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Abstract

This note is a continuation of our recent paper [JOP1] where we have proven the Green-Kubo formula and the
Onsager reciprocity relations for heat fluxes in thermally driven quantum open systems. In this note we extend
the derivation of the Green-Kubo formula to heat and charge fluxes and discuss some other generalizations of the
model and results of [JOP1].
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1 Introduction

This paper is the second in a series dedicated to linear response theory for non equilibrium steady states (NESS)
of quantum open systems. The development of linear responsetheory is a part of a much wider research program
initiated in [Ru1, Ru2, Ru3, JP1, JP2, JP3]. This program deals with mathematical foundations of non-equilibrium
thermodynamics in the framework of algebraic quantum statistical mechanics. Motivated by the developments in
classical non-equilibrium statistical mechanics (see thereview [Ru4]), the program addresses the central issue of
NESS in two independent steps.

(A) The existence and analytic properties of NESS are assumed asanaxiom. On the basis of this axiom one
develops the mathematical theory of non-equilibrium quantum statistical mechanics in an abstract setting. This step
is primarily concerned with the mathematical structure of the theory and its relation to the fundamental physical
aspects of non-equilibrium (see [DGM, KTH]).

(B) The second step concerns study of specific physically relevant models. Relaxation to a NESS and analytical
properties of this NESS are detailed dynamical problems which can be answered only in the context of concrete
models. Once these fundamental problems are solved, the thermodynamics and the transport theory of the model
are derived from the general structural results established in (A).

So far, the main focus of the program has been the second law ofthermodynamics (positivity of the entropy
production). In this case the part (A) has been settled in [Ru2, JP1, JP4], where the entropy production has been
defined in the abstract framework of algebraic quantum statistical mechanics. In these works various structural
properties of the entropy production have been establishedand in particular it was shown that the entropy pro-
duction of any NESS is non-negative. The strict positivity of the entropy production is a problem which belongs
to the category (B). At the moment there are two classes of non-trivial models whose NESS are well-understood
and which have strictly positive entropy production. The first class of models describes anN -level quantum sys-
tem coupled to finitely many independent free Fermi gas reservoirs [Da, LeSp, JP2]. The second class describes
finitely many free Fermi gas reservoirs coupled by local interactions [BM, AM, FMU]. Some exactly solvable spin
or fermion models with strictly positive entropy production have been studied in [AH, AP, AJPP1, AJPP2].

The natural next step in this program is the development of linear response theory and in particular the deriva-
tion of the Green-Kubo formulas (abbreviated GKF). A typical physical situation we consider concerns the steady
states of a quantum device, a confined systemS with a finite number of degrees of freedom, coupled toM reser-
voirsR1, . . . ,RM , see Figure 1 (a generalization of this setup is discussed inSection 5). More specifically, we
are interested in situations where the systemS is driven out of equilibrium by thermodynamic forces, i.e.,by
discrepancies in the intensive thermodynamic parameters of the reservoirs around some common equilibrium val-
ues. Suppose that each reservoirRj is in a thermal equilibrium state characterized by some inverse temperature
βj = β − Xj and chemical potentialµj = µ + Yj/β. If some of the forcesXj , Yj do not vanish, then under
normal conditions they induce energy and mass/charge currents across the systemS. Linear response theory is
concerned with the calculation of these currents to first order in the forces. In [JOP1] we have derived the GKF
for heat fluxes (the caseµ = Yj = 0) in the axiomatic framework of algebraic quantum statistical mechanics. In
this note we discuss a derivation which applies to both heatandcharge fluxes and complete the step (A) of the
program. Concerning (B), the examples to which our derivation directly applies include all models for which the
strict positivity of the entropy production has been established. These applications are discussed in the forthcoming
papers [JOP2, JOP3, JOPP].

In classical mechanics there is a number of different ways todescribe an open system out of thermal equilib-
rium. Some of these descriptions involve various kinds of thermostating devices which lead to non-Hamiltonian
effective equations of motion (see [EM, RB]). Due to the intrinsic Hamiltonian nature of quantum dynamics, the
situation is different for quantum open systems. Except in some special limiting cases (e.g., in the weak coupling
limit, see [LeSp]) one is forced to consider the joint dynamics of the systemS and its environment.

To describe the joint systemS + R1 + · · · + RM we suppose that it is initially prepared in a state where each
reservoirRj is characterized by intensive thermodynamic parametersβj andµj . Due to the interactions between
the systemS and the reservoirs this state is not stationary. We shall assume that, ast → +∞, the joint system
relaxes to a steady state. Since confined quantum systems have discrete spectrum and almost periodic dynamics, a
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Figure 1: An open system withM reservoirs.

non-trivial steady state may exist only if the reservoirs are infinitely extended. Moreover, in order for this steady
state to be a NESS (i.e., to avoid the joint system to relax to an equilibrium state), the reservoirs must be "ideal"
in the following sense. A reservoir serves two purposes: on the one hand it is a source feeding energy/particles to
the deviceS in a statistically controlled way. On the other hand it also works as a sink or dissipator, transporting
to spatial infinity energy/particles coming out ofS. In an "ideal" reservoir the source and the sink are independent
as much as quantum dynamics allows. The fact that incoming and outgoing fluxes do not interact ensures that the
intensive thermodynamic parameters describing the initial state of an "ideal" reservoir still apply to the outgoing
flux in a steady state. Thus, "ideal" reservoirs are able to maintain fluxes across the systemS over the infinite time
interval needed to reach a steady state.

Linear response theory of NESS is a delicate interplay between three limits which must be taken in a definite
order. First, one must perform the thermodynamic (or infinite volume) limit of the reservoirs. Then, at → +∞
limit is necessary to reach a NESS. FinalXj, Yj → 0 limits are needed to extract the linear response proper.

For interacting quantum systems the first limit is already a difficult problem which can only be treated in a
limited number of models (see e.g. Chapter 6 in [BR2]). However, for the ideal reservoirs we are dealing with,
this problem is well understood (see e.g. Section 5.2 in [BR2]). An infinitely extended quantum dynamical system
at non-vanishing density can be described in the universal conceptual framework of algebraic quantum statistical
mechanics. It is therefore possible to decouple the thermodynamic limit from the two remaining ones. In this
paper we derive the GKF under the assumption that the these two limits exist and can be interchanged. The
justification of this fact is a delicate dynamical problem which belongs to the category (B) and will be treated in
the aforementioned companion papers.

This note is organized as follows. For notational purposes,in Section 2 we quickly review a few basic notions
of algebraic quantum statistical mechanics. In Section 3 weintroduce the model and review basic concepts of non-
equilibrium statistical mechanics (the reader may complement this section with reviews [JP3, AJPP1]). Linear
response theory is discussed in Section 4. Our main result isstated in Subsection 4.2. Its proof follows closely
the arguments in [JOP1] and is outlined in Subsection 4.3. Various generalizations of our model and results are
discussed in Section 5.

Acknowledgment.The research of V.J. was partly supported by NSERC. A part of this work has been done during
the visit of V.J. to CPT-CNRS. Y.O. is supported by the Japan Society for the Promotion of Science. This work has
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been done during the stay of Y.O. to CPT-CNRS, partly supported by the Canon Foundation in Europe and JSPS.

2 Basic notions

Let O be aC∗-algebra with identity1l andτ t, t ∈ R, a strongly continuous group of∗-automorphisms ofO. The
groupτ and the pair(O, τ) are often calledC∗-dynamics andC∗-dynamical system. A stateω onO is calledτ -
invariant ifω ◦ τ t = ω for all t ∈ R. An anti-linear involutive∗-automorphismΘ : O → O is calledtime-reversal
of (O, τ) if Θ ◦ τ t = τ−t ◦ Θ for all t ∈ R. A stateω onO is called time-reversal invariant ifω(Θ(A)) = ω(A∗)
for all A ∈ O.

We call quantum dynamical system a triple(O, τ, ω) whereω is a given state onO. The stateω describes
the initial (or reference) thermodynamical state of the system and is not necessarilyτ -invariant (for a discussion
of this point we refer the reader to Section 2 of [AJPP1]). Under normal conditions, i.e., under natural ergodicity
assumptions, allω-normal states are thermodynamically equivalent reference states in the sense that they lead to
the same NESS.

We denote byEnt(η1|η2) the Araki relative entropy of two statesη1 andη2. We use the sign and ordering con-
vention of [BR2, Don, DJP] (hence,Ent(η1|η2) ∈ [−∞, 0]). The Araki relative entropy has played an important
role in recent developments in non-equilibrium quantum statistical mechanics.

Letβ > 0. A stateω is called a(τ, β)-KMS state if for allA, B ∈ O there exists a functionFA,B(z), analytic in
the stripSβ = {z ∈ C | 0 < Im z < β}, bounded and continuous on its closure, and satisfying the KMS-boundary
condition

FA,B(t) = ω(Aτ t(B)), FA,B(t + iβ) = ω(τ t(B)A).

As usual, we writeω(Aτz(B)) = FA,B(z) for z ∈ Sβ even whenτz(B) is not well-defined. A(τ, β)-KMS states
describes a physical system in thermal equilibrium at inverse temperatureβ. For all practical purposes these states
can be considered as thermodynamic limits of Gibbs canonical ensembles.

The general theory of chemical potential in quantum statistical mechanics is discussed in Section 5.4.3 of
[BR2]. In our study of linear response theory we will only consider the chemical potential associated to the usual
U(1) gauge invariance of quantum mechanics. We will call charge flux the current associated to the corresponding
conserved charge. The extension of our results to more general gauge groups is straightforward. Since we only
need a fraction of the mathematical structures commonly associated to the chemical potential we shall be brief.
Let ϑϕ be aC∗-dynamics onO such thatτ t ◦ϑϕ = ϑϕ ◦ τ t for all t, ϕ ∈ R. ϑ is the gauge-group and its elements
ϑϕ are gauge transformations. Physical observables are invariant under gauge transformations and are therefore
elements of

Oϑ = {A ∈ O |ϑϕ(A) = A for all ϕ ∈ R}. (2.1)

Note thatOϑ is aτ -invariantC∗-subalgebra ofO and so(Oϑ, τ) is aC∗-dynamical system. Letµ ∈ R and

αt = τ t ◦ ϑ−µt.

Clearlyτ t andαt coincide onOϑ. We say that a stateω onO is a(τ, ϑ, β, µ)-KMS state if it is an(α, β)-KMS
state. Although this last terminology is not common, it is convenient for our purposes. A(τ, ϑ, β, µ)-KMS state
describes a physical system in equilibrium at inverse temperatureβ and chemical potentialµ. Note that ifω is a
(τ, ϑ, β, µ)-KMS state onO, then its restriction to the gauge-invariant subalgebraOϑ is a(τ, β)-KMS state onOϑ

which describes a thermodynamic limit of grand canonical ensembles associated to the parametersβ, µ.

3 The model and the framework

3.1 The model

Our starting point are twoC∗-dynamical systems(OL, τL) and (OR, τR) with gauge-groupsϑL andϑR. For
convenience we shall call them the left,L, and the right,R, system. We denote the generators ofτL, τR, ϑL andϑR
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by δL, δR, ξL andξR. For many applications the left system can be thought of as composed of a first reservoir and
a confined system,L = S + R1, while the right system is just a second reservoir,R = R2. The generalizations of
this setup are discussed in Section 5.

TheC∗-algebra of the joint systemL + R is O = OL ⊗ OR and its decoupled (non-interacting) dynamics is
τ0 = τL ⊗ τR. The generator ofτ0 is δ0 = δL ⊗ I + I ⊗ δR. In the sequel, whenever the meaning is clear within
the context, we shall writeδL for δL ⊗ I, δR for I ⊗ δR, etc.

The gauge-group of the joint system isϑ = ϑL ⊗ ϑR and its generator isξ = ξL + ξR. We denote byOϑ the
corresponding gauge-invariant subalgebra ofO.

Let V ∈ Oϑ be a self-adjoint element describing the interaction ofL andR. The interactingC∗-dynamicsτ is
generated byδ = δ0 +i[V, · ] and commutes with the gauge-groupϑ. The coupled (interacting) joint systemL+R
is described by theC∗-dynamical system(O, τ).

3.2 The reference states

We setIǫ(x) = (x − ǫ, x + ǫ) and writeIǫ = Iǫ(0).
Let βeq > 0 andµeq ∈ R be given reference (equilibrium) values of the inverse temperature and the chemical

potential. We make the following assumptions concerning the initial states ofL andR.

(A1) ωL is the unique(τL, ϑL, βeq, µeq)-KMS state onOL. The reference states ofR are parametrized
by β ∈ Iǫ1(βeq) andµ ∈ Iǫ2(µeq) andωR,β,µ is the unique(τR, ϑR, β, µ)-KMS state onOR. We
shall denoteωR,βeq,µeq

by ωR.

Throughout the paper we shall assume that (A1) holds. The reference states of our model areωL ⊗ ωR,β,µ,
β ∈ Iǫ1(βeq), µ ∈ Iǫ2(µeq). For our purposes it is convenient to introduce the parameters (thermodynamical
forces)

X = βeq − β, Y = βµ − βeqµeq,

and to parametrize the reference states byX andY , i.e., we write

ωX,Y,0 = ωL ⊗ ωR,β,µ.

Since we are interested in linear response theory, without loss of generality we may restrict the values ofX, Y to
Iǫ, whereǫ > 0 is a small positive number. Note thatω0,0,0 is the unique(τ0, ϑ, βeq, µeq)-KMS state onO.

As we have already mentioned, under normal conditions allωX,Y,0-normal states are thermodynamicallyequiv-
alent reference states ofL + R. We now describe a particularωX,Y,0-normal reference state which will play an
important role in our discussion of linear response theory.

Set
αt

L = τ t
L ◦ ϑ

−µeqt
L , αt

R,µ = τ t
R ◦ ϑ−µt

R .

Assumption (A1) implies thatωL is the unique(αL, βeq)-KMS state onOL and thatωR,β,µ is the unique(αR,µ, β)-
KMS state onOR. Set

αt
X,Y,0 = αt

L ⊗ α
βt/βeq

R,µ .

ThenωX,Y,0 is the unique(αX,Y,0, βeq)-KMS state onO. Let δX,Y,0 be the generator ofαX,Y,0 and

δX,Y = δX,Y,0 + i[V, · ].

The subalgebraDom(δL)∩Dom(ξL)∩Dom(δR)∩Dom(ξR) is a core forδX,Y,0 andδX,Y . On this subalgebra
δX,Y,0 acts as

δX,Y,0 = δ0 − µeqξ −
X

βeq
δR −

Y

βeq
ξR. (3.2)

Let αX,Y be theC∗-dynamics generated byδX,Y . Araki’s perturbation theory yields that there exists a unique
(αX,Y , βeq)-KMS stateωX,Y onO.
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The statesωX,Y,0 andωX,Y are mutually normal. The reference statesωX,Y will play a central role in our
study of linear response theory. Note thatω0,0 is the unique(τ, ϑ, βeq, µeq)-KMS state onO. We denote this state
by ωeq. The next assumption concerns the(τ, βeq)-KMS state induced byωeq on the gauge invariant subalgebra
Oϑ.

(A2) For allA, B ∈ Oϑ,
lim

|t|→∞
ωeq(τ

t(A)B) = ωeq(A)ωeq(B).

A well-known consequence of the KMS condition and Assumption (A2) is the relation

lim
t→+∞

∫ t

−t

ωeq([τ
s(A), B])ds = 0, (3.3)

which holds for allA, B ∈ Oϑ (see Theorem 5.4.12 in [BR2]). This relation plays a key rolein the derivation of
the Onsager reciprocity relations.

3.3 Non-equilibrium steady states

We postulate relaxation to a NESS as follows:

(A3) For allX, Y ∈ Iǫ there exists a stateωX,Y,+ onOϑ such that for allA ∈ Oϑ,

lim
t→+∞

ωX,Y (τ t(A)) = ωX,Y,+(A).

Assumptions (A2) and (A3) are strong ergodic hypotheses which are difficult to verify in concrete models. We
remark that in typical physical situations one expects more, namely that

lim
t→+∞

η(τ t(A)) = ωX,Y,+(A),

for all ωX,Y,0-normal statesη andA ∈ Oϑ. Indeed, such strong form of approach to NESS has been established in
all examples we consider in [JOP2, JOP3, JOPP]. However, we will not need such an assumption in our axiomatic
study of linear response theory.

3.4 Time-reversal invariance

Our next assumption concerns time-reversal.

(A4) There exists a time-reversalΘ of (O, τ0) such thatΘ(V ) = V and

Θ ◦ τ t
L = τ−t

L ◦ Θ, Θ ◦ τ t
R = τ−t

R ◦ Θ,

Θ ◦ ϑϕ
L = ϑ−ϕ

L ◦ Θ, Θ ◦ ϑϕ
R = ϑ−ϕ

R ◦ Θ,

for all t, ϕ ∈ R.

Clearly,Θ is a time-reversal of(O, ϑ) and(O, αX,Y,0). In particular it leavesOϑ invariant. It is not difficult to
show thatΘ is also a time-reversal of(O, τ) and(O, αX,Y ), and that the statesωX,Y,0 andωX,Y are time-reversal
invariant. The proofs of these facts are the same as the proofof Lemma 3.1 in [JOP1].
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3.5 Fluxes

To define the flux observables we need:

(A5) V ∈ Dom(δR) ∩ Dom(ξR).

If (A5) holds, we set
Φ = δR(V ), J = ξR(V ).

The observableΦ describes the heat flux out of the systemR. The observableJ describes the charge flux out of
R. SinceV ∈ Oϑ andτR, ϑR commute withϑ we haveΦ,J ∈ Oϑ. If the time-reversal assumption (A4) holds,
then

Θ(Φ) = −Φ, Θ(J ) = −J .

3.6 Entropy balance equation

In the recent literature the entropy balance equation has been always discussed with respect to the product reference
stateωX,Y,0 [Ru2, Ru3, JP1, JP3, JP4]. The finite time entropy balance equation w.r.t. the reference stateωX,Y

has the following form.

Theorem 3.1 Assume thatV ∈ Dom(δL) ∩ Dom(ξL) ∩ Dom(δR) ∩ Dom(ξR). Then

Ent(ωX,Y ◦ τ t|ωX,Y ) = −X

∫ t

0

ωX,Y (τs(Φ))ds − Y

∫ t

0

ωX,Y (τs(J ))ds. (3.4)

Proof. The assumptions of the theorem imply thatV ∈ Dom(δX,Y ). SinceV ∈ Oϑ impliesξ(V ) = 0, we have

βeqδX,Y (V ) = βeqδ(V ) − XΦ− Y J . (3.5)

The entropy balance equation of [JP1, JP4] yields

Ent(ωX,Y ◦ τ t|ωX,Y,0) = Ent(ωX,Y |ωX,Y,0) + βeq

∫ t

0

ωX,Y (τs(δX,Y (V )))ds

= Ent(ωX,Y |ωX,Y,0) + βeqωX,Y (τ t(V )) − βeqωX,Y (V )

− X

∫ t

0

ωX,Y (τs(Φ))ds − Y

∫ t

0

ωX,Y (τs(J ))ds.

(3.6)

The fundamental formula of Araki [Ar1, Ar2] (see also [BR2, Don, DJP]) yields that

Ent(ωX,Y ◦ τ t|ωX,Y ) = Ent(ωX,Y ◦ τ t|ωX,Y,0) − βeqωX,Y (τ t(V )) + C,

Ent(ωX,Y |ωX,Y,0) = βeqωX,Y (V ) − C,
(3.7)

whereC is a constant expressible in terms of the modular structure (we do not need its explicit form here). The
relations (3.6) and (3.7) yield the statement.2

The entropy production of the NESSωX,Y,+ is defined by

Ep(ωX,Y,+) = − lim
t→+∞

Ent(ωX,Y ◦ τ t|ωX,Y )

t
.

Theorem 3.1 yields
Ep(ωX,Y,+) = XωX,Y,+(Φ) + Y ωX,Y,+(J ) ≥ 0, (3.8)

and this relation is the second law of thermodynamics for ourmodel. Of course, if(X, Y ) 6= (0, 0), then under
normal conditions one expects thatEp(ωX,Y,+) > 0, i.e., that the fluxes are non-vanishing. The strict positivity of
entropy production is a detailed dynamical question which can be answered only in the context of specific models.
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3.7 Centered observables

An observableA ∈ O is calledcenteredif ωX,Y (A) = 0 for all X, Y ∈ Iǫ. We denote byC the set of all centered
observables. Obviously,C is a norm-closed vector subspace ofO. Our derivation of the Green-Kubo formula
applies only to centered observables.

If Assumption (A4) holds, then any self-adjoint observableA satisfyingΘ(A) = −A is centered. Indeed, since
ωX,Y is time-reversal invariant,

ωX,Y (A) = ωX,Y (Θ(A)) = −ωX,Y (A),

and soωX,Y (A) = 0. In particular, if (A4) holds, then the flux observablesΦ andJ are centered.
It is an important fact that the flux observables are centeredirrespectively of the time-reversal assumption. This

fact will play a central role in our discussion of the Green-Kubo formula for systems which are not time-reversal
invariant.

Proposition 3.2 Under Assumption (A5)

ωX,Y (Φ) = ωX,Y (J ) = 0,

holds for allX, Y ∈ Iǫ.

Proof. Assume first that

V ∈ Dom(δL) ∩ Dom(ξL) ∩ Dom(δR) ∩ Dom(ξR). (3.9)

Note thatC∗-dynamicsαX,Y is well-defined for allX, Y ∈ R. The following generalization of the entropy balance
equation (3.4) holds: for allX, Y ∈ Iǫ andZ, U ∈ R,

Ent(ωX,Y ◦ αt
Z,U |ωX,Y ) = − (X − Z)

∫ t

0

ωX,Y (αs
Z,U (Φ))ds

− (Y − U)

∫ t

0

ωX,Y (αs
Z,U (J ))ds.

(3.10)

The proof of this relation is essentially the same as the proof of (3.4). The only difference is that the relation (3.5)
is now replaced with

βeqδX,Y (V ) = βeqδZ,U (V ) − (X − Z)Φ − (Y − U)J . (3.11)

The entropy balance equation of [JP1, JP4] yields

Ent(ωX,Y ◦ αt
Z,U |ωX,Y,0) = Ent(ωX,Y |ωX,Y,0) + βeq

∫ t

0

ωX,Y (αs
Z,U (δX,Y (V )))ds,

and the rest of the argument follows line by line the proof of Theorem 3.1.
The equation (3.10) yields

lim
t↓0

Ent(ωX,Y ◦ αt
Z,U |ωX,Y )

t
= −(X − Z)ωX,Y (Φ) − (Y − U)ωX,Y (J ),

and so for allX, Y ∈ Iǫ andZ, U ∈ R,

(X − Z)ωX,Y (Φ) + (Y − U)ωX,Y (J ) ≥ 0.

This relation yields the statement.
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To prove the general case, letV ∈ Dom(δR) ∩ Dom(ξR) and

Vj =
j

π

∫

R2

e−j(t2+s2)τ t
L ◦ ϑs

L(V )dtds, j = 1, 2, . . . .

The observablesVj satisfy (3.9). LetωX,Y,j andΦj,Jj be the reference state and the flux observables associated
to Vj . We have established that for allX, Y ∈ Iǫ,

ωX,Y,j(Φj) = ωX,Y,j(Jj) = 0. (3.12)

By the properties of analytic approximations (see [BR2]),‖ωX,Y,j −ωX,Y ‖ → 0, ‖Φj −Φ‖ → 0, ‖Jj −J‖ → 0
asj → ∞, and the statement follows from (3.12).2

Note that we did not use the gauge invariance ofV in the above proof.

3.8 Regular observables

As mentioned in the introduction, our derivation of GKF relies on the assumption that thet → +∞ limit can be
interchanged with differentiation w.r.t.X, Y . We note that if the statesωL, ωR,β,µ are ergodic forβ, µ sufficiently
close toβeq, µeq then it is not difficult to show that the statesωX,Y are mutually singular for distinct values of
X, Y . Therefore the differentiability of the function(X, Y ) 7→ ωX,Y (τ t(A)) is an extremely delicate question,
already forfinite t. However, as we shall see in Subsection 4.2, one can prove that this function is differentiable at
X = Y = 0 under very mild regularity assumptions onA, providedA is centered (this is the content of our main
technical result, Theorem 4.2).

The following definition encapsulates our assumption on theinterchange of limits.

Definition 3.3 Assume that (A3) holds. LetA ∈ Oϑ be an observable such that the function

(X, Y ) 7→ ωX,Y (τ t(A)),

is differentiable at(0, 0) for all t. We call such an observable regular if the function

(X, Y ) 7→ ωX,Y,+(A),

is also differentiable at(0, 0) and

lim
t→+∞

∂XωX,Y (τ t(A))
∣

∣

X=Y =0
= ∂XωX,Y,+(A)

∣

∣

X=Y =0
,

lim
t→+∞

∂Y ωX,Y (τ t(A))
∣

∣

X=Y =0
= ∂Y ωX,Y,+(A)

∣

∣

X=Y =0
.

(3.13)

4 Linear response theory

4.1 Overview

Suppose that Assumptions (A3) and (A5) hold and that the functions

(X, Y ) 7→ ωX,Y,+(Φ), (X, Y ) 7→ ωX,Y,+(J ),
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are differentiable at(0, 0). The kinetic transport coefficients are defined by

Lhh = ∂XωX,Y,+(Φ)
∣

∣

X=Y =0
,

Lhc = ∂Y ωX,Y,+(Φ)
∣

∣

X=Y =0
,

Lch = ∂XωX,Y,+(J )
∣

∣

X=Y =0
,

Lcc = ∂Y ωX,Y,+(J )
∣

∣

X=Y =0
,

(4.14)

where indicesh/c stand for heat/charge. Linear response theory is concernedwith these coefficients. An elemen-
tary consequence of the second law (Relation (3.8)) is that the matrix

L =

[

Lhh Lhc

Lch Lcc

]

,

is positive definite on the real vector spaceR2 (this of course does not imply thatLhc = Lch!).
The Green-Kubo formulas are at the center of linear responsetheory. ForA, B ∈ Oϑ we set

L(A, B) = lim
t→+∞

1

2

∫ t

−t

ωeq(Aτs(B))ds.

The GKF assert that if the system is time-reversal invariant, then

Lhh = L(Φ, Φ),

Lhc = L(Φ,J ),

Lch = L(J , Φ),

Lcc = L(J ,J ).

(4.15)

These formulas are mathematical expressions of the fluctuation-dissipation mechanism in statistical mechanics—
they link linear response to a thermodynamical force to the equilibrium correlations w.r.t. the corresponding flux
observable.

The coefficientsLhc andLch are of particular physical importance. In words, the chemical potential difference
may cause a heat flow out ofR even ifL andR are at the same temperature. ForY small, this flow is equal to
Y Lhc + o(Y ). Similarly, the temperature difference may cause a charge flow out ofR even ifL andR have equal
chemical potentials. ForX small this flow is equal toXLch + o(X). An immediate consequence of the second
and third relation in (4.15) and the formula (3.3) are the Onsager reciprocity relations

Lhc = Lch. (4.16)

ForA, B ∈ Oϑ andt ∈ R we set

L(A, B, t) =
1

βeq

∫ t

0

ds

∫ βeq

0

du ωeq(τ
s(A)τ iu(B)),

and
L(A, B) = lim

t→+∞
L(A, B, t),

whenever the limit exists. We remark that by the KMS condition the function

(s, z) 7→ ωeq(τ
s(A)τz(B)),
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is bounded and continuous on the setR × Sβeq
. The central step in our derivation of (4.15) are the following

formulas

Lhh = L(Φ, Φ),

Lhc = L(Φ,J ),

Lch = L(J , Φ),

Lcc = L(J ,J ).

(4.17)

It is an important point that these formulas holdwithout the time-reversal assumption— they are the Green-Kubo
formulas for systems which are not time-reversal invariant. The Green-Kubo formulas (4.15) are an immediate
consequence of (4.17) and the following result establishedin [JOP1].

Proposition 4.1 Suppose that Assumptions (A1), (A2), and (A4) hold and letA, B ∈ Oϑ be two self-adjoint
observables which are both even or odd underΘ. Then

L(A, B) = L(A, B).

Proof. The argument follows line by line the proof of Theorem 2.3 in [JOP1]. For reader convenience we outline
the main steps of the argument.

We need to prove that

lim
t→+∞

1

βeq

∫ βeq

0

[
∫ t

0

ωeq(τ
s(A)τ iu(B))ds

]

du = lim
t→+∞

∫ t

−t

ωeq(Aτs(B))ds.

The time-reversal invariance and the KMS-condition yield that fors ∈ R andu ∈ [0, β],

ωeq(τ
s(A)τ iu(B)) = ωeq(τ

−s(A)τ iβeq−iu(B)),

and so
1

βeq

∫ βeq

0

[
∫ t

0

ωeq(τ
s(A)τ iu(B))ds

]

du =
1

2βeq

∫ βeq

0

[
∫ t

−t

ωeq(Aτs+iu(B))ds

]

du.

Since the integral of the functionz 7→ ωeq(Aτz(B)) over the boundary of the rectangle with vertices−t, t, t +
iu,−t + iu is zero, we have

1

βeq

∫ βeq

0

[
∫ t

0

ωeq(τ
s(A)τ iu(B))ds

]

du =
1

2

∫ t

−t

ωeq(Aτs(B))ds +
1

2βeq

∫ βeq

0

R(t, u)du, (4.18)

where

R(t, u) = i

∫ u

0

[

ωeq(Aτ t+iy(B)) − ωeq(Aτ−t+iy(B))
]

dy.

Assumption (A2) implies that
lim

t→+∞
ωeq(Aτ±t+iy(B)) = ωeq(A)ωeq(B),

and the dominated convergence theorem yields

lim
t→+∞

sup
0≤u≤β

|R(t, u)| = 0.

This fact and the formula (4.18) yield the statement.2

In the next subsection we state our main results concerning the Green-Kubo formulas.
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4.2 The Green-Kubo formulas

As already mentioned, our main technical result concerns the differentiability, at(0, 0) and for finitet of the
function (X, Y ) 7→ ωX,Y (τ t(A)). The resultingfinite time linear response formulais the content of the next
Theorem. We set

Oϑ,R = Oϑ ∩ Dom(δR) ∩ Dom(ξR),

Oϑ,R,c = Oϑ,R ∩ C.

Theorem 4.2 Suppose that Assumptions (A1) and (A5) hold and letA ∈ Oϑ,R,c. Then for allt ∈ R the function

(X, Y ) 7→ ωX,Y (τ t(A)),

is differentiable at(0, 0) and

∂XωX,Y (τ t(A))
∣

∣

X=Y =0
= L(A, Φ, t),

∂Y ωX,Y (τ t(A))
∣

∣

X=Y =0
= L(A,J , t).

We will prove Theorem 4.2 in Subsection 4.3. The next two theorems are consequence of Theorem 4.2,
definition of the regular observable, and Proposition 4.1.

Theorem 4.3 Suppose that Assumptions (A1), (A3) and (A5) hold.
(1) LetA ∈ Oϑ,R,c be a regular observable. Then

∂XωX,Y,+(A)
∣

∣

X=Y =0
= L(A, Φ),

∂Y ωX,Y,+(A)
∣

∣

X=Y =0
= L(A,J ).

(2) If in addition (A2) and (A4) hold andA ∈ Oϑ,R is a regular self-adjoint observable such thatΘ(A) = −A,
then

∂XωX,Y,+(A)
∣

∣

X=Y =0
= L(A, Φ),

∂Y ωX,Y,+(A)
∣

∣

X=Y =0
= L(A,J ).

Theorem 4.4 Suppose that Assumptions (A1), (A3) and (A5) hold and thatΦ,J are regular observables in
Dom(δR) ∩ Dom(ξR). Then the formulas (4.17) hold. If in addition (A2) and (A4) hold, then the formulas
(4.15) and (4.16) hold.

Theorem 4.2 was proven in [JOP1] in the caseµeq = 0, Y = 0. The technical extensions of the proofs in
[JOP1] needed to accommodate charge fluxes are relatively minor and are discussed in the next section.

4.3 Proof of Theorem 4.2

We will freely use the notation introduced in Subsection 3.1.

Lemma 4.5 (a)The groupα0,0 preservesDom(δR)∩Dom (ξR) and forA ∈ Dom(δR)∩Dom(ξR) the functions

R ∋ t 7→ δR(αt
0,0(A)), R ∋ t 7→ ξR(αt

0,0(A)),



Linear response theory for thermally driven quantum open systems 13

are norm continuous.
(b) For all t ∈ R andA ∈ Dom(δR) ∩ Dom(ξR),

αt
X,Y (A) − αt

0,0(A) = −
X

βeq

∫ t

0

αt−s
X,Y (δR(αs

0,0(A)))ds −
Y

βeq

∫ t

0

αt−s
X,Y (ξR(αs

0,0(A)))ds.

(c) For all t ∈ R andA ∈ O,
lim

(X,Y )→(0,0)
‖αt

X,Y (A) − αt
0,0(A)‖ = 0.

(d) For all A ∈ O,
lim

(X,Y )→(0,0)
ωX,Y (A) = ωeq(A).

Proof. To simplify notation let us setα0 = α0,0,0 andα = α0,0. We shall use the identity

αt(A) = Γtα
t
0(A)Γ∗

t ,

whereΓt ∈ O is a family of unitary elements defined by

Γt = 1l +
∑

n≥1

(it)n

∫

0≤sn≤···s1≤1

αtsn

0 (V ) · · ·αts1

0 (V )ds1 · · · dsn,

see Proposition 5.4.1 in [BR2]. SinceV ∈ Dom(δR) ∩ Dom(ξR), one easily shows thatΓt ∈ Dom(δR) ∩
Dom(ξR) and that

δR(Γt) =
∑

n≥1

(it)n

∫

0≤sn≤···s1≤1

∑

j

αtsn

0 (V ) · · ·α
tsj

0 (δR(V )) · · ·αts1

0 (V )ds1 · · · dsn,

ξR(Γt) =
∑

n≥1

(it)n

∫

0≤sn≤···s1≤1

∑

j

αtsn

0 (V ) · · ·α
tsj

0 (ξR(V )) · · ·αts1

0 (V )ds1 · · · dsn.

These two formulas yield that the functions

t 7→ δR(Γt), t 7→ ξR(Γt),

are norm continuous. Finally, the identities

δR(αt(A)) = δR(Γt)α
t
0(A)Γ∗

t + Γtα
t
0(δR(A))Γ∗

t + Γtα
t
0(A)δR(Γ∗

t ),

ξR(αt(A)) = ξR(Γt)α
t
0(A)Γ∗

t + Γtα
t
0(ξR(A))Γ∗

t + Γtα
t
0(A)ξR(Γ∗

t ),

yield Part (a).
If A ∈ Dom(δL) ∩ Dom(δR) ∩ Dom(ξL) ∩ Dom(ξR), then

d

dt
α−t

X,Y ◦ αt(A) =
X

βeq
α−t

X,Y (δR(αt(A))) +
Y

βeq
α−t

X,Y (ξR(αt(A))),

and (b) follows. The caseA ∈ Dom(δR) ∩ Dom(ξR) is handled by approximatingA with the sequence

Aj =
j

π

∫

R2

e−j(t2+s2)τ t
L ◦ ϑs

L(A)dtds,

see the proof of Lemma 3.3 in [JOP1].
SinceDom(δR)∩Dom (ξR) is dense inO, (b) implies (c). The proof of (d) is the same as the proof of Lemma

3.4 in [JOP1].2
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Lemma 4.6 LetA ∈ Oϑ,R,c. Then for allt ∈ R the function

(X, Y ) 7→ ωX,Y (τ t(A)),

is differentiable at(0, 0), and

∂XωX,Y (τ t(A))
∣

∣

X=Y =0
=

1

βeq

∫ t

0

ωeq(δR(τs(A)))ds,

∂Y ωX,Y (τ t(A))
∣

∣

X=Y =0
=

1

βeq

∫ t

0

ωeq(ξR(τs(A)))ds.

Proof. SinceA is a centered observable andωX,Y is αX,Y -invariant, we have thatωX,Y (αt
X,Y (A)) = 0 for all t.

Sinceα0,0 = τ onOϑ, we have thatωX,Y (αt
0,0(A)) = ωX,Y (τ t(A)) andω0,0(τ

t(A)) = ωeq(τ
t(A)) = 0 for all

t. These observations and Part (b) of Lemma 4.5 imply

ωX,Y (τ t(A)) − ω0,0(τ
t(A)) =

X

βeq

∫ t

0

ωX,Y (δR(τs(A)))ds +
Y

βeq

∫ t

0

ωX,Y (ξR(τs(A)))ds.

This relation, Lemma 4.5, and dominated convergence yield the statement.2

Lemma 4.7 Assume thatA ∈ Oϑ,R. Then

ωeq(δR(A)) =

∫ βeq

0

ωeq(Aτ is(Φ))ds,

ωeq(ξR(A)) =

∫ βeq

0

ωeq(Aτ is(J ))ds.

Proof. This lemma is the central and technically most demanding step of the argument. Fortunately, its proof is
identical to the proof of Lemma 3.6 in [JOP1]. This follows from the fact thatA, V, Φ,J ∈ Oϑ and thatωeq ↾ Oϑ

is a(τ, βeq)-KMS state.2

Theorem 4.2 is an immediate consequence of Lemmas 4.6 and 4.7.

5 Some generalizations

Although we have restricted ourselves in this note to two coupled quantum dynamical systems, the model, the
framework and all our results have a straightforward extension to the case ofM systems. Letβeq and µeq

be the reference (equilibrium) values of the inverse temperature and chemical potential. Forj = 1, . . . , M let
(Oj , τj , ωj,βjµj

) be quantum dynamical systems with gauge groupsϑj whereωj is a (τj , ϑj , βj , µj)-KMS state.
We denote byδj andξj the generators ofτj andϑj . Assumption (A1) is replaced with

(G1) The reference states of thej-th system are parametrized byβj ∈ Iǫ(βeq) andµj ∈ Iǫ(µeq) and
ωj,βjµj

is the unique(τj , ϑj , βj , µj)-KMS state onOj .
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Let O = O1 ⊗ · · · ⊗ OM , τ0 = τ1 ⊗ · · · ⊗ τM , ϑ = ϑ1 ⊗ · · · ⊗ ϑM . The algebraOϑ is again defined by
(2.1). The pair(O, τ0) describes the uncoupled joint system. LetV ∈ Oϑ be a self-adjoint perturbation andτ the
perturbedC∗-dynamics. The coupled joint system is described by(O, τ). The thermodynamical forces are

Xj = βeq − βj , Yj = βjµj − βeqµeq.

We setX = (X1, . . . , XM ), Y = (Y1, . . . , YM ). The reference state isωX,Y,0 = ω1,β1µ1
⊗ · · ·ωM,βMµM

. ωX,Y,0

is the uniqueβeq-KMS state for theC∗-dynamics

αt
X,Y,0 = [τ

β1t/βeq

1 ◦ ϑ
−µ1β1t/βeq

1 ] ⊗ · · · ⊗ [τ
βM t/βeq

M ◦ ϑ
−µM βM t/βeq

M ].

Let δX,Y,0 be the generator ofαX,Y,0 andδX,Y = δX,Y,0 + i[V, · ]. Let αX,Y be theC∗-dynamics generated
by δX,Y and letωX,Y be the(αX,Y , βeq)-KMS state obtained fromωX,Y,0 by Araki’s perturbation theory. This
completes the setup of the model. Note that the stateωeq ≡ ω0,0 is the unique(τ, ϑ, βeq, µeq)-KMS state on
O. Assumptions (G2) has the same formulation as Assumption (A2) and Assumptions (A3), (A4) and (A5) are
replaced with:

(G3) For allX, Y ∈ IM
ǫ there exists a stateωX,Y,+ onOϑ such that for allA ∈ Oϑ,

lim
t→+∞

ωX,Y (τ t(A)) = ωX,Y,+(A).

(G4) There exists a time-reversalΘ of (O, τ0) such thatΘ(V ) = V and

Θ ◦ τ t
j = τ−t

j ◦ Θ, Θ ◦ ϑt
j = ϑ−t

j ◦ Θ,

for all j.

(G5) V ∈ Dom(δj) ∩ Dom(ξj) for all j.

The observables associated to the heat and charge flux out of thej-th system are

Φj = δj(V ), Jj = ξj(V ).

It immediately follows that

M
∑

j=1

ωX,Y,+(Φj) = 0 and
M
∑

j=1

ωX,Y,+(Jj) = 0,

which are respectively the first law of thermodynamics (conservation of energy) and charge conservation. The
entropy balance equation reads

Ent(ωX,Y ◦ τ t|ωX,Y ) = −
M
∑

j=1

Xj

∫ t

0

ωX,Y (τs(Φj))ds −
M
∑

j=1

Yj

∫ t

0

ωX,Y (τs(Jj))ds,

and in particular the second law holds:

Ep(ωX,Y,+) =

M
∑

j=1

Xj ωX,Y,+(Φj) +

M
∑

j=1

Yj ωX,Y,+(Jj) ≥ 0. (5.19)

The definition of the centered observable is the same as in Subsection 3.7. We set

Ôϑ =
(

∩M
j=1Dom(δj)

)

∩
(

∩M
j=1Dom(ξj)

)

∩ Oϑ,

Ôϑ,c = Ôϑ ∩ C.
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If V ∈ Ôϑ, thenΦj ,Jj ∈ Ôϑ,c for all j (after obvious notational changes, Proposition 3.2 applies directly to the
model consider in this section).

Theorem 4.2 is replaced with:

Theorem 5.1 Suppose that Assumptions (G1) and (G5) hold and letA ∈ Ôϑ,c. Then for allt ∈ R the function

(X, Y ) 7→ ωX,Y (τ t(A)),

is differentiable at(0, 0) and

∂Xj
ωX,Y (τ t(A))

∣

∣

X=Y =0
= L(A, Φj , t),

∂Yj
ωX,Y (τ t(A))

∣

∣

X=Y =0
= L(A,Jj , t).

The definition of the regular observable is the same as before, and we have:

Theorem 5.2 Suppose that Assumptions (G1), (G3) and (G5) hold.
(1) LetA ∈ Ôϑ,c be a regular observable. Then

∂Xj
ωX,Y,+(A)

∣

∣

X=Y =0
= L(A, Φj),

∂Yj
ωX,Y,+(A)

∣

∣

X=Y =0
= L(A,Jj).

(2) If in addition (G2) and (G4) hold andA ∈ Ôϑ is a regular self-adjoint observable such thatΘ(A) = −A, then

∂Xj
ωX,Y,+(A)

∣

∣

X=Y =0
= L(A, Φj),

∂Yj
ωX,Y,+(A)

∣

∣

X=Y =0
= L(A,Jj).

Theorem 5.3 Suppose that (G1), (G3) and (G5) hold and thatΦj ,Jj are regular observables inDom(δj) ∩
Dom(ξj). Then:
(1) The kinetic transport coefficients

Lkj
hh = ∂Xj

ωX,Y,+(Φk)
∣

∣

X=Y =0
,

Lkj
hc = ∂Yj

ωX,Y,+(Φk)
∣

∣

X=Y =0
,

Lkj
ch = ∂Xj

ωX,Y,+(Jk)
∣

∣

X=Y =0
,

Lkj
cc = ∂Yj

ωX,Y,+(Jk)
∣

∣

X=Y =0
,

satisfy

Lkj
hh = L(Φk, Φj),

Lkj
hc = L(Φk,Jj),

Lkj
ch = L(Jk, Φj),

Lkj
cc = L(Jk,Jj).
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Assume in addition that (G2) and (G4) hold. Then
(2) The Green-Kubo formulas hold:

Lkj
hh = L(Φk, Φj),

Lkj
hc = L(Φk,Jj),

Lkj
ch = L(Jk, Φj),

Lkj
cc = L(Jk,Jj).

(3) The Onsager reciprocity relations hold:

Lkj
hh = Ljk

hh,

Lkj
cc = Ljk

cc ,

Lkj
hc = Ljk

ch.

The remark after Theorem 4.4 applies to Theorems 5.2 and 5.3.
In the literature one often considers a special case, described in the introduction, where one of the quantum

dynamical systems, say(O1, τ1, ω1,β1µ1
), is finite dimensional and plays a role of a "small" quantum systemS

coupled to reservoirs described by(Oj , τj , ωj,βjµj
), j ≥ 2. Such systems are one of the basic paradigms of non-

equilibrium quantum statistical mechanics and have playedan important role in the historical development of the
subject. With regard to the algebraic approach described inthis note, the only additional feature of these models is
vanishing of heat and charge fluxes out of the small system:ωX,Y,+(Φ1) = ωX,Y,+(J1) = 0.

Many other generalizations are possible and it appears difficult to have a unified framework which covers all
cases of physical interest. The Electronic Black Box Modelsstudied in [AJPP1, AJPP2, JOPP] are examples
of open quantum systems which do not fit directly into the class of models described here (the non-interacting
coupled system is not a tensor product of the individual subsystems). However, the changes needed to apply our
results to these models are elementary. One may also consider W ∗-dynamical systems instead ofC∗-dynamical
systems and unbounded interactions which are only affiliated to the algebra of observables. The models where
such generalization is necessary involve free bosonic reservoirs (a well-known example is the spin-boson model).
One may also consider time-dependent interactions (see [Ru1, JP3, JP4, ASF]). Another possible generalization
involves more general gauge groups. The important point is that although all such generalizations may require
some adjustment of technique and presentation, they bring nothing conceptually new.
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