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Abstract

We consider a model describing finitely many free Fermi gaemairs coupled by local interactions and
prove the Green-Kubo formulas and the Onsager reciproelgtions for heat and charge fluxes generated by
temperature and chemical potential differentials.
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1 Introduction

This is the fourth in a series of papers [JOP1, JOP2, JOP8hdemith derivation of Green-Kubo formulas (GKF)
and Onsager reciprocity relations (ORR) in quantum stedistnechanics. The first two papers [JOP1, JOP2] were
devoted to the abstract axiomatic derivation of GKF and O&Rpen systems driven by thermodynamical forces
associated to temperature and chemical potential diffeden This paper and [JOP3] are devoted to the study of
concrete models.

In [JOP3] we have studied the well-known spin-fermion matkscribing the interaction of al-level atom
with finitely many independent free Fermi gas reservoirs [Re5p, JP2]. Combining the results of [JOP1, JOP2]
with spectral theory of non-equilibrium steady states tgwed in [JP2] we have established GKF and ORR for
this class of models.

In this paper we study a model describing finitely many freerftgas reservoirs coupled by local interactions
and show that the abstract derivation of [JOP1, JOP2] coachivith scattering theory of non-equilibrium steady
states (see [BM1, AM, BM2, Rul, FMU]) yields the GKF and ORRtfus class of models.

Throughout the paper we shall assume that the reader isdamith general aspects of linear response theory
discussed in [JOP1, JOP2, JOP3] and with the algebraic fmmaf quantum statistical mechanics [BR1, BR2].
A modern introduction to these topics can be found in [JP3UFlhd in the recent lecture notes [AJPP1].

The paper is organized as follows. In Subsection 1.1 fortiwotal purposes we review the description of a
free Fermi gas in the algebraic formalism of quantum stesismechanics. In Subsection 1.2 we introduce the
model and state our results. The strategy of the proof isaheesas in [JOP3] and is described in Section 3.1.
This strategy reduces the proof of all our results to a texdimstimate formulated in Theorem 3.1. This estimate,
which is our main technical result, is established in Sec8@.

Acknowledgment. The research of V.J. was partly supported by NSERC. A pattisftork has been done during
V.J.'s visit to CPT-CNRS and during his stay as a Forchheixfigiting Professor at The Hebrew University of
Jerusalem. He would like to thank H. Farkas and Y. Last fohttepitality of the Einstein Institute of Mathematics
at The Hebrew University. The research of Y.O. was suppdiyetie Japan Society for the Promotion of Science.
A part of this work has been done during the stay of Y.O. at CNRS, partly supported by the Canon Foundation
in Europe and JSPS.

1.1 Prdiminaries

Let h and hy be given Hilbert space and Hamiltonian. The correspondiag Fermi gas is described by the
C*-dynamical systeniO, 7y) where:

(i) © = CAR(h) is the CAR algebra ovelj. We denote by:*(f)/a(f) the creation/annihilation operator
associated t¢ € h. As usuala™ stands for eithes or a*;

(i) 7¢ is the group of Bogoliubow-automorphisms generated by, 7 (a* (f)) = a¥ (et f). We denote by
0o the generator ofy;

The gauge group of the free Fermi gas is the group of Bogoliubautomorphism#?, o € R, generated by
the identity operator oh. The physical observables are gauge invariant and henoepts of

Oy ={AcO|9?(A) = Aforall p € R}.

Oy is thery-invariantC*-subalgebra o© generated bya*(f)a(g) | f,g € b} and1.
Let 3 > 0 andu € R be parameters ands,, the gauge-invariant quasi-free state@menerated by

1

Ton = 1+ eBho—m)
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The quantum dynamical systef@, 7, wg,,) describes a free Fermi gas in thermal equilibrium at inveaseer-
ature and chemical potential. We remark thatg,, is the unique3-KMS state for theC*-dynamicsr§ o ¢+
and thatvg,, [ Oy is a(m, 3)-KMS state onQy.

LetV € Oy be a self-adjoint perturbation ang the perturbed’*-dynamics generated by = dp + iA[V] -]
where) € R is a coupling constant. We recall that fdre O andt > 0,

74(4) = 75 (4) + Y (A" / [ (V). [ g (V) m(A)] -+ Nl dsy - - dsie. (1.1)

0<sp<--<s1<t
In this paper we shall consider self-adjoint perturbatiofithe form

K Nk

V= Z H a” (ugg)a(vg;), 1.2)

k=1j=1

whereK andny’s are finite. We sefi = maxy ni. DenoteDy = {ug;,vx;}. By rescalingh, without loss of
generality we may assume that
ma =1. 1.3
max | ] (L3)

If m = 1, thent{ (a¥(f)) = a™ (¢! f) wherehy = ho + A Y, (vk, - )ux, and so the>*-dynamicsr, is also
a group of Bogoliubow-automorphisms. This special case is exactly solvable asthben studied in detail in
[AJPP2] (for additional information and references abaudsi-free open quantum systems we refer the reader to
recent lecture notes [AJPP1, JKP]).

The following technical result will play a key role in our pap

Theorem 1.1 LetA = a¥(f1)---a”(fn) be a monomial of ordem and
C (50, y8) = Vi [r6m (V) [+, [ (V) 70 (A)] - ]1I.

Then for alln > 0 there exist a finite index s&t,(A), monomialsFXI)) € O, and scalar functioné?f;; such that
P s0rsa) = > G (500 50)FY ) (50, 5m). (1.4)
pGPn(A)
Moreover,

1. The order of the monomiﬂlﬁx’f; does not excee?{n + 1)(m — 1) + m.

2. The factors OFX’; are from

{a? ("™ g) |g € Do, s € {0,51,...,5,}} U{a®(e*"0g) | g € A},

whereA = {f1,---, fm}. The number of factors from the first set does not ex¢eed 1)(2n — 1) while
the number of factors from the second set does not exeeed.

3. Suppose that
E:/ sup |(f,eog)|dt < oo,
0

f€Do,9€EDyUA

denote -
Eo:/ sup |(f,e"*"0g)|ds,
o f

,9€Do
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and set .
if m=1
Ay = 2K to 2m—2 ! ,
0= 1 2n — 2)“"~
(2m ) if m>1

Nkl (2m — 1)27-1
If7=1and|A| < Ag orif @ > 1 and|\| < A then the sum

W:Z|>\|n+1 Z / |GE:3)(S(),...,Sn)|d50"'d8n,
n=0

PEPn(A) 0<s, <+ <sg<oo

is finite and satisfies
2K\ )m .
(1 —|Al/Ao) + 2m(2n — 2) K {p| )| '

W < (1 + (1.5)

Remark 1. Parts (1) and (2) of this theorem are easy to prove and aetidiat reference purpose. The key fact
is Part (3) which we shall prove using the fundamental Boinv@u& -Maassen integral estimate [BGM]. Related
but weaker results can be obtained using the integral etstied [BM1, BM2, FMU].
Remark 2. In our applications we shall not need the explicit form of foeind (1.5).

Our first regularity assumption is

(A1) There exists a dense vector subspRce h such thatD, C D and that the functions
R >t (f,eg),
are inL(R, dt) forall f,g € D.

Note that this assumption implies that has purely absolutely continuous spectrum.
A consequence of Theorem 1.1 is

Theorem 1.2 Assume that (A1) holds and that < A,. Then the limits

Y (A) = lim 75" o074 (A), (1.6)

t——+o00
exist for allA € O and define a-automorphismy;” : O — O.

Remark. Under additional regularity assumptions one can also nlitdormation about the rate of convergence
in (1.6), see [JP4] for detalils.

Although Theorem 1.2 is a well-known result (see [Ro, BM1, BNEMU]), for the reader convenience we
will sketch its proof in Subsection 2.2.

1.2 Themode and theresult

Our starting point are finitely many, say, independent free Fermi gasses in equilibrium at inverse tempera-
turesg; > 0 and chemical potentiajs; € R. More preciselyR; is described by the quantum dynamical system
(O}, 75, w;) where:

(i) O; = CAR(h,) is the CAR algebra over the single fermion Hilbert spage

(i) TJ‘? is the group of Bogoliubov-automorphisms generated by the single fermion Hamiltohia
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(iii) wj; is the gauge-invariant quasi-free state generated by

1
T =TTt

We denote by, the gauge group dk;. The generators af; andd; are denoted by; andé;.

Let I o "
b:®hj7 hOZ@hj, T:@TJ
j=1 j=1 j=1

The joint systenR = 3 R; in absence of interaction is described by the quantum dycelrsystem O, 7o, w),
whereO = CAR(b), 7{ is the group of Bogoliubov-automorphisms generated hy, andw is the gauge-invariant
guasi-free state generated By We denote by, the generator of, and by¢ the generator of the gauge groép
of the joint system. Obviously, =}, d; and§ =3, ;.

Let V € Oy be a perturbation of the form (1.2). This perturbation diéssrthe coupling of the reservoirs,
and, possibly, self-interactions within the reservoirst L. € R be a coupling constant ang the C*-dynamics on
O generated by, = §p + iA[V, -]. The interacting joint system is described by the quanturmmadyical system
(O, Tr,w).

Let vj be asin Theorem 1.2 ang,, = wo 7}. A consequence of Theorem 1.2 (see Subsection 2.2) is:

Theorem 1.3 Assume that (A1) holds and tha{ < Aq. Then for allv-normal states) and A € O,
lim no7i(A) =wr(A).

t——+o0

The statew,, is the NESS of the quantum dynamical systéth 7,,w) [Rul, JP3]. Clearly, this NESS
depends or; andy;.

Let 5oq > 0 andueq € R be given (equilibrium) values of the inverse temperatudk@remical potential. We
are interested in linear responsefoto thermodynamical forces

Xj = ﬁeq - ﬁjv YJ = ﬁjﬂj - ﬁeqﬂeq-
LetX = (X3, - ,Xm), Y = (Y1,---,Yy). We indicate the dependence 8 Y by denoting
wxy = w, WAXY + = Wit Txy =T.

Note that by Araki perturbation theouyyoo-+ is the unique3.-KMS state for theC*-dynamicsri o J~#eaf. We
denote this state byeq.
In what follows we shall assume:

(A2) The operatorg; are bounded.

Although our method of proof extends to unboundgd (see Remark 2 after Theorem 1.5), the above assump-
tion covers most cases of physical interest to which ount®apply and allows for technically simpler exposition
of the proofs.

The observables describing the heat and charge flux dBt @ire

;= A;(V),  Tp=2A(V). (1.7)
Clearly,®;, J; € Oy. The conservation laws

M M
Zw/\XY+((I)j) =0, Z%\XY+(u7j) =0,
=1

Jj=1
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hold. The entropy production of the NE&& xy + is defined by

M

M M
Ep(waxy+) = waxy+ [ =D 05 (25— i T5) | = D Xjwnxy+(®5) + Y Yiwaxy+ (7).
j=1 j=1 j=1

By the general results of [Ru2, JP2] (see also [TM, FMU, JQP2p(wrxy+) > 0. The strict positivity of
the entropy production for locally interacting fermion&servoirs can be established by using either perturbative
arguments (see [FMU]) or stability arguments (see Secti8im4[JP3] and [JP4]). This point is discussed in more

detail in the forthcoming review [JP5].
To study linear response ofy xy 4+, in addition to (A1)-(A2) we need the following regularitgsumption.

(A3) For all j andg € Dy, hjg € D.
Our final assumption concerns time-reversal invariance.
(A4) There exists a complex conjugatieon h which commutes with alk; and satisfiesg = g for all g € Dy.

If (A4) holds, then the ma@® (a?(f)) = a¥(cf) extends to an involutive skewautomorphism of such
that® o 7/ = 7-* 0 © andO(V) = V. This implies tha® o 7§ = ;" o © for all X. Note also that

0(®)) = -2,  O(J;) = ~Jj-
We set
Ie={(X,Y) e R*M[|X;] <, [Vj] <¢},
De={(X,Y) e C*M[|X;] < [vj] <¢},
Rps ={A € C||Re | < A, |Im )| < 6}
In the sequef; stands for eithe®; or ;. Our first result is:

Theorem 1.4 Suppose that Assumptions (A1)-(A3) hold andlet A < Aq. Then there exist > 0 andd > 0

such that the maps
(A X,Y) = waxy +(S5),

extend to analytic functions on the g&t s x D.. In particular, for any|\| < A, there existg(A) > 0 such that

the maps
(X,Y) = waxy+(35),

extend to analytic functions ab. ).

The kinetic transport coefficients are defined by

ki
Lyt = 0x;0axv+(®r) | y_y_o»
i
L)\{]C = aij/\XY-ﬁ-(q)k)’X:y:(y
(1.8)

.
Ly, = Ox,WAXY + (jk)‘X:Y:O’

i
Lyte = Ov;uaxy+(Ji) |X:Y:O’
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where the indicel/c stand for heat/charge. Fdr, B € Oy we set

1 t
L) = lim 5 [ (B s

t——+oo ¢

and

t——+oo

Beq
£x(4A, B) lim T / ds/ du wreq(T3(A)T(B)),
eq
whenever the limits exist. Our main result is:

Theorem 1.5 Suppose that Assumptions (A1)-(A3) hold and that< Ag. Thengy (A4, B) is well-defined for
A,Be{®y, -, Py, T1,-, I} and

LY, = Cx (D1, ®;),

LI)C\{]C = £/\((I)kak7j)a

(1.9)
LI)C\‘(];h - EX(jka (I)J)a
LY, = &x(Tk, J)-
Assume in addition that (A4) holds. Thén(A, B) is well-defined ford, B € {®1 - ®pr, J1, - T }s
)\hh = ﬁk(q)kv )
LYo = LA(®r, T)),
(1.10)
LY, = LA(Tk, ®5),
LY, = LA(Tk, T)),
and
kj ik
LX{lh = LjAhhv
LY. = Dice, (1.11)

kj 1k
L/\hc - L/\ch'

Remark 1.The formulas (1.9) are the GKF without time reversal assiomptThe formulas (1.10) are the GKF

in the standard form. The formulas (1.11) are the Onsagdépramity relations. The ORR are an immediate
consequence of (1.10) and the KMS condition, see [JOP1,[JOP2

Remark 2. If m = 1, then our proofs give that Theorems 1.1-1.5 hold with= 1/2K¢,. However, since in
this case the coupled system is quasi-free, these theo@mmsecalso proven using trace class scattering theory
which yields better constants and wealth of additionalrimfation about the model. For more information about
this special case we refer the reader to [AJPP1, AJPP2, JKP].

Remark 3. With regard to the Green-Kubo formulas (1.10), a naturaktjae is whether the correlation functions

t — wxeq(T4 (A)B) are absolutely integrable fot, B € {®y,--- , ®y, J1, - - Ju - Thisis a delicate dynamical
problem which is studied in [JPP]. In this paper we only dgthlihe existence of the improper integrals

¢
lim Wheq(Tx(A)B) ds.

t——+o0 ¢
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Remark 4. By Theorem 1.4, the functions— Lﬁiv, u,v € {h, c}, are analytic fof\| < Ay and can be expanded
into power series whose coefficients can be computed. Sudputations can be used to verify that in specific
examples the transport coefficients are non-vanishing.réasons of space we shall discuss these perturbative
computations in the forthcoming review [JP5].

Remark 5. Our results are tailored for application to tight-bindiggé models of electronic transport in which As-
sumption (A2) is usually satisfied. However, all our proofeed to unboundehl;’s as long ady C Dom (e?!s)

for all j and some: > f.q. It is an interesting technical problem to prove Theoremsahd 1.5 for unbounded
h;’s without this additional technical assumption.

Remark 6. Theorems 1.1-1.3 are fairly flexible and are easily adapteal humber of different setups involv-
ing free Fermi gas reservoirs. The same applies to Theorefnant 1.5. For example, one may consider the
tensor product structure, where the joint system in absehiogeraction is described b = O; ® --- ® Oy,
=T ® Ty, w=w; ®---Quwy. This type of models was studied in [FMU]. Another class déted
models are local perturbations of the exactly solvable tEdeic Black-Box Model studied in [AJPP1, AJPP2].
Instead of coupled free fermionic systems one may consumigpledX — Y quantum spin chains. Theorems 1.4
and 1.5 extend to these models with only notational charsges[JP5] for details.

Remark 7. We call A € O centered ifuyxy (A) = 0 forall |\ < Ap and(X,Y") € L. Our proof easily extends
to the general Green—Kubo formulas

anW)\XY+(A)‘X:y:0: Lr(A, D)), 3YijXY+(A)|X:Y:0: Lx(A, Tj),
for centered observableswhich are polynomials ia (f) with f € D.

We finish this subsection with some examples to which Thesrkit+1.5 apply. Le§ be the set of vertices of
a connected graph of bounded degree Agdthe associated discrete Laplacian acting“qg). We recall that

(Agy)(z) = Y (),
ly—z|=1

where|y — x| is the distance on the graphg is a bounded self-adjoint operator ghflg || = sup,¢ d(z), where
d(x) is the degree of the vertex Letd, be the Kronecker delta function ate G. We shall call the graply
admissibleif there existsy > 1 such that for alke,y € G,

(82, e71294,)[ = O(Jt| ™), (1.12)

ast — oo. Clearly, the discrete Laplacian of an admissible graphpliasly absolutely continuous spectrum.

An example of admissible graph@= Z for d > 3. In this casey = d/2. Another example is the half-space
G =74 x 7%t whereZ, = {0,1,---} andd > 1 (if d = 1thenG = Z,). In this casey = (d + 2)/2.
Tubular graphs of the typg, x I', wherel' C Z?~! is finite, are admissible with = 3/2. Another well-known
admissible graph is a rooted Bethe lattice where 3/2.

Assumptions (A1)—(A4) and Theorems 1.1-1.5 hold if

(i) G1,...,Gn are admissible graphs;
(i) b; = £2(G,) or more generally?(G;) @ C~ to allow for internal degrees of freedora.g.,spin);
(iii) D is the subspace of finitely supported elements;of
(V) hy = —Ag,;
(V) ug;,vi; belong toD.

Allowed interactions includ® = Vher 4 Vint where
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(i) Vhor describes tunneling junctions between the reservoirs:

VP =N t(a,y) (a” (0:)a(dy) + a* (5,)a(ds))

z,Y

wheret : G x G — Ris a finitely supported functiort{= U;G;);
(i) V»tis alocal pair interaction

Vint —_ Z U(IL‘, y)a* (5I)a* (5y)a(5y)a(5x)a

z,y

wherev : G x G — R is finitely supported.

This concrete model is studied in detail in [JP5].

2 Basic properties of the model

In this section we prove Theorems 1.1, 1.2, and 1.3.

2.1 Proof of Theorem 1.1

We start with some preliminaries which are of independeterest. Letd = a; - - - a,, andB = b; - - - by where
thea;, andb; are creation/annihilation operators. Thdsand B are monomials of ordern andq respectively. If
q is even it follows from the CAR that

(B, a;] by -+ bga; — ajby---by
by ---bgaj — ({b1,a;} — bra;)bz - b

= —{bl,aj}bg . "bq + bl(bg cee bqaj + ajbg .- bq)

q
- Z(_l)k{bka aj}by---br_1bpy1 - - - by,
k=1

and hence

B
o

I
NE

ar---aj1[B,ajlajyr - am

.
Il
-

[
NE

q
Z(*l)k{bk, aj}al e aj,1b1 s bkflbk+1 e bnaj+1 Q.
k=1

<
Il
—

The anticommutatofby, a; } on the right hand side is called contraction of the faéioof B with the factora; of
A. Note that contractions are numbers.

Iterating the last formula we get, for any monomi#ls, Bs, . .. B,,+1 of even orderg, ¢z, . . . g,+1 and any
monomialA of orderm

[Br1, [15" (Bn)s [+ [16" (B1), 10" (A)] - 1] = > Gp(s0,++ » 5n) Fp, (2.13)
PEPR(A,B1,....Bni1)

where theF), are monomials of orden + ¢2 + - - - + g1 + m — 2(n + 1) and the coefficient&’,, are products
of n + 1 contractions. The sum on the right hand side runs over th,sed, By, ..., B,+1) whose elementg
are contraction diagrams of the type displayed in Figure 1.
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A o o o'. e o o o .’o So

B, & o e o o o - S1
~ ,/'
B, © o e ®» o' o o So
-7
e ’
B3 ° ° [ 2 ° ' 53
7
7
7
’
7
B, ®© e o ¢ o o Sn
"\\
Bhi1® ° e ° ° ° ° Spi1 =0

Figure 1: An element of the s&,,.

Each line of this diagram represents a monomial, as labateth® left. Each dot on a line represents a
factor of the corresponding monomial. The dashed linesesemt contractions of such factors. From each line
of the diagram there is exactly one contraction going up anydfactor can belong only to one contraction. To a
contraction diagranp we associate its skeleton: a rooted tfeevhose nodes aré (the root),1,...,n + 1 and
whose bonds correspond to the contractions (see Figureh2)sKeletori” is simply obtained by collapsing each
line of the contraction diagramto a single node. If there is an arrow going from the ngdttethe node: in T we
say thatj is a child ofk or thatk is the parent ofi (each node has a unique parent and we shall say that the root
node0 is its own parent). We can describe the rooted fré®y the functionl: {0,...,n+1} — {0,...,n+ 1}
which to a nodg associates its parefft(;j). Reciprocally, any functiofi’ such thatl’(0) = 0 and7T'(j) < j for
j=1,...,n+1defines arooted tréE. Such a function is called a climber of orde# 1 and there is a one-to-one
correspondence between climbers and rooted trees.

Suppose that all the factors of the monomiils. . ., B, are from{a*(g) | g € Dy} and letA and.A be as
in Theorem 1.1. Then, the factors of the monomigjsare from

{a#(eiSh“g) lg € Do,s €{0,81,...,8,}} U {a#(eisf’h“g) g € A}.

The number of factors from the first set does not exdeed 1)(g — 1), whereg = max ¢x. The number of factors
from the second set does not exceed- 1. If we denote

sup |(f,e™Mog)| fork =0,
f€Dp,ge A

sup |(f,elthog)] for k > 0,
f,9€Do

Sk(t) =

then all coefficientss, associated with a given skeleton tfE@re bounded by

n+1
Gl < ] Srp (s1) — 55) = S(T),

j=1

where we set,,+1 = 0. Thus, if N(T") denotes the number of contraction diagrams with skelet®itwe have
Yo IGI< Y NS,
PEPx TeTn41

where7,, 1 denotes the set of all rooted trees with nodéthe root),1,...,n + 1. Let us computéVv (7). To this
end denote by; the number of childs of the node For the tree of Figure 2 we have for example= 2, = 2,
rg =13 = 0,7, = 1andr,y; = 0. Clearly, N(T') = 0if ro > morr; > ¢g; — 1. Otherwise, to construct a
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50

S1 S3

59 Sn

Sn+1

Figure 2: The skeleton tree corresponding to Figure 1.

diagramp whose skeleton ig" we first have to choose a factor on each liBg . .., B,1. The number of such
choices is clearly;1¢2 - - - g,+1- Now on line A we have to choose one factor for each of thechilds of node

0. There aren(m — 1) --- (m — ro + 1) such choices. Similarly, on linB; we have to chose; factors out of
theq; — 1 remaining. There arey — 1)(¢1 — 2) - - - (¢1 — 1) such choices. The same reasoning applies to lines
B, ..., B,, and we conclude that

n —

o om! . q;! N
N(T) = (mfro)!jzl_[l(qurjfl)! m —7o)! H ‘J*Tyfl N

We now turn to the proof of Theorem 1.1. Sinke= Zszl Vi whereV,, are monomials of ordej;, = 2ny, (SO
g = 2m), we can write

Cls00vsn) = D W [ (Vi) [ [ (Vi) g2 (A)] -1

and Parts (1) and (2) follow immediately with

K
Pu(A) = | Al ko)) X PulA Vi Vi)

To prove (3), we start with the estimate

> IGHI <K ST ND)S(T).

pEP,(A) TeTn41
Hence,
o
WEZ|)\|”+1 Z / |G'Ap(so,...,sn)|dso---dsn7
n= PEPn(A) 0<s, <o <spo
satisfies

I/\
I|I

Z Z N / H |)\|KST(])(ST(]) — SJ))dSO dsn 1-
n=1T€eT,

0=5,<Spn—1--<80 J=1

We will need the following general result of [BGM].
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Theorem 2.1 Letmy, m; be two sequences of nonnegative numbersg@@gdwo integrable nonnegative func-
tions on[0, oo[. Denote by|g|| and||g|| their L*-norms, seyo = g andgy = g for k > 0 and define

(o)=Yt i) =3
k=0 k=0

To any rooted tred” € 7,, associate the weight (recall thaj is the number of childs of the noglg

?r‘s?

’U_)(T) = ﬁlromrl My, / H gT(J) (ST(]) — SJ) dSO N d5n71.
0=5,<8p-1<---<s0 Jj=1

Then, the suV = "> | 3~ - w(T) is finite if and only if the equation/ (||g[|z) = = has a positive solution
x such thatZW(HﬁHx) < oo. If z* denotes the least such solution, tHéh= ]\7(|\§|\x*).

To apply this result we sek;, = 0 for £ = 0 andk > m, otherwise

~ m!
ST T
my = 0 for k > 27, otherwise
(2m)!
mey — —
T en—k-1)

and
g(s) = |\KS1(s), g(s) = [\[KSp(s).

Hence M (z) = 2n(1+2)2"~1, M(z) = (1+2)™—1, ||g| = |\| K to, and||g|| = |A|K¢. An elementary analysis

shows that, if .

_ ) 2K )
Ao = 1 (27 — 2)772 ’

— form>1
2Ky (2m — 1)2n—1 e

then, as long ag\| < A form = 1 and|A| < Ap form > 1, the equationV/(]|g||x) = x has a least positive
solutionz* satisfying

form =1,

2n
<z*<
0<% < TTN/Ay) + 2n(2n — 2) Kl

and that

MK\ "
<Wo=(1+ KNz —1< (1 - L
W < Wy = (1+ Kl|A|z") < ( o |)\|/A0)+2ﬁ(2ﬁ2)K€o|>\|>

This ends the proof of Theorem 1.1.

2.2 Proofsof Theorems1.2and 1.3
Proof of Theorem 1.2. To establish the existence of the limit (1.6) for dlle O it suffices to consider the case
A = a¥(f)with f € D and||f|| = 1. Since

ta
70_t2 o Tf\Q (A) — 7, “tig 7';1 (A) = i)\/ 7o *([V, 75 (A)]) ds,

ty
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we have that .
2

70 2 o2 (A) — 75 " o} (A)] < IAI/t [TV, 7 (A)]]| ds. (2.14)
1

The expansion (1.1) yields

VA= *Z“ [ WL 0] s ds

0<s, < <s1<s

Our standing assumption (1.3) and the fact {hdt = 1 implies that||Fff;|| < 1 and we can estimate
IV s V), - [t (V) g (A TS Y0 16 (s, s sn)l.
PEPR(A)

Part (3) of Theorem 1.1 yields that fpX| < Ao,

/ Ve (A ds < oo, (2.15)

The estimates (2.14) and (2.15) imply the existence of thi (iL.6) for|\| < Ay.
The mapy;r is obviously ax-morphism. To prove that it is an isomorphism, it sufficeshiovs that the limits

Jim 7507 (4),

exist for all A € O. Repeating the above argument we see that it suffices to $tatw t

/0 Vi ()] ds < oo,

for A = a(f), f € D. Butthis is a special case of Equ. (2.18).

Proof of Theorem 1.3. Sinceh has purely absolutely continuous spectrum the quantum ndigad system
(O, 19,w) has the property of return to equilibrium: for altnormal stateg andA € O,

lim 7o 7i(A) = w(A),

|t|—o0

see, e.g., [AJPPL1]. The existence of norm-limits (1.6) ezssthat

lim 5(73(4)) = lim norg(ry" o mi(4)) = lim nor5(1(4)) = w(r(4)),

t——+oo t——+oo t——+

and the statement follows]

3 Proofsof Theorems1.4and 1.5

3.1 Strategy

The strategy of the proofs of Theorems 1.4 and 1.5 is basdtearguments in [JOP3]. Consider thé-dynamics
oxy onQ generated by

Oxy = 00 — peq§ — Z

35 —Z Jgj (3.16)

Beq



The Green-Kubo formula for locally interacting fermionjgeen systems 14

The reference statexy is the uniquéo xy, Seq)-KMS state or0. Leto, xy be theC*-dynamics orO generated
by

daxy = oxy +iA[V, -].
The Araki perturbation theory [Ar, BR2, DJP] yields thattexists a uniquérs xy, Beq)-KMS state on0. We

denote this state hy, xy. The statesxy andw, xy are mutually normal.
Recall thatF; stands for eithe®; or 7;. Our main technical result is:

Theorem 3.1 Suppose that Assumptions (A1)-(A3) hold andlet A < Aq. Then there exist > 0 andd > 0
such that for allt > 0 the functiong ), X,Y") — wxxvy (74(5F;)) have analytic extensions #, 5 x D, satisfying

sup }w)\Xy(Tf\({S’j)ﬂ < 0.
AERA 5,(X,Y)ED,t>0

This result and the multi-variable Vitali theorem yield Tnem 1.4 (see Theorem 2.3 in [JOP3]). Moreover,
the relations

Ox,;wAxy+(8k) = tligloo dx,wrxy © 75 (Jk), Ov;waxy+ (k) = tligloo dy,wrxy oTh(Fr),  (3.17)

hold for (A, X,Y) € Rx s x D.. The proof of Relations (1.9) is completed by invoking thidiwing identities
provenin [JOP1, JOP2]:

1 t *Beq .
Ox,orxy (50| y o = 5 / ds / duwreq (75 (31) 78 (®5)),
eq

1 t 'ﬁeq .
Ay, woaxy (TX(81) | x—y—o = 5_/0 dS/O duwieq(73 (8%) 73 (T5))-
eq

Proposition 4.1 in [JOP2] yields that (1.9) and time-rea&irs/ariance (A4) imply (1.10). The KMS condition and
(1.10) imply (1.11) [JOP1, JOP2]. Hence, to complete thefsrof Theorems 1.4 and 1.5 we need to establish
Theorem 3.1.

3.2 Proof of Theorem 3.1

The GNS representation of the algel?associated to the gauge-invariant quasi-free sigtg can be explicitly
computed [AW, BR2]. LetF be the anti-symmetric Fock space oyenVe denote by)s the vacuum vector and
by N the number operator. Let

H:]:®.7:, Q=0 ® Q.

In the sequeB (%)) denotes th&'*-algebra of all bounded operators on a Hilbert spgacketC; be given complex
conjugations omy; andC = @©;C;. Without loss of generality we may assume tiatommutes withh;. As usual,

we denot&€ f = f. The map
mxy (a(f)) = a((I = Txy)Y2f) @ T+ (—D)N @ a* (T T),

uniquely extends to a representationy : O — B(H) and the triple(H, mxy, Q) is the GNS-representation of
the algebra) associated to the state(y .

In what follows we suppose that Assumptions (A1)-(A3) hoBY adding a constant tp., without loss of
generality we may assume thtat > 0.
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Lemma3.2 For 8 > 0andu € R set

T

T EE I

(B, 1) =

The functions
li(s,z,y) = (1 + ei[(ﬁ*”“(ﬁ“*y)]) e

are continuous and, for fixed analytic in(z, y) on the sef{(s,z,y) € Ry x C?||z| < €(8, ), ly| < (B, 1)}
Moreover, for any < €(3, i) one has

sup |1+ (s, 2, y)| < oo.
SER,(7,y)€C2,|x|<4,|y|<d

Proof. Setr = a +ib andy = ¢ + id with a,b,¢,d € R, Ms = {(z,y) € C?||z| < 6,|y| < §} and write the

exponentin_ as
b
0(s,z,y) = — (u(s) (1 - iﬂ — a) —1i (d—|— b%’u—i—ac)) ,

where
u(s) = (6 —a) <s — %Mjac) .
If (z,y) € Mswith § < 3, then
b ) Bu+c B+ |p])
’50, <m, ‘d—i_bﬂa <4d 575 s

and it follows that(R,. x Mj;) is contained in the dashed region of Figure 3. An elementalgutation shows
that foro < ¢(3, u) this region does not intersect the half-lifies + ix /2. Another elementary calculation shows
that1 + e?(®+xMs) js contained in a bounded region of the half-plane

{z ecC ‘ Rez>1-— e_ﬂﬁ(él—G(B,u)l)} _

Thus,/_ is a bounded continuous function & x M5 which is clearly analytic if{z, y) for any fixeds € R...
This yields the result sina€/2 has obviously the same properties dnd= ¢?/2i_ for reals, z,y. O

The spectral theorem and Lemma 3.2 yield
Lemma 3.3 The maps
(X,Y) = (I =Txy)” € B(h),  (X.Y) = Ty € Blb),
extend to analytié3(h)-valued functions o, 3, ,....)-
Since forX, Y real,||rxy (a® (f))| = || f||, Lemma 3.3 implies
Lemma 3.4 For anyé > 0 there existg(d) > 0 such that for allf € § the operator-valued function
(X,Y) = mxy(a®(f)) € B(H),

has an analytic extension 0, 5y which satisfies

sup  [|lmxy (¥ ()] < (1+)IIf]I.
(X,Y)ED(5)



The Green-Kubo formula for locally interacting fermionjgeen systems 16

ELIES)
- MR
B—0
/ in/2 ﬂ[/
Slope :I:T[S

Al .
/ —ir/2

Figure 3: The range of the exponéitt, z, y).

Recall thaty xy is defined by (3.16). Let
X Y;
hXY:hO*Meq*ZB—jhj*ZB—JPj
g e g e

_ Z |:ﬁeq —th_ _ 5eq/ieq+yjp_]
J Beq ’ Beq 77

wherep; is the orthogonal projection ofy;. Clearly,e®ox¥ (a#(f)) = a¥ (e*'x¥ f) is, for fixed¢, an analytic
function of X, Y.

Set
K ng
Vxy(s) = Z H a* (e XYy )a(e XY vy ),
k=1j=1
and

Oaxy =1+ Z(—)\/b’eq)” / Vxy (Beqsn) -+ Vxy (Beqs1) dsi - - - dsy,.
nzl 0<sp << <1
Araki’s perturbation theory [Ar, BR2, DJP] yields that far, Y real the statev) xy can be expressed in terms of
wxy as
WXY(Ag/\XY)
w A= ——""— 3.18
axy (4) wxy (Grxy) (3.18)

Lemma 3.5 The function

(t. A X,Y) = mxy (15(Grxy)) € B(H),
extends to a continuous function Bx C x D y Which is analytic in(\, X, Y) for fixedt. Moreover, for
all A > 0and0 < € < €(Beq, fteq)s

Bcch;ufcq

sup [mxy (16(Gaxy))|| < oo.
tER,AEC,|A|<A,(X,Y)ED.



The Green-Kubo formula for locally interacting fermionjgeen systems 17

Proof. Since forX,Y real,

mxy (15(Grxy)) = 1+ Z(*Weq)n / Txy (Vxy (Beqsn: ) - mxy (Vxy (Beqs1,t)) dst - - - dsp,

n21 0<s, < <51 <1

where
K ng

Txy (Vxy (Beqs, 1)) = Z H mxy (a* (e Feashxy elthoyy )y (a(eeashxy elthoyy ),
k=1 j=1

the statement follows from Lemma 3.4.

Lemma3.6 Forall tandA € O,

oy (7L (A)) = waxy (7(A4)) + —— ) /0 wxy (IV, (A~ Gaxy ) ds. (3.19)

wxy (Grxy

Proof. Relation (3.18) yields
(wWrxy (15 (A)) — waxy (16(A) )wxy (Gaxy) = wxy (15 (4) — 75(A))Gaxy ).
Sincewxy is Tg-invariant we have

wxy ((T3(A) = 15(A))Gaxy) = wxy (15 " 0 75 (A) — A)15 " (Gaxy )

—i / wxy (73 (V1 (A)]) 75 (Gaxey ) ds

t
A / wxy (V. 5 (A)]78~ (Grxey)) ds,
0
and (3.19) follows

Lemma 3.7 For anyA > 0 there exist > 0 and¢d > 0 such that the function
()‘7 X7 Y) = WXY(gAXY),
extends to an analytic function dh x D, which satisfies

inf |wa(g,\X)/)| > 0. (320)
AERA,5,(X,Y)ED,

Proof. Sincewxy (Gaxy) = (Q,7xy(Grxy)2), the first statement is a special case of Lemma 3.5. Since
wxy (Gaxy) > 0for A\, X, Y real, by continuity (3.20) holds farandd small enought

Lemma 3.8 For anyA > 0 there exist > 0 andd > 0 such that for allt € R the functions
(A X, Y) = waxy (15(37)), (3.21)
extend to analytic functions aRl, s x D, such that

sup waxy (75(F5))| < oo.
AERA 5,(X,Y)ED teR
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Proof. For X,Y real,

(2 mxy (§j)mxy (15 (Grxy )
wxy (Graxy) -

This identity and Lemmas 3.3, 3.5, and 3.7 yield the staténien

wiaxy (16(35)) =

Lemma3.9 Let0 < A < Ag be given. Then there exists> 0 such that for allA = a#(fy)---a¥ (f,) with
f; € D, the map
(t, A X,Y) = mxy ([V, 73(A)]) € B(H), (3.22)

extends to a continuous functionBn x {A € C||\| < A} x D, which is analytic in(\, X,Y") for fixedt € R.
Moreover,

/ sup l7xy ([V, 75 (A)])] dt < oco. (3.23)
0 AEC,|A\|<A,(X,Y)eED,

Proof. The expansion (1.1) yields that
mxy (VA (A)]) = 7xv (V. 75 (4))

+ )" / mxy (Vo[ (V) [ [t (V) g (A)] - 1)) dsa - - dsie.

0<sp<--<s1<t

Set
Oy = mxy (V. 78(A)),
and, forn > 1,
O (tost o sn) = mxy (Vo 75 (V). [l (V), 7 (A)] L TTD) -

Theorem 1.1 yields that for eaehthere exist a finite index s@,,(A), scalar functions}f& which do not depend
onX,Y, and monomialff({f; € O such that

C(tosnis) = X Gt sy (P,
PEP(A)

Recall our standing assumption (1.3) and Part (2) of ThedrdmlLets > 0 be such that

Co= (1461 < % (3.24)

Applying Lemma 3.4 with thig to the factors oﬁXY(FXZ}) we conclude that there exists> 0 (which depends
on¢) such that for all the functions

(X,Y)I—>7Txy( )EB(H)

extend to analytic functions ob. satisfying

sup Iy (FM)| < Gyt
t,s1,...sn ER,(X,Y)ED,
whereC; = (1 + &)™ Ymax(L, || f1ll,-- -, | fm])]™!. By Part (3) of Theorem 1.1,
Z|A|”+108+1 Z / |G (t S1y--+y8n)|dtdsy -+ - dsy, < o0,
n=0

PEPn(A) 0<s, < <s1<t<oo
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and we conclude that

sup Iy (V. 73 (F7)D I dt < oo.
0 AEC,|A|<A,(X,Y)eD.

We are now ready to complete:

Proof of Theorem 3.1. We start with formula (3.19). By Lemmas 3.7 and 3.8, it seffito show that for some
€ > 0 the functions

(AvaY)H/O (€ mxy ([V, 73 (& )Dmxy (157 (Gaxy))Q) ds,

extend to analytic functions o € C||A\| < A} x D, such that

sup

't
/(mmnﬂwﬁ@mwmmﬁ%%meMs<m.
AEC, A <A(X,Y)ED,,t>0

0

By Lemma 3.5, it suffices to show that the functions
(ta AKX, Y) = WXY([Va T/t\(gj)]) € B(H),

extend to continuous functions @ x {A € C||\| < A} x D, which, for fixedt, are analytic in(\, X,Y") and
satisfy the bound

/‘ sup ey (IV, 7 () dt < oo,
0 AeC,|A<A(X,)Y)ED,

By (A2) and (A3), eveny, can be written as a finite sum of monomiaté(f1) - - - a# ( f,) with fx € D, and the
result follows from Lemma 3.91
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