite and strictly positive}. (1.4)
e—

We will prove the following:

Corollary 1.1.3 Let {H,},ecq be as in Corollary 1.1.1. Then there exists an w -
independent Borel set A C R, such that for a.e. w € Q, A is an essential support of

the absolutely continuous part of u,. Moreover, for any measurable set A that differs

from A by a set of zero Lebesgue measure (namely, for any A that is also an essential

support of the absolutely continuous part of p, for a.e. w € Q), we have that for a.e.

w € Q, lysing(A) =0, where p, sing is the singular part of p, .

Remarks. 1. The first part of Corollary 1.1.3, namely, the existence of a non-random
almost-sure essential support of the absolutely continuous part of u,,, is a fairly elementary
consequence of Kolmogorov’s zero-one law, and its proof does not require Theorem 1.1.
An analogous fact is also known [4,5] in the context of Schrodinger operators with ergodic
potentials. While this result (for general random operators of the form (1.1)) is fairly
elementary and seems to be known to workers in the field, we are not aware of it previously
appearing in the literature.

2. Corollary 1.1.3 provides a (weak) sense in which absolutely continuous spectrum of
such random operators must be pure, since it says that with probability one, the singular
parts of spectral measures must be supported outside the (non-random) essential support
of the absolutely continuous spectrum. This does not yet insure truly pure absolutely
continuous spectrum, since the spectra themselves are, roughly speaking, closures of the
corresponding supports, and so Corollary 1.1.3 still allows for a situation where o,.(H,,) N
Osing (H,,) # 0. However, if it so happens that the essential support A of Corollary 1.1.3
contains an open interval I, then it follows that for a.e. w € 2, H,, has purely absolutely

continuous spectrum on I, namely, I C 0ac(Hy) and I N oging(Hy) = 0.

As we shall see below, Corollary 1.1.3 can be used to establish the purity of absolutely

continuous spectrum in many concrete examples, including some cases where this has
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been an open problem for some time. Furthermore, it might be used in the future to
prove the purity of absolutely continuous spectrum in cases where its existence is not
currently known (such as the Anderson model). We note at this point that if H, is a
discrete Laplacian + potential on ¢%(G), for some connected graph G (namely, if H, =
A+ ca V) {n, )0+ hen Aw(n){6n, )0, where the d,,’s are delta functions on the

graph, and (Ay)(n) = >3, ;= ¥(j), where |n — j| denotes the distance on the graph

between n and j), then it is always true that for any pair n,m € N and w € Q, the

cyclic subspaces H,, , and H, ., are not orthogonal. This can be seen by noting that

(Hi,n_mlén,ém> always takes a strictly positive integer value that is independent of the
potential (more explicitly, it is equal to the number of different paths of length |n — m|
that connect n and m on the graph). Thus, if the set of points A/ where the random part
of the potential lives is sufficiently large so that {0, }necn is a cyclic family for the H,’s,
then Corollaries 1.1.1-1.1.3 are fully applicable to such operators.

One of the simplest examples of Schrodinger operators to which Theorem 1.1 can
be applied is that of a one-dimensional operator along with two consecutive rank-one

perturbations. That is, consider the operator
H) n = Ho + A{(bo, -)d0 + n(61, )61 (1.5)

on (*(Z), where Hy = A+ V for some fixed potential V' (such that (Hy,¢)(n) =
Y(n+1)+¢Y(n—1)4+(V(n)+Adon +n1,)¢(n)). Theorem 1.1 implies that for Lebesgue a.e.
pair A, 7, the restrictions of H) , to the cyclic subspaces it spans with J, and with ¢; are
unitarily equivalent. It is elementary that if V' = 0, then the above H) , has absolutely
continuous spectrum of multiplicity 2 on [—2,2], and so we see that the conclusion of
Theorem 1.1 holds regardless of simple spectral multiplicity.

Our next example involves discrete Schrodinger operators with random-decaying po-

tentials. By combining Corollary 1.1.3 with a result of Krishna [13], we have the following:

Theorem 1.2. Let d > 3 and let p be an absolutely continuous probability measure
on R with [Adp(\) =0 and [A?dp(\) < co. Let {an},cza C R be such that 0 <
lan| < |n|=® for some a > 1. Let H, = A +V,, on (*(Z%), where the potential V,,
is given by V,(n) = ap,A,(n) and the A\,(n)’s are independently identically distributed
random variables with common probability distribution p. Then for a.e. w, H, has purely

absolutely continuous spectrum on (—2d,2d).

Remarks. 1. Krishna [13] had shown that for H,,’s as in Theorem 1.2, [—2d, 2d] C 0ac(H.,)

for a.e. w. His proof is based on showing the existence of wave operators (w.r.t. the free
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Laplacian A), and it thus also imply that [—2d,2d] is contained in an essential support
of the absolutely continuous part of du, . (This is because the existence of these wave
operators imply unitary equivalence between the restriction of H,, to a subspace and the
free Laplacian A [19].) Thus, Theorem 1.2 (namely, the purity of the absolutely continuous
spectrum on (—2d, 2d)), follows immediately from Corollary 1.1.3.

2. Kirsch, Krishna, and Obermeit [12] have recently studied operators H, as in
Theorem 1.2. They show that with appropriate restrictions on the measure p (they need
it to have some smoothness properties and not to decay too fast at infinity) and on the
ap’s (they should not decay too fast) the resulting H,,’s have (for a.e. w) spectrum on the
entire real line, and moreover, the spectrum outside [—2d, 2d] is purely pure point (namely,
R\ [-2d,2d] C opp(Hy) \ 0c(Hy)). Their proof relies on earlier works by Aizenman
[1] and Aizenman-Molchanov [2]. Our Theorem 1.2 completes the spectral picture for
these models by proving the absence of singular spectrum on (—2d,2d). That is, we get
oac(Hy) = [—2d,2d], opp(H,) = R\ (—2d,2d), and os.(H,) = 0.

Another example we wish to discuss here is that of Laplacians on a “half space” with

a random boundary potential. In [10] we prove the following:

Theorem 1.3. Let d > 2 and let {H,},cq be Schrodinger operators of the form A+V,
on éz(Zd_1 X Zy), where Z 4 ={0,1,2,...}, and V,, is a random potential supported on
the boundary. That is

Vi, (n,m) = {3“’(") m 2 8

where n € Z7, m € Z, and the A\ (n)’s are independently distributed (real) random
variables with absolutely continuous probability distributions. Then, for a.e. w € Q, H,

has purely absolutely continuous spectrum on (—2d,2d) .

Remarks. 1. Our proof of Theorem 1.3 (given in [10]) is based on proving the existence of

wave operators w.r.t. the free Laplacian A on £2(Z%' x Z ). Tt thus yields that for a.e.
w, [—2d,2d] is in an essential support of the absolutely continuous part of . Since the
set of delta function vectors on the boundary is easily seen to form a cyclic family for the
H,’s, Theorem 1.3 follows as an immediate consequence of Corollary 1.1.3.

2. It is possible to construct a compact deterministic potential V' that is supported

on the boundary of Z* ™' x Z, , so that A+V on (?(Z% ! x Z_) will have an eigenvalue
(imbedded in the absolutely continuous spectrum) in (—2d, 2d) [15]. Thus, the purity of the
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absolutely continuous spectrum on (—2d, 2d) in the random case can’t follow from a simple
perturbation bound. Theorem 1.3 says that the occurrence of such imbedded eigenvalues
is sufficiently rare so that they occur with probability 0 in appropriate random settings.
3. Jak§ié-Molchanov [8,9] have recently studied operators as in Theorem 1.3. They
show that there are cases where such operators have Anderson localization (namely, purely
pure point essential spectrum) outside [—2d,2d]. Moreover, there are cases where all
spectrum outside [—2d, 2d] is purely pure point, and so, using our Theorem 1.3, one gets
a complete spectral picture with purely absolutely continuous spectrum on (—2d,2d), a
pure point component (in some cases R \ (—2d, 2d)) outside (—2d,2d), and no singular

continuous spectrum.

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.1, in
Section 3 we prove Corollary 1.1.2, and in Section 4 we prove Corollary 1.1.3.

We would like to thank B. Simon and S. Molchanov for useful discussions. This work
was partially supported by NATO Collaborative Research Grant CRG 970051. VJ’s work
was also partially supported by NSERC. YL’s work was also partially supported by NSF
grant DMS-9801474 and by an Allon fellowship.

2. Proof of Theorem 1.1

We start with some background facts.

Proposition 2.1. Let H be a self adjoint operator on H and let ¢, € H. Suppose that
the cyclic subspaces H, and H, , spanned by H and, correspondingly, ¢ and ), are not
orthogonal. Then for Lebesgue a.e. EE € R, the limit

lim (ip, (H — E — ie) ") = (p, (H — E —i0) ')

exists and is finite and non-zero.
Remark. Note that Proposition 2.1 does not exclude the case ¢ = 1.

Proof. By the spectral theorem [18], we have (for any z € C)

(o= = [ Ao (@) (2.1)

r—Zz
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where 1, is an appropriate (finite, complex valued) spectral measure. That is, (¢, (H —
z)7 1) is the Borel (a.k.a. Stieltjes) transform of a finite complex valued measure and, in
particular, it is an analytic function of z in the upper half plane. By mapping the upper
half plane to the unit disc and using known theorems about boundary values of analytic
functions in the disk [14] (also see Appendix A of [16] and references therein), one deduces
that (o, (H — E — 10)~ 1) exists and is finite for a.e. £ € R. Moreover, it must also
be non-zero for a.e. F € R, unless (o, (H — z)~14) vanishes identically (as a function of
z € C), and this happens if and only if the measure pu, ., vanishes identically. But, if

[y, vanishes, then we have

(G0, F(H)0) = [ 4@ F@) dis(a) =0, (2.2

for any f,g € Coo(R), and so the cyclic subspaces #, and #, are orthogonal. [J

Next, we need to recall here a few basic facts from the classical theory of rank one pertur-

bations (see [21] for a proof):

Proposition 2.2. Let Hy be a self adjoint operator on H and let ¢ € H. For each
AeE R, let
H)\ - HO + /\<¢7 >77Z)7

and let py . be the spectral measure for Hy and v. Then

(i) The set {E € R| (¢, (Hy—E—1i0)~14) exists and 0 < Im (¢, (Hy—E—10)~19) < co}
1s independent of A, and for any A € R, it is an essential support of the absolutely

continuous part of iy .

(ii) The singular part of uy, is supported on the set {E € R | (¢, (Hy — E —10)" ) =
A1)

(iii) For any B C R of zero Lebesque measure, we have px.(B) = 0 for Lebesgue a.e.
AeR.

The final background result that we need here is the following theorem of Poltoratskii
[17].

Proposition 2.3. Let p and v be two finite complex valued measures on R, and for any
z€ C, let F(p,2) = [(x—2)" dp and F(v,z) = [(x — 2)" dv be the corresponding
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Borel transforms. Let v = vy + vy be the Lebesque decomposition of v w.r.t. u, such that
v1 is absolutely continuous w.r.t. p and vy is singular w.r.t. p. Furthermore, let v ging
be the singular (w.r.t. Lebesgue measure) part of vo. Then, for a.e. E w.r.t. vaging, we
have

. |F(p, E+ie)|

lim ———— =

e—0 |F(V, E + Z€)|

Remarks. 1. Poltoratskii discusses measures on the unit circle. The implication for
measures on R is both standard and straight-forward.

2. The result is not explicitly stated in [17] in this way. However, Corollary 1 in page
403 of [17] is exactly our Proposition 2.3 for the case where v = vy = v ging. The more

general form follows immediately from this assertion, because we have for a.e. E w.r.t.

V2 ,sing
| F(p, E 1 ie)|
lim — =
e—0 |F(V2,singa E + Z€)|
and
lim |F(V, E+ Z€)| — lim |F(V — V2 sing) E + Z.6) + F(.’/2,sing7 E+ Z€)| 1
e—=0 |F(V2,singa E+ Z€)| e—=0 |F(V2,sing, E + Z€)|

Our next theorem is a general result concerning rank one perturbations of self adjoint

operators. In essence, it is the main result of this paper.

Theorem 2.4. Let Hy be a self adjoint operator on H and let p,v0 € H. For each
AeER, let
Hy = Ho+ Xy, )v,

and let py,, and pyy be the spectral measures for Hy and, correspondingly, ¢ and 1.
Suppose that the cyclic subspaces Hyx , and Hy ., spanned by Hy and, correspondingly, ¢

and 1, are not orthogonal. Then for Lebesgue a.e. A € R, py ., 1s absolutely continuous

w.r.t. piy,,, namely, there exists fx .o € L' (R, dux,y) such that duy.y = fap,odixg -

Remark. Note that H) , is independent of A, and while H, , does, in general, depend
on A, it will be independent of A in case that it is orthogonal to Hy , for some A € R.
Thus, the non-orthogonality of Hy , and H) , is a A-independent fact.
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Proof. {From the general operator formula A=! — B™1 = B~1(B — A)A™1 we get for any
z€ C\R,

(Hx—2)"" = (Ho—2)"" = AMHo — 2) " (¢, )¥) (Hx — 2) 71, (2.3)
which implies that for any ¢, 2 € H we have
(61, (Hx — 2) " o) = (¢1, (Ho — 2) "' da) — Mon, (Ho — 2) " ) (¢, (Hx — 2) " ¢p2) . (2.4)

In what follows, it would be convenient to have more compact notations for the vari-
ous resolvent matrix elements. We thus set, for any A € R, ¢1,¢2 € H, and z € C,
Gr(01, P2,2) = (@1, (Hx — 2) " L¢2). Thus, (2.4) can be rewritten as

GA(01,02,2) = Go(91, 92, 2) — AGo(o1, %, 2)GA(Y, $2, 2) . (2.5)
Setting ¢1 = ¢p =1 in (2.5), we get
GA(Y, ¥, 2) = Go(¥, 9, 2) — AGo (1,1, 2)GA(P, ¢, 2) (2.6)
which can be rewritten as

o G0(¢,¢,2)
GA(¢,¢,Z) - 1 +)\Go(¢,¢,z) . (27)

Since Gx (¢, v, z) is the Borel transform of jy 4, namely,

G, 1, 2) = / (2 — ) dps () (2.8)

(2.7) relates the perturbed spectral measure (i to fo,. It is the fundamental formula
for developing the theory of rank one perturbations [21] (and in particular, for proving
Proposition 2.2).

We will now use (2.5) to develop relations between py, and py . By setting ¢ = 1
and ¢2 = ¢ in (2.5), we obtain (similarly to (2.7))

o Go(@b,%z)
GA(ip#Pa Z) - 1+ )\GO(Qp,w,Z) ) (29)

and by setting ¢1 = ¢2 = ¢ in (2.5), we get

G)\(SO, P, Z) = GO(@? ®, Z) - )‘GO(QOv ¢, Z)G)\ (77[)7 P, Z) . (210)
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Inserting G (¢, ¢, z) from (2.9) in (2.10), we get

GO(@) ¢, Z)Go(% 2 Z)
1+ )‘GO(wa ¢, Z)

G, ¢, 2) = Gol, ¢, 2) — A (2.11)

By the Lebesgue decomposition theorem, we always have a decomposition of the form,

Apixgy = Iagppdiing + diixg.e (2.12)

where iy ., is the part of py . which is singular w.r.t. puy . The Theorem would thus
follow if we can show that for Lebesgue a.e. A € R, iy, = 0.

Let A; be the set of all E € R for which the limits Go (¢, ¥, E+i0), Go(p, ¥, E+10),
Go(¥, ¢, E +1i0), and Go(p, ¢, F +i0) exist and are finite and non-zero. By Proposition
2.1, Ay is a set of full Lebesgue measure, and thus by (iii) of Proposition 2.2, we have
Py = Py | A1 for Lebesgue a.e. A € R. Thus, it suffices to analyze the restriction of the
various measures to the set A;. In order to show that fiy ., vanishes (for a.e. A € R),
we will use two separate treatments. One for the singular part of py ., and the other for
its absolutely continuous part. We start with the singular part.

By rearranging (2.7), we have

1 — GA(¢7¢7Z) (2'13)
1+AG0(77Z)777Z)72) G0(¢,¢7z) ,
and by inserting 1+ AGo (¢, v, z) from (2.13) in (2.11), we get
GO (907 ¢, Z)GO(@Z), P, Z)
= — . 2.14
G)\(QO, 5072) GO(@? 2 Z) A Go(w,w,z) GA(%%Z) ( )
(2.14) implies that for any A € R and E € A,
lim GA(@) %) E + ZE) — lim GO(‘/), 2 E + ZO) _ /\GO(QOa ¢, E + ZO)GO(w, 2 E + ZO)
=0 G\ (Y, Y, E +ie) 0 Gy(¢, 9, E + ie) Go(¢, ¥, E 4 i0) ’
(2.15)

and since |Gx(¢, ¥, E+ie)] — oo as € — 0, for a.e. E w.r.t. the singular part of py y, we
obtain that

. GA(@) QOaE+ ZE) _ G0(¢,¢,E+ @O)Go(% (p,E+ ZO)
MG B0 Gl B+ i) 7o B
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for every A # 0 and a.e. F w.r.t. the singular part of uy [ A1. By Proposition 2.3, this
implies that the singular part of fiy [ A1 vanishes for every A # 0, and thus that the
singular part of fiyy,, vanishes for Lebesgue a.e. A € R.

It remains to show that the absolutely continuous part of iy, vanishes. By multi-

plying both sides of (2.11) by |1 + AGo (¢, %, 2)|? and taking imaginary parts, we obtain

|1 + )‘GO(wvwv Z)|211’1’1G)‘((‘0, v, Z) = |1 + )‘GO(wvwv Z)|ZImG0(507 5072)

— Mm [Go(p, ¥, 2)Go (¥, ¢, 2)]

, (2.17)
A [Im Go(¥, ¥, 2)Re [Go(, 9, 2)Go (¥, ¢, 2)]

~ Re Go(t, ¥, 2)m [Go(w, 1, 2)Go(¥, 9, 2)] |

For z € C\ R, the r.h.s. of (2.17) is a second order polynomial in A, which we denote by
P(z,\). For z = E +ie and E € Ay, it also converges as € — 0 (uniformly on compact
sets) to a limiting (second order in A) polynomial P(FE + i0,\). Let

A={F € R|Gy(¢,9, E+1i0) exists and 0 < Im G(¢, ¥, F +i0) < oo} . (2.18)

We claim that for £ € AN Ay, P(E +i0,)) can’t vanish identically (as a polynomial
in \). Indeed, since F € A, we must have |1 + AGo(¢,9, E +i0)|?> > 0 for all A € R.

Suppose that both the constant term and the linear term of P(FE +1i0, \) vanish identically,
then we must have ImGo(p, p, E +i0) = 0 and also Im [Go(p,%,2)Go(¢, ¢, 2)] = 0.
Thus, P(E +10,\) reduces to A>ITm G (%, v, E+i0)Re [Go(go, ¥, 2)Go(Y, @, z)] , and since
Gol(p, ¥, 2)Go(¢, p,2) #0 for E € Ay, we see that it doesn’t vanish.

Since P(E + i0,\) does not vanish identically for £ € AN Ay, it follows that for
each £ € AN Ay, it can vanish for at most two values of A (actually, for at most one
value, since the l.h.s. of (2.17) is clearly non-negative). In particular, it follows that for
each £ € An Ay, P(E +i0,\) # 0 for Lebesgue a.e. A € R, and thus by Fubini’s
theorem, we have that for Lebesgue a.e. A € R, P(F + i0,\) # 0 for Lebesgue a.e.
E € AnA;. Since [1+\Go (¢, 1, E+10)|? exists and is strictly positive for any A € R and
E € AnA,, it follows that for a.e. A € R, forae. F € ANA;, ImG)(p, ¢, E+10) exists
and is finite and strictly positive. Since the absolutely continuous parts of the measures
pry and py,, are given by duy .y ac(E) = 7 HIm Gy (¢, ¢, E +10) dE and duy g, ac(E) =
7 Im Gy (¢, ¢, E +i0) dE, and since AN A; is an essential support of f 4 ac, it follows
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that for a.e. A € R, px ypac is absolutely continuous w.r.t. px o ac. This says that the
absolutely continuous part of fiy .., must vanish, and it thus completes the proof of
Theorem 2.4. [

Remark. By Poltoratskii’s Theorem 2.7 of [17], the function fy 4., is determined a.e.
w.r.t. the singular part of u,, by the limiting value of the ratio of the corresponding
Borel transforms. Thus, (2.16) implies that

GO(w, w, E+ ZO)

Inao(B) = =G 000 B + i0)Go (W, 0, B 1 i0)

(2.19)

for a.e. A € R, for a.e. £ w.r.t. iy sing- Moreover, similarly to (2.15)—(2.16), (2.14)
and Proposition 2.3 can be used to show that py o sing [ A1 is absolutely continuous w.r.t.
[ixp sing - Thus, by (ii) of Proposition 2.2 (and noting that Go(y, ¢, E +1i0)Go (¢, ¢, E +

i0) = |Go(¥, o, E +1i0)|? if Go(v, v, E +1i0) € R ), this implies that we have

X4, (F)
- d sin E )
(G, 0, B 4 i0)F 1 hesine ()

dpix,p sing (F) (2.20)

for Lebesgue a.e. A € R. We note that a simple relation of the type (2.20) does not hold
for the absolutely continuous parts of the measures. The relation for these parts is more
complex.

Our next theorem is an immediate consequence of Theorem 2.4 for the case of two

independent rank one perturbations.

Theorem 2.5. Let Hy be a self adjoint operator on H and let 1, p € H. For every
An e R, et

Hy ;= Ho + X1, )9 +n{e, ) e,

and let pyny and px ., be the spectral measures for Hy , and, correspondingly, ¢ and
@. Suppose that the cyclic subspaces Hy . and Hy o, spanned by Hy, and, corre-
spondingly, 1 and ¢, are not orthogonal. Then for Lebesgue a.e. \,n € R, pux .y and

Hxm,e 0TE equivalent.

Remark. Note that (similarly to the remark to Theorem 2.4) the non-orthogonality of
Hrnp and Hy,, is independent of A and 7 (namely, it holds for any A\,n € R if and
only if it holds for A =n =0).
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Proof. By Theorem 2.4, we have for each fixed n, that u, , , is absolutely continuous w.r.t.
txn,e for Lebesgue a.e. A. Thus, by Fubini’s theorem, puy . is absolutely continuous
w.r.t. py e for Lebesgue a.e. pair A, 7. By the same argument we also have that . is
absolutely continuous w.r.t. py 5. for Lebesgue a.e. pair A, 7. Thus, we have for Lebesgue
a.e. A\,n € R, that each of the measures )y, and py,,, is absolutely continuous w.r.t.

the other, namely, they are equivalent. []
We can now prove Theorem 1.1.

Proof of Theorem 1.1. For every fixed pair n,m € N, the conditional probability dis-
tribution of the pair (A, (n), Au(m)), given any {A,(k)}xzn,m, is absolutely continuous

w.r.t. Lebesgue measure on R?. Thus, it follows from Theorem 2.5 that the corresponding
spectral measures, 4, 5, and g, s, must be equivalent for a.e. w € . As discussed in
Remark 4 to Theorem 1.1, this equivalence of the spectral measures is equivalent to the

unitary equivalence of H,, [H, ,, and H, [Hy m. U

3. Proof of Corollary 1.1.2

Proof of Corollary 1.1.2. Suppose that the assertion of the Corollary is not true. Then

there must be a Borel set S C R of zero Lebesgue measure and a measurable subset
Q ¢ Q with P(€) > 0, such that p,(S) > 0 for every w € Q. By Corollary 1.1.1, we must

thus also have p,, 5, (S) > 0 for a.e. w € Q. Since the conditional probability distribution

of A\,(1), given any {\,(m)}.m>1, is absolutely continuous w.r.t. Lebesgue measure, there
is a subset Q C Q for which {\,(m)}ms1 are fixed, A, (1) varies over a set of positive

Lebesgue measure, and f, 4, (S) > 0 for every w € Q. This is a contradiction to (iii) of

Proposition 2.2. [

4. Proof of Corollary 1.1.3

Proof of Corollary 1.1.3. For each w € Q, let A, be an essential support of the absolutely
continuous part of u, (A, can be explicitly chosen by (1.4)). Define a function f, €

L'(R,dE) by f, = xa,(E)(1+ E?)~'. By (for example) Lemma V.2.10 of [4], the map

Q>53w— f, € LI(R,dE) is measurable. Since the essential support of the absolutely
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continuous part of p, is invariant under rank one (and thus finite rank) perturbations,
f. (as an element of L'(R,dE)) is independent of {\,(n)},<n for any N € N'. We
claim that by Kolmogorov’s 0-1 law (see, e.g., [3]), this implies that f, (as an element of

LY(R,dFE)) is P-almost surely independent of w. To see this precisely, define
Fo(a) = / fo(B)dE, (4.1)

and for every ¢, € Q, let Q,(r) = {w € Q|F,(q) < r}. Since F,(q) is independent of

{Aw(n)}nen, we have, by Kolmogorov’s 0-1 law, that for every g, r, either P(Q2,(r)) =1

or P(Q,(r)) = 0. For every ¢ € Q, let a(q) = inf{r € Q|P(Q,(r)) = 1}. Then
F,(q) = a(q) P-almost surely. Since F,(-) is a continuous function on R, there must be
a deterministic function F', such that F,(z) = F(z) for every z € R and a.e. w € Q. Let
f(z) = F'(x), then f is independent of w and we have that for a.e. w € Q, f = f, as

elements of L'(R,dFE). In particular, the deterministic set
A={FE € R|F'(x) exists and is finite and strictly positive} (4.2)

is P-almost surely an essential support of the absolutely continuous part of u,, .
It remains to show that for a.e. w € Q, p, ging(A) = 0. By Corollary 1.1.1, A is
P-almost surely an essential support of the absolutely continuous part of f, 5, . Thus, for

a.e. w € 2, A equals, up to a set of zero Lebesgue measure, to the set

Aus, ={E € R | (61, (H,—E—i0)"14;) exists and 0 < Im {6y, (H, — E —i0)"8;) < o0} .

(4.3)
For any fixed w €  and a rank one perturbation of H,, of the form H, x = H,+\{01,-)d1,
(i) of Proposition 2.2 implies that fi, x5, sing(Aw,s,) =0 for any A € R (where i, 2.5, sing
is the singular part of the spectral measure for H, » and ¢;). By (iii) of Proposition
2.2, this implies that g, x4, sing(A) = 0 for Lebesgue a.e. A € R. By the same kind of
argument as in the proof of Corollary 1.1.2 (namely, due to the fact that the conditional
probability distribution of A, (1), given any {A,(m)}m>1, is absolutely continuous w.r.t.
Lebesgue measure), this implies that ju, 5, sing(A) = 0 for a.e. w € Q (where fu, 5, sing is
the singular part of the spectral measure for H, and d;). By Corollary 1.1.1, again, this
implies that for a.e. w € Q, py ging(A4) =0. O
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