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Abstract

We study linear response theory in the general frameworlgefaaic quantum statistical mechanics and
prove the Green-Kubo formula and the Onsager reciproclgtioms for heat fluxes generated by temperature
differentials. Our derivation is axiomatic and the key asptions concern ergodic properties of non-equilibrium
steady states.
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1 Introduction

This is the first in a series of papers dealing with linear oesg theory in non-equilibrium quantum statistical
mechanics. The three pillars of linear response theonhar&teen-Kubo formula (GKF), the Onsager reciprocity
relations (ORR), and the Central Limit Theorem. This papet its sequels [JOP1, JOP2] deal with the first two.
An introduction to linear response theory in the algebraiofalism of quantum statistical mechanics can be found
in the recentlecture notes [AJPP1]. We emphasize that ogram is concerned with purely thermodynamical (i.e.
"non-mechanical”) driving forces such as deviations ofgerature and chemical potential from their equilibrium
values.

The main result of this paper is an abstract derivation ofaK& and the ORR for heat fluxes. Various gener-
alizations of our model and results (and in particular, tteresion of GKF and ORR to heanhdcharge fluxes) are
discussed in [JOP1]. Our abstract derivation directly splo open quantum systems with free fermionic reser-
voirs previously studied in [Da, LeSp, BM, AM, JP2, FMU]. Beeapplications are discussed in [JOP2, JOPP].

The mathematical theory of non-equilibrium quantum stiaas mechanics has developed rapidly over the
last several years. The key notions of non-equilibriumdytestates (NESS) and entropy production have been
introduced in [Rul, Ru2, Ru3, JP1, JP2, JP3]. The generahthes been complemented with the development
of concrete techniques for the study of non-equilibriunadiestates [Rul, JP2, FMU] and at the moment there are
several classes of non-trivial models whose non-equilibrihermodynamics is reasonably well-understood. The
development of linear response theory is the natural negtistthis program.

The GKF for mechanical perturbations has been studied irymkates in the literature (see [BGKS, GVV1]
for references and additional information). Mathemaljcaborous results for thermodynamical perturbations
are much more scarce. Our research has been partly mothatibe work of Lebowitz and Spohn [LeSp] who
studied linear response theory for quantum Markovian sesajgs describing dynamics of open quantum systems
in the van Hove weak coupling limit. The ORR for directly céegbfermionic reservoirs have been discussed in
[FMU] in first order of perturbation theory. The mean field ahg aspects of ORR are discussed in [GVV2]. A
fluctuation theorem related to linear response theory cdoloed in [TM]. Needless to say, physical aspects of
linear response theory are discussed in many places inténatlire, and in particular in the classical references
[DGM, KTH]. An exposition in spirit close to our approach cha found in [Br, Zu, ZMR1, ZMR2]. Linear
response theory in classical non-equilibrium statisticathanics has been reviewed in [Ru4, RB].

Our model can be schematically described as follows. Cendido infinitely extended quantum systems
which for convenience we will call the left;, and the rightR, system. The systenisandR may have additional
structure (for example, in the case of open quantum sysiemsl consists of a "small" (finite level) systeid
coupled to several reservoirs aRdwvill be another reservoir coupled to the small system, sgarkgil).

Assume that initially the systein is in thermal equilibrium at a fixed (reference or equililniuinverse tem-
peratured;, = [, and that the system is in thermal equilibrium at inverse temperatute The thermodynamical
force X is equal to the deviation of the inverse temperature of et System from the equilibrium valu®

X = — Br.
Assume that the systenisandR are brought into contact. One expects that under normalitonsl the joint
systemL + R will rapidly settle into a steady statex . If X = 0, thenwy+ = wg is the joint thermal

equilibrium state oL + R characterized by the Kubo-Martin-Schwinger (KMS) corutiti If X # 0, thenwx 4
is a non-equilibrium steady state (NESS) characterizeddmywanishing entropy production

Ep(wx,+) = Xwx +(®) >0,
where® is the observable describing the heat flux ouRofFor additional information about this setup we refer
the reader to [Rul, Ru2, Ru3, JP1, JP2, JP3].

The Green-Kubo linear response formula asserts that ifdm¢ $ystem is time-reversal invariant and the
observabled is odd under time-reversal, then

o0

1
Oxwx (= [ wslddidt (L.1)
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Figure 1: An open quantum system representdd ask.

wheret — @, is the dynamics in the Heisenberg picture. This celebratedila relates the linear response to the
equilibrium correlations and is a mathematical expressiotie fluctuation-dissipation mechanism in statistical
mechanics.

The ORR are direct consequences of the GKF. Consider thstersgA, B, C, which are respectively in
thermal equilibrium at inverse temperatures- Y, 5, and — X. Assume that the systems are brought into
contact by interactions which coupfewith B andB with C. Letwx y,+ be the non-equilibrium steady state of
the joint system ané 5, ®¢ the observable which describe the heat flow oub o€ (see Figure 2). If the system
is time-reversal invariant, theb, and®c are odd under time-reversal.

Assume that the functionsx y +(®c) andwx y,+(®4) are differentiable afX = Y = 0. The kinetic
transport coefficients are defined by

Ly = BXCUX,Y,-F((I)A)‘X:Y:O’

L¢c = BYWX,Y,-l-((I)C)’X:Y:O'

In words, even ifA andB are at the same temperature, the temperature differeetialenB andC may cause
a heat flux out ofA equal toX L + o(X) for X small. L has the same interpretation. If the GKF in the form
(1.1) holds for. = A + B, R = CandA = ®4, then

1 o0
La = 5/ wﬁ(q)A(fI)c)t)dt.

Similarly, if the GKF holds fol. = B + C, R = A andA = &, then

Lc = %/00 wg(Pc(Pa)e)dt = %/OO wg((Pc)ePa)dt.

Hence, the GKF and the relation
[ walitee)aahae=o.

which is a well-known consequence of the KMS condition,dittleOnsager reciprocity relations
Ly = Le. (1.2)

In this paper we give a rigorous axiomatic proof of the GKFL{land the ORR (1.2) in the abstract setting of
algebraic quantum statistical mechanics.

The main idea of our proof can be illustrated by the followsignple computation. Assume thhtand R
are finite dimensional systems, i.e., that they are degttiyefinite dimensional Hilbert spacé%;,, Hr and
HamiltoniansHy,, Hr. The Hilbert space of the joint system’s = Hr, ® Hr. LetV be a self-adjoint operator
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Figure 2: The joint system + B + C.

on H describing the interaction df andR. The Hamiltonian of the joint system @ = Hy, + Hg + V and
A, = el Ae—tH The heat flux observable is

d owm ,
® = —Ee‘tHHRe tH‘t:o =i[Hg,V]. 1.3)

A common choice for the reference (initial) state of the j@iystem is the product statg.; with density matrix

L 8L~ (8- X) Hy
Z 3

whereZ is a normalization constant. As we shall see, in the studinefir response theory a more natural choice
is the statevx described by the density matrix

le—BH+XHR_

Z
Let A be an operator ofif andt > 0. Note that

wx(A) = wx (efit(HfXHR /ﬁ)eitHAefitHeit(HfXHR/ﬁ)) ’
and so
X t
wx(At) — wx(A) = E/ wX(i[HR,AS])dS. (14)
0
If the system is time-reversal invariant adds odd under the time-reversal operation, thep(A) = 0 for all X

(and in particularwy(A:) = wo(A) = 0 for all t). Hence, (1.4) yields

1 t
axwx(At)‘XZO = B/ wg(i[HR,AS])dS.
0

Another elementary computation yields
weli[Hy, Ay]) = %Tr(As[e_ﬁH, Hy)) = %ﬂ (Asle?H HpeM — Hgle M)

B
= / wp(Age™ Hoe)du,
0

and so , 5
1
8XWX(At)|X:0 = BA dS/O dUWﬁ(AS(I)iu). (15)

Needless to say, only infinitely extended systems have naatthermodynamics. The central point of our
argument is that the relation (1.5) can be proven even ifgetemsl. andR areinfinitely extendednd Hamiltoni-
ans are not defined any more. We shall show that the relatibhi€la general consequence of the KMS-condition
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and holds in the abstract setting of algebraic quantunssitati mechanics under very mild technical conditions.
Our argument then continues as follows. Assume that thestsex statevx  on O such that for any observable
Ay
lim wx(A4;) =wx +(A). (1.6)
t——+oo

The statevx . is the non-equilibrium steady state (NESS) of the systesmR and is the central object of non-
equilibrium statistical mechanics. Let be an observable for which (1.5) holds. Assume in additiat the
function

X — wx 1 (A), a.7)

is differentiable atX = 0 and that the limit and the derivative in the expression

ti}inoo anX (At)‘XZO’ (18)
can beinterchangedThen,
1o [P
8XWX7+(A)‘X:O = —/ dt/ dUWﬁ(At(I)iu), (19)
B Jo 0
and this relation is the Green-Kubo formula.
If in addition the joint thermal equilibrium states is mixing, namely if for all4, B € O,
lim wg(r'(A)B) = ws(A)ws(B), (1.10)

|t|—o0

then it is not difficult to show that the KMS condition and tiaé-reversal invariance imply that (1.9) is equivalent
to (1.1).

The above derivation requires a comment. The initial stataroonly used in the literature is the decoupled
product statev,.r. In this paper we prove the GKF for the NES& . associated to the initial statex. On
physical grounds, one expects that under normal conditibstatesnormal w.r.t.wx evolve towx 4 ast — +oo
(see [JP3, AJPP1]). Since in particulax andw,.; are mutually normal they are physically equivalent initial
states.

The three key assumptions of our derivation are the existefithe NESS (1.6), the differentiability of the
function (1.7), and the interchange of the limit and the\g#ive in (1.8). Verification of each of them in physically
interesting models is a difficult task.

In the literature two distinct techniques have been usedismfthe study of NESS. The first is the scattering
approach, initiated by Robinson [Ro1], and further devetbin [BM, AM, Rul, FMU]. The second is the spectral
approach developed in [JP2]. In the continuation of thisepdpOP2, JOPP] we will show how the spectral and
the scattering approach can be used to verify our abstractgstions and we will illustrate the general theory on
well-known examples of open quantum systems with free feninireservoirs studied in [Da, LeSp, BM, AM,
JP2, FMU].

Acknowledgment. The research of the first author was partly supported by NSER@ of this work was done
during the visit of the first and the third author to ESI in Mien V.J. and C.-A.P. are grateful to J. Defesi,
G.-M. Graf and J. Yngvason for invitation to the workshop 8duantum Systems" and for their hospitality. A
part of this work has been done during the visit of the firshauto CPT-CNRS. Y.O. is supported by the Japan
Society for the Promotion of Science. This work has been dhming the stay of Y.O. to CPT-CNRS, partly
supported by the Canon Foundation in Europe and JSPS.
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2 The model and the results

2.1 Basic concepts

In this subsection we briefly review for notational purpoadew basic notions of algebraic quantum statistical
mechanics. This topic is discussed in many places in thafitee and we will freely use the results described in
the classical references [BR1, BR2]. An exposition of tlgehlaic formalism suited to non-equilibrium quantum
statistical mechanics can be found in the reviews [Ru3, 8BBP1].

A C*-dynamical system is a paj©, 7), whereO is aC*-algebra with identityl and?, t € R, is a strongly
continuous group ok-automorphisms o®. In the context of quantum statistical mechanics, the etgsef
O describe observables of a physical system and the gradgscribes their time evolution in the Heisenberg
picture. The physical states are described by the staté} ae., positive normalized linear functionals@. A
quantum dynamical system is a trigl@, 7, w), wherew is a given reference state. The physical states of thermal
equilibrium at inverse temperatufeare described byr, 5)-KMS states inO*. We shall assume tha > 0
although all our results also apply fo< 0. We recall thatv is a(r, 5)-KMS state if for allA, B € O there exists
a functionF 4 p(z), analytic in the strif) < Im z < 3, bounded and continuous on its closure, and satisfying the
KMS-boundary condition

Fa p(t) = w(ATY(B)), Fap(t+iB) = w(r'(B)A).

The three-line theorem yields that
|Fa,5(2)| < [[AlllIBIl,

for 0 < Im =z < f. For notational convenience we shall writeAr*(B)) = Fa p(z).
An anti-linear involutivex-automorphisn® : O — O is called time-reversal diO, 7) if

Borl=7""086,

for all ¢ € R. A statew is called time-reversal invariantif(©(A4)) = w(A*) forall A € O.

2.2 The setup

We shall consider two quantum dynamical systédg, 1., wr,) and(Or, Tr, wr ), Which we shall call the left,,
and the rightR, system. We denote the generatorsipndry by &, andég, i.e., 7 = et andr = e!or.

If the systemL andR are brought into contact, then the algebra of observabléiseofoint system i) =
Or, ® Og (our results do not depend on the choice of the cross-normidgfihis tensor product). Its decoupled
dynamicsry = 71, ® 7 is generated by(®) = §;, + dg.

Notation. If £ is an operator oy, then we will denote by the same letter the oper#@tay I on O, ® Og.
Hence, we write)y, for o1, ® I, etc. We will use the same convention in the cas®gf

Let V € O be a self-adjoint perturbation describing the interactdh, andR. The C*-dynamical system
describing the interacting systdot R is (O, 7), where the interacting dynamiess generated by

5 =060 +i[v, .

In what follows > 0 is a fixed reference inverse temperature and 0 is a small number such that> e.
We setl, = (—¢,¢). We make the following assumptions concerning the referestates of. andR and the
interactionV/.

(Al) wy, is the uniquéry,, 3)-KMS state onOy,. The possible reference statesfofire parametrized b € I,
andwg, x Is the uniquerg, 5 — X)-KMS state orOg. We shall writewg ¢ = wg.
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(A2) V € Dom (0R).
If (A2) holds, then the observable describing the heat fluodR is (recall (1.3))

® =g (V).

Consider the family of states
w9 = ®
b% L ®WR,X-
Let a&?) andox be theC*-dynamics or© generated by
X

o) =5 - E(SR’

5x =60 +i[V, .
w&?) is the unique(agg),ﬁ)-KMS state on®. The Araki perturbation theory implies that there existsnique

(ox,B)-KMS statewx on O. The statesx andwﬁ?) are mutually normal. Note thaty = 7 and that is the
unique(r, 5)-KMS state onD. We denotevg = wy.
Our next assumption deals with time-reversal invariance.

(A3) There exists a time-reversal of (O, 7y) such that
Qorl=7"00, Qorh=m"00, OV)=V.

One easily shows th& is also a time-reversal ¢, 7), (O, ogg)) and(O, ox). If in addition (A1) holds, then
the statesjgg) andwx are time-reversal invariant.
In essence, our main result is:

Theorem 2.1 Suppose that Assumptio(l1)-(A3) hold. LetA € Dom (6r) be a self-adjoint observable such
that®(A) = —A. Then, for allt € R, the function

X = wx(r'(A)),

is differentiable atX = 0, and

t 8 .
6XwX(Tt(A))|X:0: %/0 ds/o duwg(7°(A)T™(D)). (2.11)

Remark 1. Assume in addition that the quantum dynamical systéths, 7r,wr, x) are ergodic fofX| < e.
Then,{wx} is a family of mutually singular states (see [JP3, AJPP1} the differentiability of the function
X — wx(rt(A)) at X = 0 is far from obvious. The somewhat surprising generality bédrem 2.1 critically
depends on the time-reversal assumption which ensures that) = 0 for all | X| < e. For a related technical
point in classical non-equilibrium statistical mechaniesrefer the reader to [Ru5].

Remark 2. Let wg » denote the3-KMS state for theC*-dynamics generated y— \[=,, - | where

t
= = / 77%(P)ds.
0
Then, by Araki’s perturbation theory one has

1
Ba)‘wﬁ')‘(A)‘)\:O = 8XWX (Tt (A))‘X:()'

Hence, the finite time linear response to the thermodynamical foiXeis equal, up to a factor of, to the
equilibrium linear response to the mechanical perturibafip For additional information concerning this point
we refer the reader to [Zu, TM].
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2.3 The Green-Kubo formula

Our next assumption postulates the existence of a NESS the.initial statevx.

(A4) For eachX € I, there exists a statex ;. such that for alld € O,

lim wx(7(4)) = wx +(A).

t——+oo

Note thatvy + = wg is the uniqugr, 3)-KMS state onO.
Finally, we shall assume that our coupled system is mixirggatlibrium.

(A5) ForallA, B € O,
lim wg(r'(A)B) = ws(A)ws(B).

[t|—o0

The observables for which we will establish the Green-Kudratiula are characterized by
Definition 2.2 Assume thaAl) and(A4) hold. LetA € O be an observable such that for althe function
X = wx(r'(4)),
is differentiable atX = 0. We call such an observable regular if the function
X wX,+(A)a (2.12)
is differentiable atX = 0 and
t—l%gloo axwx(Tt(A))’XZO = anXa“‘(A)’X:O' (213)
A consequence of Theorem 2.1 and the definition of regulagrebble is the Green-Kubo formula.

Theorem 2.3 Suppose that Assumptiof#sl)-(A4) hold. LetA € Dom (dr) be a regular self-adjoint observable
such that®(A) = —A. Then

oo B8 )
Oxwx, 4 (A)] 5y :% /0 at /O duwg(rt (A)T(®)). (2.14)

If in addition (A5) holds, then

oo

Oxwx+(A)| gy = % / dtwg(ATH(D)). (2.15)

Remark 1. In (2.15), [ = limr o0 [
Remark 2. It follows from our proof that linear response to the therymaimical forceX can be computed without
time-reversal assumption. Assume that (A1), (A2), (Adyhanid thatd € Dom (Jgr ) is a regular observable. Then

1 >~ p t iu
8way+(A)}X:0 = anX(A)}X:O_F B/o dt/0 duwg(r°(A)T*(P)).

This formula will be discussed in more detail in [JOP1].
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In applications to concrete models the key assumptions¢galchre (A4), (A5) and that physically relevant
observables are regular. The assumptions (A4) and (A5) besgr verified for open quantum systems with free
Fermi gas reservoirs in [BM, AM, JP2, FMU]. In these works JAglestablished in the stronger form, i.e. for any
normal W.r.t.wgg) and allA € O, lim;—, 4o, (7' (A)) = wx +(A). In the continuation of this paper [JOP2, JOPP]
we will prove that in these models the observables desgib@at fluxes withird. are regular.

A simple class of models to which Theorem 2.3 directly apgpéiee quasi-free open systems studied in [AH,
AJPP1, AJPP2, AP]. These models are also exactly solvabl¢henGKF and the ORR can be checked by direct
computation.

2.4 Onsager reciprocity relations
Consider thre€*-dynamical system&;, 1), J = A, B, C. The generator of; is denoted by ;. We set

O:®0J, TOZ®TJ, 5(0):Z§J
J J J

Let V € O be a self-adjoint perturbation describing the interactibthe joint system and let be the dynamics
generated by = §(9 4 i[V, -]. We shall assume that has the form

V = Vap + VBc,

whereVap € Op ® Op andVpe € Op ® Oc. If Vap € Dom (64) andVse € Dom (d¢), then the observables
describing the heat flow out of andC' are

®5 =0a(Van), Oc = dc(Vae),

see Figure 2. Note that in this ca&@(®a) = da(Pc) = 0.

We assume that (A3) holds in the following form: there exastBne-reversab of (O, 7y) such that} 0 © =
©o r]t for all J andO(Vag) = Vag, ©(Vsc) = Vee. Then® is a time-reversal of the coupled systé, 7)
and@((I)A) = —P,, @((I)C) = —¢.

We shall also consider the joint systetis+ B andB + C. In the first case the algebra of observables is
O ® Op and the dynamics is generated®y+ g + i[Vag, -]. The systenB + C is defined in a similar way.
Let 8 > 0 be the fixed inverse temperature.

Considell. = A + B as the left system ani@l = C as the right system. Suppose that Assumptions (Al), (A2),
(A4), (A5) hold (we have already assumed the time-reversalriance) and that the observaldlg is regular. Let
wA+B,¢,x,+ be the NESS in the Assumption (A4). Then the kinetic transpmefficient

La = Oxwai,o.x.+(Pa)] o

is well-defined and the Green-Kubo formula holds,

1 o0
LA = 5/ WQ((I)ATt((I)C))dt,

wherewg is the(r, 5)-KMS state orO.

Consider nowL. = B + C as the left system and = A as the right system. Suppose that Assumptions (Al),
(A2), (A4) and (A5) hold and that the observaldle is regular. Letvgyc,a, x,+ be the NESS in the Assumption
(A4). Then the kinetic transport coefficient

Lo = dxwic,x,+(P0)] x_o»

is well-defined and the Green-Kubo formula holds,

Lc = l/OO wp (@7t (PA))dt = 1/00 wp (! (Pc)Pa)dt.

- 2/ .
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Sincewg is mixing, by the well-known stability criterion (Theoren#512 in [BR2]),

T

lim wﬁ([Tt(fI)c), @A])dt =0,
T—o0 -7

and so
L= Lc.

This is the Onsager reciprocity relations for heat fluxes.

3 Proofs

Throughout this subsection we assume that (A1) and (A2).hold
We start with:

Lemma 3.1 Assume thatA3) holds. Then:

(1) © is a time-reversal of the’*-dynamical system®, 7) and (O, ox),
(2) The statesyx are time-reversal invariant.

3)O(P)=-92.

Proof. (1) Recall that
TH(A) = Terg (AT},
wherel'; € O is the family of unitary elements defined by

Ii=1+ Z(lt)n/ e (V)7 (V)dsy - - - dsi,

n>1 0<5,<---<51<1

see Proposition 5.4.1. in [BR2]. Similarly,

where

D=1+ Z(—it)”/ 7o (V) -y (V) dsy - - - dsy.

et 0<sn < <s1<1

Since®(V) = V andO(I';) = Iy, we have tha® o 7! = 7~ 0 O, i.e.,O is a time-reversal of©, 7).

10

(3.16)

(3.17)

Since® is also a time-reversal ¢, aﬁ?)), one proves in the same way tteis a time-reversal ofO, ox ).

(2) Set
wx (A) = wx (O(47)).

One easily checks thaty is a(ox, 3)-KMS state. Assumption (A1) and Araki’'s perturbation theomply that

wx is the uniqudoy, 5)-KMS state on0. Hencepwx = wx.
(3) is an immediate consequence of the relagidny, (V) = m (V) and the definition ofp. O

Lemma 3.2 The groupr preserve®om (dr) and for A € Dom (ér) the function
R>t— 6R(Tt(A)),

is norm continuous.
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Proof. SinceV € Dom (dg), the formula (3.17) yields that; € Dom (dr) and that

or(T) = Y (it)" / S (V) (Gr(V)) - 7 (V)dsy - ds.

1 0<s, << <15

The series on the right is uniformly convergentfan compact sets, and ® > t — Jr(T';) is @ norm continuous
function. The formula (3.16) yields

SR(T'(A)) = or(T1)76(A)TF + Tiro(0r (A)T; + Tirg(A)dr (Th)",
and the statement follows]

In the remaining part of the proof we will need to approximatandV” by analytic elements. For this reason
we briefly recall a few basic facts about such analytic apipnaxions (see [Ar, BR2, DJP]). Far € O we set

C; = \/%/Re_jﬁqﬁ(C)dt, i=12,- (3.18)

EveryC; is an analytic element for the group, i.e., the functiont — 7¢(C;) € O extends to an entire analytic
function onC. Moreover,
Icili < el and - lim IC; — CJ| =0. (3.19)

Ifin additionC' € Dom (ér), then

6R(C7) = \/g/ReJtzTé(éR(C))dh j = 17 21 o

and sadg (C}) is also an analytic element fof andlim;_, ||6r (C;) — 0r(C)|| = 0.

Lemma 3.3 For A € Dom (gr),

ol (A) — TH(A) = —%/0 o' (6r(7°(A)))ds. (3.20)

Proof. Assume first thatl € Dom (6) N Dom (dr ). Then,

ORI (A) = 0316~ 8x)(7' () = o3 (Bu(r' (W), (3.21)

and (3.20) holds.
Let nowA € Dom (6r) and let4; be given by (3.18). Clearlyd; € Dom (§) N Dom (d) and (3.20) holds
for A;. The relations

or(7'(A5)) = or(Te7g(A;)TT)
= Or (D) 70 (A;)Tf + Tirg(6r (A;))T5 + Terg(A;)or (T,

yield thatlim;_, . dr(7(A;)) = dr(7*(A)) uniformly for ¢ in compact sets, and the statement follo@s.
SinceDom () is dense inD, Lemma 3.3 yields that for altt € O,

Jim [l (4) = ()| =0. (3.22)
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Lemma 3.4 Forall A € O,

)1{11110 wx (4) = wg(A4).

Proof. Let £ be the set of weak* limit points of the névx} asX — 0. The setl is non-empty since the unit
ball in O* is weak* compact. Relation (3.22) and Proposition 5.3.2BiR2] yield that every element of is a
(1, B)-KMS state. Assumption (A1) implies that; is the uniquér, 3)-KMS state on® and sol = {wg}. O

Lemma 3.5 Assume that (A3) holds. Let € Dom (6r) be a self-adjoint observable such thatA) = —A.
Then for allt € R the function
X = wx (r'(4)),

is differentiable atX = 0 and

Oxwx (r(A)] g = % / (B (r* (A)))ds.

Proof. Sincewy is o x-invariant, Lemma 3.3 yields

wx (T'(4)) — wx

(4 1/ s
< - 5/0 wx (Or (7% (A)))ds.

By Lemma 3.1wx (A) = wx(6(4)) = —wx(A), and sawx (4) = 0. Similarly, sincew, = wg is r-invariant,
wo(TH(A)) = wo(A) = 0 for all t. Hence,

wx (1'(4)) — wo(r
X

tHA 1/t

(4)) = —/ wx (Or(7°(A)))ds.
B Jo

This relation, Lemmas 3.2, 3.4, and the dominated converggield the statement

Lemma 3.6 Assume thatl € Dom (ég). Then

B )
ws(Br(4)) = / W (AT (®))ds.

Proof. We will freely use standard results of Araki's theory of pebiation of KMS-states (see [Ar, BR2, DJP]).
Let V; be the analytic approximations &f given by (3.18). Sincd” € Dom (6r), ®; = dr(V;) are analytic
approximations of the heat flux observatile= ji (V'). Note also that the functioh— I'; ;, where

Fej=1+ Z(if)n/ 7o (V) - 10" (Vy)dsa - - dsa,

"1 0<sp < <s1<1

extends to an entire analytf2-valued function

FZ-,j = ]1+Z(1z)”/ T(‘)ZS”(‘/J-).-.T(’)ZSl(‘/j)dSl...dsn'

et 0<sp < <s1<1

The functionz — I’ ; is also entire analytic and foradl I, ;I'; ; = 1.
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Let7; be theC*-dynamics orO generated by(®) +i[V;, -], and letw; be the uniquér;, 3)-KMS state. Since
foranyC € O,

7H(C) =T, ;75(C)Ly 5, (3.23)

we conclude thatl;, V;, and®; are also analytic elements for and thafim; ... ||} — 7| = 0.
We shall prove first that for al,

B )
w;(0r(A4;)) :/0 wj(A;7;"(®;))du. (3.24)

This formula combined with a limiting argumejit— oo will yield the statement.
The following relations hold

d . R
Ll = =7 (V)),
(3.25)
d * sz *
&Fz,j = —17g (Vj)l—‘zj-

One easily verifies that for at € C, ', ; € Dom (ér), I'

% ; € Dom (0r), that the functions — Jr (I, ;),
z = or(I'% ;) are entire analytic, and that

d . 2 . 2
(=) = i0R (D )76 (V) + 1T 75 (B5),
(3.26)
d * sz * sz *
&5R(Fz,j) = 17y ((I)j)rz,j — 17y (Vj)(SR(FE,j)'
Relations (3.25) and (3.26) yield
d N . » " . .
&Fzyde(Fz,j) = —1F27j7'0 (q)j)sz = —17'j (‘I)j) (327)
Recall thatuf)o) = wr, ® wgr. By the basic identity of Araki's perturbation theory, faneC' € O,
w§ (CTig,5)
w;(C) = BT
wo (Tig,5)
In particular,
(0)
Wy’ (Or(A;)Tia,;
Wj(5R(Aj)): 0 ((;( .7) 5]).
wy (Tig,5)
SinCEw(()O) (0r(C)) = 0foranyC € Dom (ér), we have
W (0r(A))Tig ) = —wi (A;0r (Tig ;) = —w” (4310 (Ti )T 5, Tig 5)-
Hence,
wj(0r(A4;)) = w;j(4;[Tig0r(Ti5 ;)])- (3.28)

Relation (3.27) implies
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and so 5
Fiﬁ_,jaR(r*_W):/ 73(®;)du. (3.29)
0

Relations (3.28) and (3.29) yield (3.24).
It remains to show that

Jim w;(0r(4;)) = ws(Or(4)), (3.30)
g ) B .
lim wj(Ajle»“(fl)j))du:/ wg(AT™(®))du. (3.31)
J— Jo 0

By the properties of analytic approximations,

lim [lw; —wsl|=0  and  lim [[6r(4;) — dr(4)] =0,
j—o0 j—o0

and these relations yield (3.30). To prove (3.31) we argdelkmsvs.
Fort € R we set

8 ) B .
hy(t) = / (A (@ ))du,  h(t) = / (AT (B))du,
Then

tw, (B ) du = tw‘ () )y — tw- _utiB (g VVdu
/O (A, 7 (@;)])d / (AT (®;))d / (AT (@;))d

In the first step we have used the KMS condition and in the sd¢bat the integral of the function —
wj(A;77(®;)) over the boundary of the rectangle with vertites, ¢ + 143, i3 is zero. Similarly,

/0 wa([A, 7(®)])du = i(h(0) — h(1).

Since
lim w;([4;,7}(®;)]) = ws([A, 7*(P)]),

J—00 720

we derive that for alt € R

Jim (R (t) — hy(0)) = h(t) — h(0). (3:32)
Note that . 5 .
/m e*tzhj(t)dtz/o du/ﬁ(;ite*“*mfwj(AjT;(@j)),
/ h e h(t)dt = /0 ’ du / h dte =170 (AT (D)),
Since for allt,

lim w; (A7} (®;)) = wp(AT" (D)),

J—o0
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we conclude that -
lim e~ (hy(t) — h(t))dt = 0. (3.33)
Jj—oo 0o
Then (3.32) and (3.33) yield
lim h;(0) = h(0),
J— 00
and (3.31) follows
Proof of Theorem 2.1.This theorem is an immediate consequence of Lemmas 3.5 énd 3.
Proof of Theorem 2.3.Relation (2.14) follows from Theorem 2.1 and the definitiémemular observable.
To prove (2.15), we need to show that
iu o 1 > t
tl}Tw B/ {/ (A)r (Q)))ds} du = B /_OO wa(ATH(®))dt.
Time-reversal invariance yields that feru € R,
wp(r7(A)7"(®)) = ws(r°(O(A))T*(O(®))) = wa(O(r*(A)7™"(®))) = ws(r— ()7 *(4)).
This identity and the KMS-condition imply
wa(T*(A)T (@) = wa(r~*(A)T77(@)).
The analytic continuation yields that fere R andu € [0, 3],
wp(r°(A)T(®)) = wa(r™(A)T7 (@),
and so
L[ @l a= 2 [ )
- wg (7% (A)7(P))ds du:—/ {/w @ds]du
B /0 o P 26 Jo t o
1 K "
= — wg(AT*T(®@))ds| du.
28 /0 U R }
The integral of the function
z +— wg(AT*(B)),
over the boundary of the rectangle with verticels ¢, t + iu, —t + iu is zero. Hence,
t . t
/ wi (AT (®))ds :/ wa(AT*(®))ds + R(t,u),
—t —t
where N
R(t,u) = i/ [wg(ATHiy((I))) - wg(ATftHy((I)))] dy,
0
and we derive
Lot . 1t
—/ [/ wg(T*(A)T (@ ))ds] du = —/ wa(AT?(®))ds + —/ R(t,u)d (3.34)
B Jo 0 2 )
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Assumption (A5) implies that

lim wg(ATEHY (D)) = wa(A)ws(®) = 0.

t——+o0

This fact and the dominated convergence theorem yield

lim sup |R(t,u)| =0,
t——+o0 0<u<p

and Relation (3.34) implies the statement.
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