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Abstract

We study linear response theory in the general framework of algebraic quantum statistical mechanics and
prove the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes generated by temperature
differentials. Our derivation is axiomatic and the key assumptions concern ergodic properties of non-equilibrium
steady states.
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1 Introduction

This is the first in a series of papers dealing with linear response theory in non-equilibrium quantum statistical
mechanics. The three pillars of linear response theory are the Green-Kubo formula (GKF), the Onsager reciprocity
relations (ORR), and the Central Limit Theorem. This paper and its sequels [JOP1, JOP2] deal with the first two.
An introduction to linear response theory in the algebraic formalism of quantum statistical mechanics can be found
in the recent lecture notes [AJPP1]. We emphasize that our program is concerned with purely thermodynamical (i.e.
"non-mechanical") driving forces such as deviations of temperature and chemical potential from their equilibrium
values.

The main result of this paper is an abstract derivation of theGKF and the ORR for heat fluxes. Various gener-
alizations of our model and results (and in particular, the extension of GKF and ORR to heatandcharge fluxes) are
discussed in [JOP1]. Our abstract derivation directly applies to open quantum systems with free fermionic reser-
voirs previously studied in [Da, LeSp, BM, AM, JP2, FMU]. These applications are discussed in [JOP2, JOPP].

The mathematical theory of non-equilibrium quantum statistical mechanics has developed rapidly over the
last several years. The key notions of non-equilibrium steady states (NESS) and entropy production have been
introduced in [Ru1, Ru2, Ru3, JP1, JP2, JP3]. The general theory has been complemented with the development
of concrete techniques for the study of non-equilibrium steady states [Ru1, JP2, FMU] and at the moment there are
several classes of non-trivial models whose non-equilibrium thermodynamics is reasonably well-understood. The
development of linear response theory is the natural next step in this program.

The GKF for mechanical perturbations has been studied in many places in the literature (see [BGKS, GVV1]
for references and additional information). Mathematically rigorous results for thermodynamical perturbations
are much more scarce. Our research has been partly motivatedby the work of Lebowitz and Spohn [LeSp] who
studied linear response theory for quantum Markovian semigroups describing dynamics of open quantum systems
in the van Hove weak coupling limit. The ORR for directly coupled fermionic reservoirs have been discussed in
[FMU] in first order of perturbation theory. The mean field theory aspects of ORR are discussed in [GVV2]. A
fluctuation theorem related to linear response theory can befound in [TM]. Needless to say, physical aspects of
linear response theory are discussed in many places in the literature, and in particular in the classical references
[DGM, KTH]. An exposition in spirit close to our approach canbe found in [Br, Zu, ZMR1, ZMR2]. Linear
response theory in classical non-equilibrium statisticalmechanics has been reviewed in [Ru4, RB].

Our model can be schematically described as follows. Consider two infinitely extended quantum systems
which for convenience we will call the left,L, and the right,R, system. The systemsL andR may have additional
structure (for example, in the case of open quantum systemsL will consists of a "small" (finite level) systemS
coupled to several reservoirs andR will be another reservoir coupled to the small system, see Figure 1).

Assume that initially the systemL is in thermal equilibrium at a fixed (reference or equilibrium) inverse tem-
peratureβL = β, and that the systemR is in thermal equilibrium at inverse temperatureβR. The thermodynamical
forceX is equal to the deviation of the inverse temperature of the right system from the equilibrium valueβ,

X = β − βR.

Assume that the systemsL andR are brought into contact. One expects that under normal conditions the joint
systemL + R will rapidly settle into a steady stateωX,+. If X = 0, thenω0,+ ≡ ωβ is the joint thermal
equilibrium state ofL + R characterized by the Kubo-Martin-Schwinger (KMS) condition. If X 6= 0, thenωX,+

is a non-equilibrium steady state (NESS) characterized by non-vanishing entropy production

Ep(ωX,+) = XωX,+(Φ) > 0,

whereΦ is the observable describing the heat flux out ofR. For additional information about this setup we refer
the reader to [Ru1, Ru2, Ru3, JP1, JP2, JP3].

The Green-Kubo linear response formula asserts that if the joint system is time-reversal invariant and the
observableA is odd under time-reversal, then

∂XωX,+(A)
∣

∣

X=0
=

1

2

∫ ∞

−∞

ωβ(AΦt)dt, (1.1)
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Figure 1: An open quantum system represented asL + R.

wheret 7→ Φt is the dynamics in the Heisenberg picture. This celebrated formula relates the linear response to the
equilibrium correlations and is a mathematical expressionof the fluctuation-dissipation mechanism in statistical
mechanics.

The ORR are direct consequences of the GKF. Consider three systemsA, B, C, which are respectively in
thermal equilibrium at inverse temperaturesβ − Y , β, andβ − X . Assume that the systems are brought into
contact by interactions which coupleA with B andB with C. Let ωX,Y,+ be the non-equilibrium steady state of
the joint system andΦA, ΦC the observable which describe the heat flow out ofA, C (see Figure 2). If the system
is time-reversal invariant, thenΦA andΦC are odd under time-reversal.

Assume that the functionsωX,Y,+(ΦC) and ωX,Y,+(ΦA) are differentiable atX = Y = 0. The kinetic
transport coefficients are defined by

LA ≡ ∂XωX,Y,+(ΦA)
∣

∣

X=Y =0
,

LC ≡ ∂Y ωX,Y,+(ΦC)
∣

∣

X=Y =0
.

In words, even ifA andB are at the same temperature, the temperature differential betweenB andC may cause
a heat flux out ofA equal toXLA + o(X) for X small. LC has the same interpretation. If the GKF in the form
(1.1) holds forL = A + B, R = C andA = ΦA, then

LA =
1

2

∫ ∞

−∞

ωβ(ΦA(ΦC)t)dt.

Similarly, if the GKF holds forL = B + C, R = A andA = ΦC, then

LC =
1

2

∫ ∞

−∞

ωβ(ΦC(ΦA)t)dt =
1

2

∫ ∞

−∞

ωβ((ΦC)tΦA)dt.

Hence, the GKF and the relation
∫ ∞

−∞

ωβ([(ΦC)t, ΦA])dt = 0,

which is a well-known consequence of the KMS condition, yield theOnsager reciprocity relations

LA = LC. (1.2)

In this paper we give a rigorous axiomatic proof of the GKF (1.1) and the ORR (1.2) in the abstract setting of
algebraic quantum statistical mechanics.

The main idea of our proof can be illustrated by the followingsimple computation. Assume thatL andR
are finite dimensional systems, i.e., that they are described by finite dimensional Hilbert spacesHL, HR and
HamiltoniansHL, HR. The Hilbert space of the joint system isH = HL ⊗HR. Let V be a self-adjoint operator
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ΦCΦAA B C

β − Xββ − Y

Figure 2: The joint systemA + B + C.

on H describing the interaction ofL andR. The Hamiltonian of the joint system isH = HL + HR + V and
At = eitHAe−itH . The heat flux observable is

Φ = −
d

dt
eitHHRe−itH

∣

∣

t=0
= i[HR, V ]. (1.3)

A common choice for the reference (initial) state of the joint system is the product stateωref with density matrix

1

Z
e−βHL−(β−X)HR ,

whereZ is a normalization constant. As we shall see, in the study of linear response theory a more natural choice
is the stateωX described by the density matrix

1

Z
e−βH+XHR .

Let A be an operator onH andt > 0. Note that

ωX(At) = ωX

(

e−it(H−XHR/β)eitHAe−itHeit(H−XHR/β)
)

,

and so

ωX(At) − ωX(A) =
X

β

∫ t

0

ωX(i[HR, As])ds. (1.4)

If the system is time-reversal invariant andA is odd under the time-reversal operation, thenωX(A) = 0 for all X
(and in particular,ω0(At) = ω0(A) = 0 for all t). Hence, (1.4) yields

∂XωX(At)
∣

∣

X=0
=

1

β

∫ t

0

ωβ(i[HR, As])ds.

Another elementary computation yields

ωβ(i[HR, As]) =
i

Z
Tr(As[e

−βH , HR]) =
i

Z
Tr

(

As[e
−βHHReβH − HR]e−βH

)

=

∫ β

0

ωβ(Ase
−uHΦeuH)du,

and so

∂XωX(At)
∣

∣

X=0
=

1

β

∫ t

0

ds

∫ β

0

du ωβ(AsΦiu). (1.5)

Needless to say, only infinitely extended systems have non-trivial thermodynamics. The central point of our
argument is that the relation (1.5) can be proven even if the systemsL andR areinfinitely extendedand Hamiltoni-
ans are not defined any more. We shall show that the relation (1.5) is a general consequence of the KMS-condition
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and holds in the abstract setting of algebraic quantum statistical mechanics under very mild technical conditions.
Our argument then continues as follows. Assume that there exists a stateωX,+ onO such that for any observable
A,

lim
t→+∞

ωX(At) = ωX,+(A). (1.6)

The stateωX,+ is the non-equilibrium steady state (NESS) of the systemL + R and is the central object of non-
equilibrium statistical mechanics. LetA be an observable for which (1.5) holds. Assume in addition that the
function

X 7→ ωX,+(A), (1.7)

is differentiable atX = 0 and that the limit and the derivative in the expression

lim
t→+∞

∂XωX(At)
∣

∣

X=0
, (1.8)

can beinterchanged. Then,

∂XωX,+(A)
∣

∣

X=0
=

1

β

∫ ∞

0

dt

∫ β

0

du ωβ(AtΦiu), (1.9)

and this relation is the Green-Kubo formula.
If in addition the joint thermal equilibrium stateωβ is mixing, namely if for allA, B ∈ O,

lim
|t|→∞

ωβ(τ t(A)B) = ωβ(A)ωβ(B), (1.10)

then it is not difficult to show that the KMS condition and the time-reversal invariance imply that (1.9) is equivalent
to (1.1).

The above derivation requires a comment. The initial state commonly used in the literature is the decoupled
product stateωref . In this paper we prove the GKF for the NESSωX,+ associated to the initial stateωX . On
physical grounds, one expects that under normal conditionsall statesnormal w.r.t.ωX evolve toωX,+ ast → +∞
(see [JP3, AJPP1]). Since in particularωX andωref are mutually normal they are physically equivalent initial
states.

The three key assumptions of our derivation are the existence of the NESS (1.6), the differentiability of the
function (1.7), and the interchange of the limit and the derivative in (1.8). Verification of each of them in physically
interesting models is a difficult task.

In the literature two distinct techniques have been used so far in the study of NESS. The first is the scattering
approach, initiated by Robinson [Ro1], and further developed in [BM, AM, Ru1, FMU]. The second is the spectral
approach developed in [JP2]. In the continuation of this paper [JOP2, JOPP] we will show how the spectral and
the scattering approach can be used to verify our abstract assumptions and we will illustrate the general theory on
well-known examples of open quantum systems with free fermionic reservoirs studied in [Da, LeSp, BM, AM,
JP2, FMU].

Acknowledgment. The research of the first author was partly supported by NSERC. Part of this work was done
during the visit of the first and the third author to ESI in Vienna. V.J. and C.-A.P. are grateful to J. Dereziński,
G.-M. Graf and J. Yngvason for invitation to the workshop "Open Quantum Systems" and for their hospitality. A
part of this work has been done during the visit of the first author to CPT-CNRS. Y.O. is supported by the Japan
Society for the Promotion of Science. This work has been doneduring the stay of Y.O. to CPT-CNRS, partly
supported by the Canon Foundation in Europe and JSPS.
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2 The model and the results

2.1 Basic concepts

In this subsection we briefly review for notational purposesa few basic notions of algebraic quantum statistical
mechanics. This topic is discussed in many places in the literature and we will freely use the results described in
the classical references [BR1, BR2]. An exposition of the algebraic formalism suited to non-equilibrium quantum
statistical mechanics can be found in the reviews [Ru3, JP3,AJPP1].

A C∗-dynamical system is a pair(O, τ), whereO is aC∗-algebra with identity1l andτ t, t ∈ R, is a strongly
continuous group of∗-automorphisms ofO. In the context of quantum statistical mechanics, the elements of
O describe observables of a physical system and the groupτ describes their time evolution in the Heisenberg
picture. The physical states are described by the states onO, i.e., positive normalized linear functionals inO∗. A
quantum dynamical system is a triple(O, τ, ω), whereω is a given reference state. The physical states of thermal
equilibrium at inverse temperatureβ are described by(τ, β)-KMS states inO∗. We shall assume thatβ > 0
although all our results also apply toβ < 0. We recall thatω is a(τ, β)-KMS state if for allA, B ∈ O there exists
a functionFA,B(z), analytic in the strip0 < Im z < β, bounded and continuous on its closure, and satisfying the
KMS-boundary condition

FA,B(t) = ω(Aτ t(B)), FA,B(t + iβ) = ω(τ t(B)A).

The three-line theorem yields that
|FA,B(z)| ≤ ‖A‖‖B‖,

for 0 ≤ Im z ≤ β. For notational convenience we shall writeω(Aτz(B)) ≡ FA,B(z).
An anti-linear involutive∗-automorphismΘ : O → O is called time-reversal of(O, τ) if

Θ ◦ τ t = τ−t ◦ Θ,

for all t ∈ R. A stateω is called time-reversal invariant ifω(Θ(A)) = ω(A∗) for all A ∈ O.

2.2 The setup

We shall consider two quantum dynamical systems(OL, τL, ωL) and(OR, τR, ωR), which we shall call the left,L,
and the right,R, system. We denote the generators ofτL andτR by δL andδR, i.e.,τ t

L = etδL andτ t
R = etδR .

If the systemL andR are brought into contact, then the algebra of observables ofthe joint system isO =
OL ⊗ OR (our results do not depend on the choice of the cross-norm defining this tensor product). Its decoupled
dynamicsτ0 = τL ⊗ τR is generated byδ(0) = δL + δR.

Notation. If L is an operator onOL, then we will denote by the same letter the operatorL ⊗ I onOL ⊗OR.
Hence, we writeδL for δL ⊗ I, etc. We will use the same convention in the case ofOR.

Let V ∈ O be a self-adjoint perturbation describing the interactionof L andR. TheC∗-dynamical system
describing the interacting systemL + R is (O, τ), where the interacting dynamicsτ is generated by

δ = δ(0) + i[V, ·].

In what followsβ > 0 is a fixed reference inverse temperature andǫ > 0 is a small number such thatβ > ǫ.
We setIǫ = (−ǫ, ǫ). We make the following assumptions concerning the reference states ofL andR and the
interactionV .

(A1) ωL is the unique(τL, β)-KMS state onOL. The possible reference states ofR are parametrized byX ∈ Iǫ

andωR,X is the unique(τR, β − X)-KMS state onOR. We shall writeωR,0 = ωR.
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(A2) V ∈ Dom(δR).

If (A2) holds, then the observable describing the heat flux out of R is (recall (1.3))

Φ ≡ δR(V ).

Consider the family of states
ω

(0)
X = ωL ⊗ ωR,X .

Let σ(0)
X andσX be theC∗-dynamics onO generated by

δ
(0)
X = δ(0) −

X

β
δR,

δX = δ
(0)
X + i[V, ·].

ω
(0)
X is the unique(σ(0)

X , β)-KMS state onO. The Araki perturbation theory implies that there exists a unique

(σX , β)-KMS stateωX onO. The statesωX andω
(0)
X are mutually normal. Note thatσ0 = τ and thatω0 is the

unique(τ, β)-KMS state onO. We denoteωβ ≡ ω0.
Our next assumption deals with time-reversal invariance.

(A3) There exists a time-reversalΘ of (O, τ0) such that

Θ ◦ τ t
L = τ−t

L ◦ Θ, Θ ◦ τ t
R = τ−t

R ◦ Θ, Θ(V ) = V.

One easily shows thatΘ is also a time-reversal of(O, τ), (O, σ
(0)
X ) and(O, σX). If in addition (A1) holds, then

the statesω(0)
X andωX are time-reversal invariant.

In essence, our main result is:

Theorem 2.1 Suppose that Assumptions(A1)-(A3) hold. LetA ∈ Dom(δR) be a self-adjoint observable such
thatΘ(A) = −A. Then, for allt ∈ R, the function

X 7→ ωX(τ t(A)),

is differentiable atX = 0, and

∂XωX(τ t(A))
∣

∣

X=0
=

1

β

∫ t

0

ds

∫ β

0

du ωβ(τs(A)τ iu(Φ)). (2.11)

Remark 1. Assume in addition that the quantum dynamical systems(OR, τR, ωR,X) are ergodic for|X | < ǫ.
Then,{ωX} is a family of mutually singular states (see [JP3, AJPP1]) and the differentiability of the function
X 7→ ωX(τ t(A)) at X = 0 is far from obvious. The somewhat surprising generality of Theorem 2.1 critically
depends on the time-reversal assumption which ensures thatωX(A) = 0 for all |X | < ǫ. For a related technical
point in classical non-equilibrium statistical mechanicswe refer the reader to [Ru5].
Remark 2. Let ωβ,λ denote theβ-KMS state for theC∗-dynamics generated byδ − λ[Ξt, · ] where

Ξt ≡

∫ t

0

τ−s(Φ)ds.

Then, by Araki’s perturbation theory one has

1

β
∂λωβ,λ(A)

∣

∣

λ=0
= ∂XωX(τ t(A))

∣

∣

X=0
.

Hence, the finite timet linear response to the thermodynamical forceX is equal, up to a factor ofβ, to the
equilibrium linear response to the mechanical perturbation Ξt. For additional information concerning this point
we refer the reader to [Zu, TM].
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2.3 The Green-Kubo formula

Our next assumption postulates the existence of a NESS w.r.t. the initial stateωX .

(A4) For eachX ∈ Iǫ there exists a stateωX,+ such that for allA ∈ O,

lim
t→+∞

ωX(τ t(A)) = ωX,+(A).

Note thatω0,+ = ωβ is the unique(τ, β)-KMS state onO.

Finally, we shall assume that our coupled system is mixing atequilibrium.

(A5) For allA, B ∈ O,
lim

|t|→∞
ωβ(τ t(A)B) = ωβ(A)ωβ(B).

The observables for which we will establish the Green-Kubo formula are characterized by

Definition 2.2 Assume that(A1) and(A4) hold. LetA ∈ O be an observable such that for allt the function

X 7→ ωX(τ t(A)),

is differentiable atX = 0. We call such an observable regular if the function

X 7→ ωX,+(A), (2.12)

is differentiable atX = 0 and

lim
t→+∞

∂XωX(τ t(A))
∣

∣

X=0
= ∂XωX,+(A)

∣

∣

X=0
. (2.13)

A consequence of Theorem 2.1 and the definition of regular observable is the Green-Kubo formula.

Theorem 2.3 Suppose that Assumptions(A1)-(A4) hold. LetA ∈ Dom(δR) be a regular self-adjoint observable
such thatΘ(A) = −A. Then

∂XωX,+(A)
∣

∣

X=0
=

1

β

∫ ∞

0

dt

∫ β

0

du ωβ(τ t(A)τ iu(Φ)). (2.14)

If in addition (A5) holds, then

∂XωX,+(A)
∣

∣

X=0
=

1

2

∫ ∞

−∞

dt ωβ(Aτ t(Φ)). (2.15)

Remark 1. In (2.15),
∫ ∞

−∞ = limT→∞

∫ T

−T .
Remark 2. It follows from our proof that linear response to the thermodynamical forceX can be computed without
time-reversal assumption. Assume that (A1), (A2), (A4) hold and thatA ∈ Dom(δR) is a regular observable. Then

∂XωX,+(A)
∣

∣

X=0
= ∂XωX(A)

∣

∣

X=0
+

1

β

∫ ∞

0

dt

∫ β

0

du ωβ(τ t(A)τ iu(Φ)).

This formula will be discussed in more detail in [JOP1].
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In applications to concrete models the key assumptions to check are (A4), (A5) and that physically relevant
observables are regular. The assumptions (A4) and (A5) havebeen verified for open quantum systems with free
Fermi gas reservoirs in [BM, AM, JP2, FMU]. In these works (A4) is established in the stronger form, i.e. for anyη

normal w.r.t.ω(0)
X and allA ∈ O, limt→+∞ η(τ t(A)) = ωX,+(A). In the continuation of this paper [JOP2, JOPP]

we will prove that in these models the observables describing heat fluxes withinL are regular.
A simple class of models to which Theorem 2.3 directly applies are quasi-free open systems studied in [AH,

AJPP1, AJPP2, AP]. These models are also exactly solvable and the GKF and the ORR can be checked by direct
computation.

2.4 Onsager reciprocity relations

Consider threeC∗-dynamical systems(OJ , τJ ), J = A, B, C. The generator ofτJ is denoted byδJ . We set

O =
⊗

J

OJ , τ0 =
⊗

J

τJ , δ(0) =
∑

J

δJ .

Let V ∈ O be a self-adjoint perturbation describing the interactionof the joint system and letτ be the dynamics
generated byδ = δ(0) + i[V, ·]. We shall assume thatV has the form

V = VAB + VBC,

whereVAB ∈ OA ⊗OB andVBC ∈ OB ⊗OC. If VAB ∈ Dom(δA) andVBC ∈ Dom(δC), then the observables
describing the heat flow out ofA andC are

ΦA = δA(VAB), ΦC = δC(VBC),

see Figure 2. Note that in this caseδC(ΦA) = δA(ΦC) = 0.
We assume that (A3) holds in the following form: there existsa time-reversalΘ of (O, τ0) such thatτ t

J ◦ Θ =
Θ ◦ τ−t

J for all J andΘ(VAB) = VAB, Θ(VBC) = VBC. ThenΘ is a time-reversal of the coupled system(O, τ)
andΘ(ΦA) = −ΦA, Θ(ΦC) = −ΦC.

We shall also consider the joint systemsA + B andB + C. In the first case the algebra of observables is
OA ⊗ OB and the dynamics is generated byδA + δB + i[VAB, ·]. The systemB + C is defined in a similar way.
Let β > 0 be the fixed inverse temperature.

ConsiderL = A + B as the left system andR = C as the right system. Suppose that Assumptions (A1), (A2),
(A4), (A5) hold (we have already assumed the time-reversal invariance) and that the observableΦA is regular. Let
ωA+B,C,X,+ be the NESS in the Assumption (A4). Then the kinetic transport coefficient

LA = ∂XωA+B,C,X,+(ΦA)
∣

∣

X=0
,

is well-defined and the Green-Kubo formula holds,

LA =
1

2

∫ ∞

−∞

ωβ(ΦAτ t(ΦC))dt,

whereωβ is the(τ, β)-KMS state onO.
Consider nowL = B + C as the left system andR = A as the right system. Suppose that Assumptions (A1),

(A2), (A4) and (A5) hold and that the observableΦC is regular. LetωB+C,A,X,+ be the NESS in the Assumption
(A4). Then the kinetic transport coefficient

LC = ∂XωB+C,X,+(ΦC)
∣

∣

X=0
,

is well-defined and the Green-Kubo formula holds,

LC =
1

2

∫ ∞

−∞

ωβ(ΦCτ t(ΦA))dt =
1

2

∫ ∞

−∞

ωβ(τ t(ΦC)ΦA)dt.



The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics 10

Sinceωβ is mixing, by the well-known stability criterion (Theorem 5.4.12 in [BR2]),

lim
T→∞

∫ T

−T

ωβ([τ t(ΦC), ΦA])dt = 0,

and so
LA = LC.

This is the Onsager reciprocity relations for heat fluxes.

3 Proofs

Throughout this subsection we assume that (A1) and (A2) hold.
We start with:

Lemma 3.1 Assume that(A3) holds. Then:
(1) Θ is a time-reversal of theC∗-dynamical systems(O, τ) and(O, σX),
(2) The statesωX are time-reversal invariant.
(3) Θ(Φ) = −Φ.

Proof. (1) Recall that
τ t(A) = Γtτ

t
0(A)Γ∗

t , (3.16)

whereΓt ∈ O is the family of unitary elements defined by

Γt = 1l +
∑

n≥1

(it)n

∫

0≤sn≤···≤s1≤1

τ tsn

0 (V ) · · · τ ts1

0 (V )ds1 · · · dsn, (3.17)

see Proposition 5.4.1. in [BR2]. Similarly,

τ−t(A) = Γ̂tτ
−t
0 (A)Γ̂∗

t ,

where

Γ̂t = 1l +
∑

n≥1

(−it)n

∫

0≤sn≤···≤s1≤1

τ−tsn

0 (V ) · · · τ−ts1

0 (V )ds1 · · · dsn.

SinceΘ(V ) = V andΘ(Γt) = Γ̂t, we have thatΘ ◦ τ t = τ−t ◦ Θ, i.e.,Θ is a time-reversal of(O, τ).

SinceΘ is also a time-reversal of(O, σ
(0)
X ), one proves in the same way thatΘ is a time-reversal of(O, σX).

(2) Set
ω̃X(A) = ωX(Θ(A∗)).

One easily checks that̃ωX is a(σX , β)-KMS state. Assumption (A1) and Araki’s perturbation theory imply that
ωX is the unique(σX , β)-KMS state onO. Hence,̃ωX = ωX .

(3) is an immediate consequence of the relationΘ(τ t
R(V )) = τ−t

R (V ) and the definition ofΦ. 2

Lemma 3.2 The groupτ preservesDom(δR) and forA ∈ Dom(δR) the function

R ∋ t 7→ δR(τ t(A)),

is norm continuous.
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Proof. SinceV ∈ Dom(δR), the formula (3.17) yields thatΓt ∈ Dom(δR) and that

δR(Γt) =
∑

n≥1

(it)n

∫

0≤sn≤···≤s1≤1

∑

j

τ tsn

0 (V ) · · · τ
tsj

0 (δR(V )) · · · τ ts1

0 (V )ds1 · · · dsn.

The series on the right is uniformly convergent fort in compact sets, and soR ∋ t 7→ δR(Γt) is a norm continuous
function. The formula (3.16) yields

δR(τ t(A)) = δR(Γt)τ
t
0(A)Γ∗

t + Γtτ
t
0(δR(A))Γ∗

t + Γtτ
t
0(A)δR(Γt)

∗,

and the statement follows.2

In the remaining part of the proof we will need to approximateA andV by analytic elements. For this reason
we briefly recall a few basic facts about such analytic approximations (see [Ar, BR2, DJP]). ForC ∈ O we set

Cj =

√

j

π

∫

R

e−jt2τ t
0(C)dt, j = 1, 2, · · · (3.18)

EveryCj is an analytic element for the groupτ0, i.e., the functiont 7→ τ t
0(Cj) ∈ O extends to an entire analytic

function onC. Moreover,
‖Cj‖ ≤ ‖C‖ and lim

j→∞
‖Cj − C‖ = 0. (3.19)

If in additionC ∈ Dom(δR), then

δR(Cj) =

√

j

π

∫

R

e−jt2τ t
0(δR(C))dt, j = 1, 2, · · ·

and soδR(Cj) is also an analytic element forτ t
0 andlimj→∞ ‖δR(Cj) − δR(C)‖ = 0.

Lemma 3.3 For A ∈ Dom(δR),

σt
X(A) − τ t(A) = −

X

β

∫ t

0

σt−s
X (δR(τs(A)))ds. (3.20)

Proof. Assume first thatA ∈ Dom(δ) ∩ Dom(δR). Then,

d

dt
σ−t

X (τ t(A)) = σ−t
X ((δ − δX)(τ t(A))) =

X

β
σ−t

X (δR(τ t(A))), (3.21)

and (3.20) holds.
Let nowA ∈ Dom(δR) and letAj be given by (3.18). Clearly,Aj ∈ Dom(δ) ∩ Dom(δR) and (3.20) holds

for Aj . The relations

δR(τ t(Aj)) = δR(Γtτ
t
0(Aj)Γ

∗
t )

= δR(Γt)τ
t
0(Aj)Γ

∗
t + Γtτ

t
0(δR(Aj))Γ

∗
t + Γtτ

t
0(Aj)δR(Γt)

∗,

yield thatlimj→∞ δR(τ t(Aj)) = δR(τ t(A)) uniformly for t in compact sets, and the statement follows.2

SinceDom(δR) is dense inO, Lemma 3.3 yields that for allA ∈ O,

lim
X→0

‖σt
X(A) − τ t(A)‖ = 0. (3.22)
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Lemma 3.4 For all A ∈ O,
lim

X→0
ωX(A) = ωβ(A).

Proof. Let L be the set of weak* limit points of the net{ωX} asX → 0. The setL is non-empty since the unit
ball in O∗ is weak* compact. Relation (3.22) and Proposition 5.3.25 in[BR2] yield that every element ofL is a
(τ, β)-KMS state. Assumption (A1) implies thatωβ is the unique(τ, β)-KMS state onO and soL = {ωβ}. 2

Lemma 3.5 Assume that (A3) holds. LetA ∈ Dom(δR) be a self-adjoint observable such thatΘ(A) = −A.
Then for allt ∈ R the function

X 7→ ωX(τ t(A)),

is differentiable atX = 0 and

∂XωX(τ t(A))
∣

∣

X=0
=

1

β

∫ t

0

ωβ(δR(τs(A)))ds.

Proof. SinceωX is σX -invariant, Lemma 3.3 yields

ωX(τ t(A)) − ωX(A)

X
=

1

β

∫ t

0

ωX(δR(τs(A)))ds.

By Lemma 3.1,ωX(A) = ωX(Θ(A)) = −ωX(A), and soωX(A) = 0. Similarly, sinceω0 = ωβ is τ -invariant,
ω0(τ

t(A)) = ω0(A) = 0 for all t. Hence,

ωX(τ t(A)) − ω0(τ
t(A))

X
=

1

β

∫ t

0

ωX(δR(τs(A)))ds.

This relation, Lemmas 3.2, 3.4, and the dominated convergence yield the statement.2

Lemma 3.6 Assume thatA ∈ Dom(δR). Then

ωβ(δR(A)) =

∫ β

0

ωβ(Aτ is(Φ))ds.

Proof. We will freely use standard results of Araki’s theory of perturbation of KMS-states (see [Ar, BR2, DJP]).
Let Vj be the analytic approximations ofV given by (3.18). SinceV ∈ Dom(δR), Φj ≡ δR(Vj) are analytic
approximations of the heat flux observableΦ = δR(V ). Note also that the functiont 7→ Γt,j , where

Γt,j = 1l +
∑

n≥1

(it)n

∫

0≤sn≤···≤s1≤1

τ tsn

0 (Vj) · · · τ
ts1

0 (Vj)ds1 · · · dsn,

extends to an entire analyticO-valued function

Γz,j = 1l +
∑

n≥1

(iz)n

∫

0≤sn≤···≤s1≤1

τzsn

0 (Vj) · · · τ
zs1

0 (Vj)ds1 · · ·dsn.

The functionz 7→ Γ∗
z,j is also entire analytic and for allz, Γz,jΓ

∗
z,j = 1l.
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Let τj be theC∗-dynamics onO generated byδ(0) +i[Vj , ·], and letωj be the unique(τj , β)-KMS state. Since
for anyC ∈ O,

τ t
j (C) = Γt,jτ

t
0(C)Γ∗

t,j , (3.23)

we conclude thatAj , Vj , andΦj are also analytic elements forτj and thatlimj→∞ ‖τ t
j − τ‖ = 0.

We shall prove first that for allj,

ωj(δR(Aj)) =

∫ β

0

ωj(Ajτ
iu
j (Φj))du. (3.24)

This formula combined with a limiting argumentj → ∞ will yield the statement.
The following relations hold

d

dz
Γz,j = iΓz,jτ

z
0 (Vj),

d

dz
Γ∗

z,j = −iτz
0 (Vj)Γ

∗
z,j.

(3.25)

One easily verifies that for allz ∈ C, Γz,j ∈ Dom(δR), Γ∗
z,j ∈ Dom(δR), that the functionsz 7→ δR(Γz,j),

z 7→ δR(Γ∗
z,j) are entire analytic, and that

d

dz
δR(Γz,j) = iδR(Γz,j)τ

z
0 (Vj) + iΓz,jτ

z
0 (Φj),

d

dz
δR(Γ∗

z,j) = −iτz
0 (Φj)Γ

∗
z,j − iτz

0 (Vj)δR(Γ∗
z,j).

(3.26)

Relations (3.25) and (3.26) yield

d

dz
Γz,jδR(Γ∗

z,j) = −iΓz,jτ
z
0 (Φj)Γ

∗
z,j = −iτz

j (Φj). (3.27)

Recall thatω(0)
0 = ωL ⊗ ωR. By the basic identity of Araki’s perturbation theory, for any C ∈ O,

ωj(C) =
ω

(0)
0 (CΓiβ,j)

ω
(0)
0 (Γiβ,j)

.

In particular,

ωj(δR(Aj)) =
ω

(0)
0 (δR(Aj)Γiβ,j)

ω
(0)
0 (Γiβ,j)

.

Sinceω
(0)
0 (δR(C)) = 0 for anyC ∈ Dom(δR), we have

ω
(0)
0 (δR(Aj)Γiβ,j) = −ω

(0)
0 (AjδR(Γiβ,j)) = −ω

(0)
0 (Aj [δR(Γiβ,j)Γ

∗
−iβ,j]Γiβ,j).

Hence,
ωj(δR(Aj)) = ωj(Aj [Γiβ,jδR(Γ∗

−iβ,j)]). (3.28)

Relation (3.27) implies
d

du
Γiu,jδR(Γ∗

−iu,j) = τ iu
j (Φj),
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and so

Γiβ,jδR(Γ∗
−iβ,j) =

∫ β

0

τ iu
j (Φj)du. (3.29)

Relations (3.28) and (3.29) yield (3.24).
It remains to show that

lim
j→∞

ωj(δR(Aj)) = ωβ(δR(A)), (3.30)

lim
j→∞

∫ β

0

ωj(Ajτ
iu
j (Φj))du =

∫ β

0

ωβ(Aτ iu(Φ))du. (3.31)

By the properties of analytic approximations,

lim
j→∞

‖ωj − ωβ‖ = 0 and lim
j→∞

‖δR(Aj) − δR(A)‖ = 0,

and these relations yield (3.30). To prove (3.31) we argue asfollows.
For t ∈ R we set

hj(t) =

∫ β

0

ωj(Ajτ
iu+t
j (Φj))du, h(t) =

∫ β

0

ωβ(Aτ iu+t(Φ))du.

Then
∫ t

0

ωj([Aj , τ
u
j (Φj)])du =

∫ t

0

ωj(Ajτ
u
j (Φj))du −

∫ t

0

ωj(Ajτ
u+iβ
j (Φj))du

= i

∫ β

0

ωj(Ajτ
iu
j (Φj))du − i

∫ β

0

ωj(Ajτ
iu+t
j (Φj))du

= i(hj(0) − hj(t)).

In the first step we have used the KMS condition and in the second that the integral of the functionz 7→
ωj(Ajτ

z
j (Φj)) over the boundary of the rectangle with vertices0, t, t + iβ, iβ is zero. Similarly,

∫ t

0

ωβ([A, τu(Φ)])du = i(h(0) − h(t)).

Since
lim

j→∞
ωj([Aj , τ

u
j (Φj)]) = ωβ([A, τu(Φ)]),

we derive that for allt ∈ R

lim
j→∞

(hj(t) − hj(0)) = h(t) − h(0). (3.32)

Note that
∫ ∞

−∞

e−t2hj(t)dt =

∫ β

0

du

∫ ∞

−∞

dt e−(t−iu)2ωj(Ajτ
t
j (Φj)),

∫ ∞

−∞

e−t2h(t)dt =

∫ β

0

du

∫ ∞

−∞

dt e−(t−iu)2ωβ(Aτ t(Φ)).

Since for allt,
lim

j→∞
ωj(Aτ t

j (Φj)) = ωβ(Aτ t(Φ)),



The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics 15

we conclude that

lim
j→∞

∫ ∞

−∞

e−t2(hj(t) − h(t))dt = 0. (3.33)

Then (3.32) and (3.33) yield
lim

j→∞
hj(0) = h(0),

and (3.31) follows.2

Proof of Theorem 2.1.This theorem is an immediate consequence of Lemmas 3.5 and 3.6. 2

Proof of Theorem 2.3.Relation (2.14) follows from Theorem 2.1 and the definition of regular observable.
To prove (2.15), we need to show that

lim
t→+∞

1

β

∫ β

0

[
∫ t

0

ωβ(τs(A)τ iu(Φ))ds

]

du =
1

2

∫ ∞

−∞

ωβ(Aτ t(Φ))dt.

Time-reversal invariance yields that fors, u ∈ R,

ωβ(τs(A)τu(Φ)) = ωβ(τs(Θ(A))τu(Θ(Φ))) = ωβ(Θ(τ−s(A)τ−u(Φ))) = ωβ(τ−u(Φ)τ−s(A)).

This identity and the KMS-condition imply

ωβ(τs(A)τu(Φ)) = ωβ(τ−s(A)τ iβ−u(Φ)).

The analytic continuation yields that fors ∈ R andu ∈ [0, β],

ωβ(τs(A)τ iu(Φ)) = ωβ(τ−s(A)τ iβ−iu(Φ)),

and so

1

β

∫ β

0

[
∫ t

0

ωβ(τs(A)τ iu(Φ))ds

]

du =
1

2β

∫ β

0

[
∫ t

−t

ωβ(τs(A)τ iu(Φ))ds

]

du

=
1

2β

∫ β

0

[
∫ t

−t

ωβ(Aτs+iu(Φ))ds

]

du.

The integral of the function
z 7→ ωβ(Aτz(B)),

over the boundary of the rectangle with vertices−t, t, t + iu, −t + iu is zero. Hence,

∫ t

−t

ωβ(Aτs+iu(Φ))ds =

∫ t

−t

ωβ(Aτs(Φ))ds + R(t, u),

where

R(t, u) = i

∫ u

0

[

ωβ(Aτ t+iy(Φ)) − ωβ(Aτ−t+iy(Φ))
]

dy,

and we derive

1

β

∫ β

0

[
∫ t

0

ωβ(τs(A)τ iu(Φ))ds

]

du =
1

2

∫ t

−t

ωβ(Aτs(Φ))ds +
1

2β

∫ β

0

R(t, u)du. (3.34)
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Assumption (A5) implies that

lim
t→+∞

ωβ(Aτ±t+iy(Φ)) = ωβ(A)ωβ(Φ) = 0.

This fact and the dominated convergence theorem yield

lim
t→+∞

sup
0≤u≤β

|R(t, u)| = 0,

and Relation (3.34) implies the statement.2
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