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Abstract

This note is a continuation of our recent paper [JOP1] wherdawe proven the Green-Kubo formula and the
Onsager reciprocity relations for heat fluxes in thermatiyeh quantum open systems. In this note we extend
the derivation of the Green-Kubo formula to heat and chargefl and discuss some other generalizations of the
model and results of [JOP1].
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1 Introduction

This paper is the second in a series dedicated to linearmssgbeory for non equilibrium steady states (NESS)
of quantum open systems. The development of linear respbasey is a part of a much wider research program
initiated in [Rul, Ru2, Ru3, JP1, JP2, JP3]. This prograntsdeih mathematical foundations of non-equilibrium
thermodynamics in the framework of algebraic quantumsttatil mechanics. Motivated by the developments in
classical non-equilibrium statistical mechanics (seeréwvéew [Ru4]), the program addresses the central issue of
NESS in two independent steps.

(A) The existence and analytic properties of NESS are assumadaasom On the basis of this axiom one
develops the mathematical theory of non-equilibrium quarstatistical mechanics in an abstract setting. This step
is primarily concerned with the mathematical structurehaf theory and its relation to the fundamental physical
aspects of non-equilibrium (see [DGM, KTH]).

(B) The second step concerns study of specific physically retewadels. Relaxation to a NESS and analytical
properties of this NESS are detailed dynamical problemgkvban be answered only in the context of concrete
models. Once these fundamental problems are solved, thradldgnamics and the transport theory of the model
are derived from the general structural results estatdiginéA).

So far, the main focus of the program has been the second lghehodynamics (positivity of the entropy
production). In this case the part (A) has been settled ir2[RR1, JP4], where the entropy production has been
defined in the abstract framework of algebraic quantumssizai mechanics. In these works various structural
properties of the entropy production have been establighedn particular it was shown that the entropy pro-
duction of any NESS is non-negative. The strict positivityh® entropy production is a problem which belongs
to the category (B). At the moment there are two classes oftrigial models whose NESS are well-understood
and which have strictly positive entropy production. Thstfalass of models describes Ahklevel quantum sys-
tem coupled to finitely many independent free Fermi gas ve@sr[Da, LeSp, JP2]. The second class describes
finitely many free Fermi gas reservoirs coupled by localrmtdons [BM, AM, FMU]. Some exactly solvable spin
or fermion models with strictly positive entropy productibave been studied in [AH, AP, AJPP1, AJPP2].

The natural next step in this program is the developmentegli response theory and in particular the deriva-
tion of the Green-Kubo formulas (abbreviated GKF). A typjglaysical situation we consider concerns the steady
states of a quantum device, a confined sysfewith a finite number of degrees of freedom, coupledfaeser-
VOirs R4, ..., Ras, See Figure 1 (a generalization of this setup is discuss&€eation 5). More specifically, we
are interested in situations where the systgns driven out of equilibrium by thermodynamic forces, i.by,
discrepancies in the intensive thermodynamic parametéhge @eservoirs around some common equilibrium val-
ues. Suppose that each reser®iris in a thermal equilibrium state characterized by somerse¢éemperature
B; = p — X; and chemical potential; = p + Y;/3. If some of the forces\;, Y; do not vanish, then under
normal conditions they induce energy and mass/chargerdaraeross the systey Linear response theory is
concerned with the calculation of these currents to firseona the forces. In [JOP1] we have derived the GKF
for heat fluxes (the cage = Y; = 0) in the axiomatic framework of algebraic quantum statitimechanics. In
this note we discuss a derivation which applies to both hedicharge fluxes and complete the step (A) of the
program. Concerning (B), the examples to which our devadiirectly applies include all models for which the
strict positivity of the entropy production has been estilald. These applications are discussed in the forthcoming
papers [JOP2, JOP3, JOPP].

In classical mechanics there is a number of different waydeszribe an open system out of thermal equilib-
rium. Some of these descriptions involve various kinds efitiostating devices which lead to non-Hamiltonian
effective equations of motion (see [EM, RB]). Due to theimgic Hamiltonian nature of quantum dynamics, the
situation is different for quantum open systems. Excepbme special limiting cases (e.g., in the weak coupling
limit, see [LeSp]) one is forced to consider the joint dynesrof the systens and its environment.

To describe the joint systei+ R; + - - - + R, we suppose that it is initially prepared in a state where each
reservoirk; is characterized by intensive thermodynamic parameieesd.;. Due to the interactions between
the systemS and the reservoirs this state is not stationary. We shalimsghat, ag — +o0, the joint system
relaxes to a steady state. Since confined quantum systemslisavete spectrum and almost periodic dynamics, a



Linear response theory for thermally driven quantum opeitesys 3

Figure 1: An open system with/ reservoirs.

non-trivial steady state may exist only if the reservoims iafinitely extended. Moreover, in order for this steady
state to be a NESS (i.e., to avoid the joint system to relaxtecuilibrium state), the reservoirs must be "ideal"
in the following sense. A reservoir serves two purposesherone hand it is a source feeding energy/particles to
the deviceS in a statistically controlled way. On the other hand it alsarks as a sink or dissipator, transporting
to spatial infinity energy/particles coming out®f In an "ideal" reservoir the source and the sink are independ
as much as quantum dynamics allows. The fact that incomidgatgoing fluxes do not interact ensures that the
intensive thermodynamic parameters describing the irstéie of an "ideal” reservoir still apply to the outgoing
flux in a steady state. Thus, “ideal" reservoirs are able totaia fluxes across the systefrover the infinite time
interval needed to reach a steady state.

Linear response theory of NESS is a delicate interplay batvtleree limits which must be taken in a definite
order. First, one must perform the thermodynamic (or irdirttlume) limit of the reservoirs. Then,ta— +oo
limit is necessary to reach a NESS. Fidg, Y; — 0 limits are needed to extract the linear response proper.

For interacting quantum systems the first limit is alreadyifficdlt problem which can only be treated in a
limited number of models (see e.g. Chapter 6 in [BR2]). Hasvefor the ideal reservoirs we are dealing with,
this problem is well understood (see e.g. Section 5.2 in [RRh infinitely extended quantum dynamical system
at non-vanishing density can be described in the univemsataptual framework of algebraic quantum statistical
mechanics. It is therefore possible to decouple the theymaic limit from the two remaining ones. In this
paper we derive the GKF under the assumption that the thesdimits exist and can be interchanged. The
justification of this fact is a delicate dynamical problemiethbelongs to the category (B) and will be treated in
the aforementioned companion papers.

This note is organized as follows. For notational purpogeSgction 2 we quickly review a few basic notions
of algebraic quantum statistical mechanics. In Section $iveduce the model and review basic concepts of non-
equilibrium statistical mechanics (the reader may complenthis section with reviews [JP3, AJPP1]). Linear
response theory is discussed in Section 4. Our main ressiaied in Subsection 4.2. Its proof follows closely
the arguments in [JOP1] and is outlined in Subsection 4.3ioMa generalizations of our model and results are
discussed in Section 5.

Acknowledgment. The research of V.J. was partly supported by NSERC. A pahisfiork has been done during
the visit of V.J. to CPT-CNRS. Y.O. is supported by the Japaciy for the Promotion of Science. This work has
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been done during the stay of Y.O. to CPT-CNRS, partly suggdsy the Canon Foundation in Europe and JSPS.

2 Basic notions

Let O be aC*-algebra with identityl andr?, ¢t € R, a strongly continuous group efautomorphisms of). The
groupT and the pai(O, 7) are often called”*-dynamics and’*-dynamical system. A state on O is calledr-

invariantifw o 7 = w for all t € R. An anti-linear involutives-automorphisn® : O — O is calledtime-reversal
of (O,7)if ®@ort =7"toOforallt € R. Astatew on O is called time-reversal invariantif(©(A)) = w(A*)

forall A € O.

We call quantum dynamical system a trigl@, 7, w) wherew is a given state o®. The statev describes
the initial (or reference) thermodynamical state of theaysand is not necessarityinvariant (for a discussion
of this point we refer the reader to Section 2 of [AJPP1]). &ndormal conditions, i.e., under natural ergodicity
assumptions, alb-normal states are thermodynamically equivalent referestates in the sense that they lead to
the same NESS.

We denote byEnt (7 |n2) the Araki relative entropy of two states andr.. We use the sign and ordering con-
vention of [BR2, Don, DJP] (henc&nt(n;|n2) € [—o0,0]). The Araki relative entropy has played an important
role in recent developments in non-equilibrium quanturtigieal mechanics.

Lets > 0. Astatew is called &7, 5)-KMS state if for allA, B € O there exists a functiof4, (=), analytic in
the stripSg = {z € C|0 < Im =z < 3}, bounded and continuous on its closure, and satisfying M&+oundary
condition

Fap(t) =w(ATY(B)),  Fap(t+if) =w(t'(B)A).

As usual, we writes(A7*(B)) = F4 p(z) for 2 € S5 even when*(B) is not well-defined. A7, 3)-KMS states
describes a physical system in thermal equilibrium at iseéemperaturg. For all practical purposes these states
can be considered as thermodynamic limits of Gibbs canbaitsembles.

The general theory of chemical potential in quantum statisimechanics is discussed in Section 5.4.3 of
[BR2]. In our study of linear response theory we will only sader the chemical potential associated to the usual
U (1) gauge invariance of quantum mechanics. We will call chargetfie current associated to the corresponding
conserved charge. The extension of our results to more glegauge groups is straightforward. Since we only
need a fraction of the mathematical structures commonlycieted to the chemical potential we shall be brief.
Let ¥ be aC*-dynamics orO such thatr? o 9¥ = 9% o 7t for all ¢, » € R. ¥ is the gauge-group and its elements
¥ are gauge transformations. Physical observables areéantamder gauge transformations and are therefore
elements of

Oy ={A e O|9¥¥(A) = Aforall p € R}. (2.2)

Note thatO, is ar-invariantC*-subalgebra o® and so(Oy, 7) is aC*-dynamical system. Lat € R and
ot = 7t o 9™Ht,

Clearly 7t anda! coincide onOy. We say that a state on O is a (7,9, 3, u)-KMS state if it is an(«, 3)-KMS
state. Although this last terminology is not common, it isneenient for our purposes. £, ¢, 8, u)-KMS state
describes a physical system in equilibrium at inverse teatpee3 and chemical potential. Note that ifw is a
(1,9, B, u)-KMS state or0, then its restriction to the gauge-invariant subalg&byas a(r, 5)-KMS state or0y
which describes a thermodynamic limit of grand canonicakembles associated to the parameteys

3 The model and the framework
3.1 The model

Our starting point are tw@*-dynamical system$Q;,, 7,) and (Ogr, 7r) with gauge-group®;, andvJg. For
convenience we shall call them the Idit,and the rightR, system. We denote the generatorsgfrg, ¥1, andig



Linear response theory for thermally driven quantum opeitesys 5

by i1, 0w, &1, andér. For many applications the left system can be thought of agposed of a first reservoir and
a confined systenl, = S + R4, while the right system is just a second reserMie- R,. The generalizations of
this setup are discussed in Section 5.

The C*-algebra of the joint systefh + R is O = O, ® Or and its decoupled (non-interacting) dynamics is
70 = 7L ® TrR. The generator ofy is 6y = o, ® I + I ® dr. In the sequel, whenever the meaning is clear within
the context, we shall writé, for i1, ® I, ér for I ® R, etc.

The gauge-group of the joint systemiis= 91, ® g and its generator i§ = &1, + &r. We denote by), the
corresponding gauge-invariant subalgebré&of

LetV € Oy be a self-adjoint element describing the interactioh ahdR. The interacting”*-dynamicsr is
generated by = 6y +i[V, -] and commutes with the gauge-gratipThe coupled (interacting) joint systeim+ R
is described by thé'*-dynamical systeniO, 7).

3.2 The reference states

We setl(z) = (x — €,z + €) and writel, = I.(0).
Let 5.q > 0 andueq € R be given reference (equilibrium) values of the inverse terafure and the chemical
potential. We make the following assumptions concernimgttitial states of. andR.

(A1) wr, is the uniquéy,, U1, Beq, Heq)-KMS state or0r,. The reference states Bfare parametrized
by 8 € Ic,(Beq) andp € I, (pteq) @andwr g, is the unique(tg, Ir, 8, 1)-KMS state onOr. We
shall denotevr s, ., DY WR-

Throughout the paper we shall assume that (A1) holds. Theeaete states of our model avg ® wr 3, .,
B € Ie,(Beq)s 1t € Ie,(peq). FOr our purposes it is convenient to introduce the pararmgteermodynamical
forces)
Xzﬁeq_ﬁa Y:ﬁﬂ_ﬁeqﬂeqa

and to parametrize the reference statesxbgndY’, i.e., we write
WxX,y,0 = WL Q@ WR 3, u-

Since we are interested in linear response theory, wittomst df generality we may restrict the valuesafy” to
I, wheree > 0 is a small positive number. Note thag ¢ is the uniquer, ¥, Beq, teq)-KMS state orO.

As we have already mentioned, under normal conditions;alj- o-normal states are thermodynamically equiv-
alent reference states bf+ R. We now describe a particulary y,o-normal reference state which will play an
important role in our discussion of linear response theory.

Set

of =rh o0t ok, =rhovgh

Assumption (A1) implies thaby, is the uniquéas,, 5.q)-KMS state orOy, and thatvg g, is the uniquéag, ., 5)-

KMS state onDg. Set

t ot Bt/Bea
Oxyo=aL®ag), -

Thenwx y,o is the uniqu€ax v,o, Beq)-KMS state or0. Letdx y,o be the generator afx y,o and
dx,y =0x,y,0 +i[V, -].

The subalgebr®om (d1,) N Dom (£1,) N Dom (dg ) N Dom (£r) is a core foix y,o anddx,y. On this subalgebra

dx,v,0 acts as

X Y
0x,v,0 = 00 — Meq§ — 6—5R - 6_§R- (3.2)
eq eq

Let ax y be theC*-dynamics generated byx . Araki's perturbation theory yields that there exists aquiei
(ax,y, feq)-KMS statewx y on O.
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The statesvx y,0 andwx y are mutually normal. The reference staiegy will play a central role in our
study of linear response theory. Note thal, is the uniquer, 9, Beq, teq)-KMS state onD. We denote this state
by weq. The next assumption concerns thej.q)-KMS state induced by, on the gauge invariant subalgebra
Oy.

(A2) Forall A, B € Oy,
lim weq(Tt(A)B) = Weq(A)weq(B).

|t|—o0

A well-known consequence of the KMS condition and Assump(i2) is the relation

lim t Weq([T°(A), B])ds = 0, (3.3)

t——+oo ¢

which holds for allA, B € Oy (see Theorem 5.4.12 in [BR2]). This relation plays a key ioltne derivation of
the Onsager reciprocity relations.

3.3 Non-equilibrium steady states

We postulate relaxation to a NESS as follows:
(A3) For all X, Y € I, there exists a statex, y,+ on Oy such that for alld € Oy,

lim u}ny(Tt (A)) = wX7y7+(A).

t——+oo

Assumptions (A2) and (A3) are strong ergodic hypotheseshvhie difficult to verify in concrete models. We
remark that in typical physical situations one expects maaenely that

lim n(r'(A)) = wx vy (A),

t——+o0

for all wx yo-normal stateg and A € Oy. Indeed, such strong form of approach to NESS has beenissitbin
all examples we consider in [JOP2, JOP3, JOPP]. However,ilveatneed such an assumption in our axiomatic
study of linear response theory.

3.4 Time-reversal invariance

Our next assumption concerns time-reversal.
(A4) There exists a time-reversalof (O, 1) such tha® (V) = V and
ot =71."00, Qoth =73 00,
Qodf =900, Qo v =957 00,
forall ¢, € R.

Clearly,® is a time-reversal ofO, ¥) and(O, ax,y,0). In particular it leave®, invariant. Itis not difficult to
show that© is also a time-reversal ¢©, 7) and(O, ax y ), and that the statesx y,o andwx y are time-reversal
invariant. The proofs of these facts are the same as the pfagmma 3.1 in [JOP1].
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3.5 Fluxes
To define the flux observables we need:
(A5) V € Dom (5R) N Dom (fR)

If (A5) holds, we set
®=0r(V), JT=%&(V).
The observabl@ describes the heat flux out of the systBmThe observablg/ describes the charge flux out of
R. SinceV € Oy and7gr, Yg commute withd we haved, 7 € Oy. If the time-reversal assumption (A4) holds,
then

3.6 Entropy balance equation

In the recent literature the entropy balance equation hexs dlevays discussed with respect to the product reference
statewx,y,o [Ru2, Ru3, JP1, JP3, JP4]. The finite time entropy balancatequw.r.t. the reference statey y
has the following form.

Theorem 3.1 Assume thalt’ € Dom (dr,) N Dom (£1,) N Dom (dg ) N Dom (¢g ). Then

Ent(wx,y o7 |wa)*—X/ wx,y(T ds—Y/ wx,y(T ds. (3.4)

Proof. The assumptions of the theorem imply théakE Dom (dx y). SinceV € Oy implies{(V') = 0, we have
Beqdx,v (V) = Beqd(V) — X0 -Y J. (3.5)
The entropy balance equation of [JP1, JP4] yields

t
Ent(w)gy o Tt|wX,y70) = Ent(wX,y|wX7y,o) + ﬁeq/ wa(TS (6X,y(V)))dS
0

= Ent(wx v |wx,v,0) + Beqwx,y (7' (V) = Bequx,v (V) (3.6)

—X/O wX7y(TS((I)))dS—Y/O wX7y(TS(j))dS.

The fundamental formula of Araki [Arl, Ar2] (see also [BR2om DJP]) yields that

Ent(wxy o T wxy) = Ent(wx y o Tt |wx yo) — ﬁcquyy(Tt(V)) + C,
(3.7)
Ent(wx,y|wx,v,0) = Beqwx,y (V) — C,

whereC' is a constant expressible in terms of the modular structueedo not need its explicit form here). The
relations (3.6) and (3.7) yield the statement.

The entropy production of the NESS v+ is defined by

Ent(wxy 9 Tt|wX,y)

Ep(wx,y,+) = — tEJFmOO ;
Theorem 3.1 yields
Ep(wxy,+) = Xwx vy +(®) + Ywxy+(J) >0, (3.8)

and this relation is the second law of thermodynamics formadel. Of course, ifX,Y) # (0,0), then under
normal conditions one expects tH&b(wx v, +) > 0, i.e., that the fluxes are non-vanishing. The strict pagjtiof
entropy production is a detailed dynamical question whalge answered only in the context of specific models.
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3.7 Centered observables

An observabled € O is calledcenteredf wx y (A) = 0 forall X,Y € I.. We denote by the set of all centered
observables. Obviously; is a norm-closed vector subspace®@f Our derivation of the Green-Kubo formula
applies only to centered observables.

If Assumption (A4) holds, then any self-adjoint observahlsatisfying®(A) = — A is centered. Indeed, since
wx,y Is time-reversal invariant,

wxy(A) =wxy(O(4)) = —wx,y(A),

and savx,y (A) = 0. In particular, if (A4) holds, then the flux observabiesind.7 are centered.

Itis an important fact that the flux observables are centerespectively of the time-reversal assumption. This
fact will play a central role in our discussion of the Greeunbld formula for systems which are not time-reversal
invariant.

Proposition 3.2 Under Assumption (A5)
wxy(®) =wxy(J)=0,
holds forall X,Y € I..
Proof. Assume first that
V € Dom (61,) N Dom (&1,) N Dom (dg ) N Dom (£g). (3.9)
Note thatC*-dynamicsyx y is well-defined for allX, Y € R. The following generalization of the entropy balance

equation (3.4) holds: foralk,Y € I. andZ, U € R,

t
Ent(wx,y o atZ_’U|wX_,y) =—(X - Z)/ wX_,y(ozssz(q)))ds
0 (3.10)

t
~(v = 0) [ oxylago)s
0
The proof of this relation is essentially the same as thefb(8.4). The only difference is that the relation (3.5)

is now replaced with
Beadxy (V) = Beabzu (V) — (X = 2)d — (Y = U)J . (3.11)

The entropy balance equation of [JP1, JP4] yields

t
Ent(wx,y 0 az ylwx,v,0) = Ent(wx,y|wx,v,0) + 5cq/ wx,y (azy(0x,y (V)))ds,
0

and the rest of the argument follows line by line the proof bédrem 3.1.
The equation (3.10) yields

. Ent(wxyo ot lwx y)
151%1 p zZU = (X = ZDwxy(®) = (Y = Uwx.y(T),

andsoforallX,Y € I. andZ,U € R,
(X = Z)wxy(®) + (Y = U)wx,y(J) > 0.

This relation yields the statement.
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To prove the general case, léte Dom (6g) N Dom (g ) and

™

v = _/ eIt o 98 (Vydids,  j=1,2,....
R2

The observableg] satisfy (3.9). Letvx y,; and®;, J; be the reference state and the flux observables associated
to V;. We have established that for &l Y € I,

wx,v,;(®;) = wxv,;(J;) = 0. (3.12)

By the properties of analytic approximations (see [BRR)x v,; —wx,y|| — 0, ||®; —®|| = 0, ||J; — J|| = 0
asj — oo, and the statement follows from (3.12).

Note that we did not use the gauge invarianc& ah the above proof.

3.8 Regular observables

As mentioned in the introduction, our derivation of GKF eslion the assumption that the- +oc limit can be
interchanged with differentiation w.r&, Y. We note that if the states;,, wg g, are ergodic fog, i sufficiently
close tof.q, teq then it is not difficult to show that the states; y are mutually singular for distinct values of
X,Y. Therefore the differentiability of the functiofX,Y) — wx,y (7%(A4)) is an extremely delicate question,
already forfinite t. However, as we shall see in Subsection 4.2, one can prowvththdunction is differentiable at
X =Y = 0 under very mild regularity assumptions dn providedA is centered (this is the content of our main
technical result, Theorem 4.2).

The following definition encapsulates our assumption orirttexchange of limits.

Definition 3.3 Assume that (A3) holds. Léte Oy be an observable such that the function
(X,Y) = wx,y (7'(4)),
is differentiable a{0, 0) for all . We call such an observable regular if the function
(X, Y) = WX,Y.,Jr(A)v
is also differentiable af0, 0) and

li+moo Oxwx,y ('(A)] x_y_ = Oxwx.y+(A)| y_y

t—

(3.13)
liEﬂoo dywx,y(7'(4)) ’X:Y:O = Oywx,y,+(A) ’X:Y:O'

t—

4 Linear response theory

4.1 Overview
Suppose that Assumptions (A3) and (A5) hold and that thetiomns

(X,Y) — wx y+(P), (X,)Y) — wxy+(J),
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are differentiable a0, 0). The kinetic transport coefficients are defined by

Ly = 6xwx,y,+(‘1’)‘x:Y:o’

Lhe = Oywxy+(®)| _y_o»
(4.14)
Len = xwx,y,+(T)] x_y—o»

Lee = Oyvwx,y+(T)| x_y_o»

where indiced/c stand for heat/charge. Linear response theory is concevitedhese coefficients. An elemen-
tary consequence of the second law (Relation (3.8)) is Heatrtatrix

Lpy Ly
L =
|:Lch Lcc:| ’

is positive definite on the real vector spa€(this of course does not imply thaf,. = L.,!).
The Green-Kubo formulas are at the center of linear respibresey. ForA, B € Oy we set

L(A,B) = lim %/t Weq (AT*(B))ds.

t——+oo ¢

The GKF assert that if the system is time-reversal invayifuen

Ly = L(9, D),
Lhc = E((I)a j)a
(4.15)
Lch - ﬁ(j, (I))a
L.=L(T,J).

These formulas are mathematical expressions of the flictudissipation mechanism in statistical mechanics—
they link linear response to a thermodynamical force to tipglidrium correlations w.r.t. the corresponding flux
observable.

The coefficientd.,,. and L., are of particular physical importance. In words, the chedpotential difference
may cause a heat flow out &f even if L andR are at the same temperature. Fosmall, this flow is equal to
Y Ly + o(Y'). Similarly, the temperature difference may cause a chapgedlt of R even ifL. andR have equal
chemical potentials. FakK small this flow is equal toX L., + o(X). An immediate consequence of the second
and third relation in (4.15) and the formula (3.3) are the&yes reciprocity relations

Lye = Len. (4.16)
For A, B € Oy andt € R we set

1 t Beq )
ch/o ds/o du weq (7°(A)T(B)),

£(A,B,t) =

and
£(A, B) :tli+m £(A, B, t),
whenever the limit exists. We remark that by the KMS conditioe function

(5,2) = weq(7°(A)77(B)),
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is bounded and continuous on the Bei gﬁcq. The central step in our derivation of (4.15) are the follogvi
formulas

Ly = £(®, D),
Lpe = £(9,7),
L t(7.0) (4.17)
Lee =2(T, 7).

It is an important point that these formulas heldhout the time-reversal assumptienthey are the Green-Kubo
formulas for systems which are not time-reversal invaridartie Green-Kubo formulas (4.15) are an immediate
consequence of (4.17) and the following result establish§OP1].

Proposition 4.1 Suppose that Assumptions (Al), (A2), and (A4) hold andllé&?@ € Oy be two self-adjoint
observables which are both even or odd un@efThen

L(A,B) = £(A, B).

Proof. The argument follows line by line the proof of Theorem 2.31®P1]. For reader convenience we outline
the main steps of the argument.
We need to prove that

lim — /O . [ /O tweq(TS(A)TiU(B))ds} Q= lim [ weg(Ar(B)ds.

t—+o0 ﬁcq t—+o0 ¢
The time-reversal invariance and the KMS-condition yidélattfors € R andu € [0, 5],

weq(T*(A)T(B)) = weq(77° (A)r%a7(B)),

[ e mnas] = g [ ctarsempas) au

Since the integral of the function — weq(A7*(B)) over the boundary of the rectangle with verticest,t +
iu, —t + iu is zero, we have

and so

L[ sty =t [ aarmiss g [T Reoa @

where

R(t.u) =i / " (e AT Y(B)) — weg(Ar—+1¥(B))] dy.

Assumption (A2) implies that _
M Weq(ATE Y (B)) = Weq(A)weq(B),

t——+oo

and the dominated convergence theorem yields

lim sup |R(¢,u)| =0.
t——+o0 0<u<p

This fact and the formula (4.18) yield the statemeént.

In the next subsection we state our main results concerhnGteen-Kubo formulas.
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4.2 The Green-Kubo formulas

As already mentioned, our main technical result concerasdifierentiability, at(0,0) and for finite¢ of the
function (X,Y) — wx,y(7'(4)). The resultingfinite time linear response formuia the content of the next
Theorem. We set

Oy,r = Oy N Dom (r) N Dom (ér),
Opre=0yrNC.
Theorem 4.2 Suppose that Assumptions (A1) and (A5) hold andletOy r . Then for allt € R the function
(X,Y) = wx,y(T(4)),
is differentiable a{0, 0) and

8Xu}X7y(Tt(A)) ’X:Y:O = S(A, (I), t),

6wa7y(Tt(A)) ’X:Y:O = S(A, j, t).

We will prove Theorem 4.2 in Subsection 4.3. The next two teews are consequence of Theorem 4.2,
definition of the regular observable, and Proposition 4.1.

Theorem 4.3 Suppose that Assumptions (Al), (A3) and (A5) hold.
(1) Let A € Oy r,c be aregular observable. Then

anX’Yv"'(A)’X:Y:O = S(A, (I)),

awa,y7+(A)’X:Y:0 = S(A, j)

(2) If in addition (A2) and (A4) hold andl € Oy R is a regular self-adjoint observable such tHatA) = — A,
then

BXWX7Y’+(A)‘X:Y:O = E(A, (I)),

8wa7y,+(A)‘X:Y:0 = E(A, ._7)

Theorem 4.4 Suppose that Assumptions (Al), (A3) and (A5) hold and ¢hat are regular observables in
Dom (6g) N Dom (¢r). Then the formulas (4.17) hold. If in addition (A2) and (Adjd) then the formulas
(4.15) and (4.16) hold.

Theorem 4.2 was proven in [JOP1] in the cagg = 0, Y = 0. The technical extensions of the proofs in
[JOP1] needed to accommodate charge fluxes are relativalyrrand are discussed in the next section.

4.3 Proof of Theorem 4.2

We will freely use the notation introduced in Subsection 3.1
Lemma 4.5 (a) The groupg o preserve®om (dg ) NDom (£g) and forA € Dom (ér ) NDom (&g ) the functions

R >t 0r(afh(A), Rt Lr(ahe(A)),
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are norm continuous.
(b) Forall t € RandA € Dom (dr) N Dom (&),

oy (4) —abold) = ~ 2 [ ey n(ad o(40)as 2 [ ol (Enlado(an)is
eq JO eq JO

(c)Forallte RandA € O,
t ot _
ey oy (4) = ao(A)] = 0
(d)Forall A € 0O,

li A) = weq(A).
(X,Y%Iil(o,o)wx’y( ) = weq(4)

Proof. To simplify notation let us sety = ag,0,0 anda = 0. We shall use the identity
a'(A) = Taq (AT},

wherel'; € O is a family of unitary elements defined by

Iy=1+ Z(it)"/ (V) -t (V)dsy - - - dsy,
0

n>1 <sp<--51<1

see Proposition 5.4.1 in [BR2]. Sindé € Dom (dg) N Dom (£r), one easily shows thdt, € Dom (dg) N
Dom (¢g) and that

Sr(Ty) =D (it)" / Zoﬁsﬂ cag? (Or(V) - af (V)dsy - - sy,
n>1 0<s,<---51<1

r(ly) =Y ()" / Z alm (V) ag? (Gr(V) - af™ (V)dsy - -~ dsy.
n>1 0<s,<-51<1

These two formulas yield that the functions
t— 0r(Ty), t— Er(Ty),
are norm continuous. Finally, the identities

Or(a(A)) = or(Tr)ag (AT + Trag (Or (A))T] + Teag (A)or(T),

€r(a'(4)) = &r(Tr)ag(A)T] + Teag (Er(A)TT + Teag(A)Er (L),

yield Part (a).
If A€ Dom (5L) N Dom (5R) N Dom (gL) N Dom (gR), then

sty oal(4) = ;;axwa( ‘(A >>>+ﬁ%axfy<5R<at<A>>>,

and (b) follows. The casd € Dom (dg) N Dom () is handled by approximating with the sequence
A= / I+ 1t 5 s (A)deds,
™ JRr2
see the proof of Lemma 3.3 in [JOP1].

SinceDom (dg ) NDom (£g) is dense irO, (b) implies (c). The proof of (d) is the same as the proof ahbea
3.4in [JOP1].0
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Lemma 4.6 LetA € Oy r . Then for allt € R the function
(X,Y) = wx v (7'(A)),

is differentiable a{0,0), and

dxwxy (F(A)] 4y, = [% / wea (B (7° (4)))ds.

By wxy (TH(A)] ¢y g = % / wea(Er (7°(4)))ds.

Proof. SinceA is a centered observable ang y is ax,y-invariant, we have thanX,y(an_’Y(A)) =0 forall ¢.
Sinceag,o = 7 on Oy, we have thabx y (af (A4)) = wx,y (7(A4)) andwg,o (7' (A)) = weq(7*(A4)) = 0 for all
t. These observations and Part (b) of Lemma 4.5 imply

wxy (T"(A)) — wo,o(7"(A))

= [onrtonr s+ 5= [oxr i s

This relation, Lemma 4.5, and dominated convergence yiedtatementa

Lemma 4.7 Assume thatl € Oy r. Then

Beq _
Wea (B (4)) = / Weq (AT (®))ds,

Bea '
weq (Er (A)) = /0 weq (AT (7))ds.

Proof. This lemma is the central and technically most demanding stehe argument. Fortunately, its proof is
identical to the proof of Lemma 3.6 in [JOP1]. This followsiin the fact thatd, V, ®, J € Oy and thatveq [ Oy
iS a (7, Beq)-KMS state.O

Theorem 4.2 is an immediate consequence of Lemmas 4.6 and 4.7

5 Some generalizations

Although we have restricted ourselves in this note to twopbed quantum dynamical systems, the model, the
framework and all our results have a straightforward extenso the case of\/ systems. Let3.q and pieq

be the reference (equilibrium) values of the inverse temtpee and chemical potential. For= 1,..., M let
(0j, 75, w; 5,.,) be quantum dynamical systems with gauge grabipaherew; is a(7;,9;, 5, u;)-KMS state.
We denote by); and¢; the generators of; andv;. Assumption (A1) is replaced with

(G1) The reference states of thieth system are parametrized By € I.(8eq) andu; € Ic(tteq) and
wj,6,u; 1S the unique;, 95, B, 1;)-KMS state on0;.
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LetO =010y, 70 =71 Q- Q7p, T =91 ®--- ® ). The algebrad, is again defined by
(2.1). The pair(O, 1) describes the uncoupled joint system. et O, be a self-adjoint perturbation antthe
perturbed”*-dynamics. The coupled joint system is described@®@yr). The thermodynamical forces are

X] = 5eq - ﬁja Y} = 5,7'Mj - 5eqﬂeq-

We setX = (X1,...,Xum), Y = (Y1,...,Yn). Thereference statedsx v,o = wi,8,u @ -+ WM, Brrpns - WX,Y,0
is the uniquede,-KMS state for theC*-dynamics

O‘fX Yo = [Tlﬁlt/ﬁeq ﬁl_lllﬁlt/ﬁeq] Q- ® [T]@AIt/Beq o ﬁ;fLMﬁMt/Beq]-

Let dx y,0 be the generator afx yo anddxy = dx,yo +i[V, -]. Letaxy be theC*-dynamics generated
by 6x v and letwx y be the(ax,y, feq)-KMS state obtained fromvx yv,o by Araki’'s perturbation theory. This
completes the setup of the model. Note that the state= wo ¢ is the unique(r, ¥, Beq, teq)-KMS state on
0. Assumptions (G2) has the same formulation as Assumpti@) éd Assumptions (A3), (A4) and (A5) are
replaced with:

(G3)Forall X, Y € IM there exists a statex v+ on Oy such that for alA € Oy,

Jim wxy (71(4)) = wxv(A),

(G4) There exists a time-reversalof (O, 1) such tha®(V) = V and
Bori=7"00, 6019;-:19;’50@,

J J

forall j.
(G5)V € Dom (6;) N Dom (¢;) for all 5.
The observables associated to the heat and charge flux dwe pth system are

P =0;(V),  Ti=&(V).
It immediately follows that

M

M
wa,yﬁ_(q)j) =0 and wa,y7+(._7j) =0

Jj=1

which are respectively the first law of thermodynamics (eowation of energy) and charge conservation. The
entropy balance equation reads

Ent(wx,y o T wx,y) = ZX/WXY ds—ZY/wa *(J;))ds

and in particular the second law holds:

M

waJr ZX u)Xy+ ZY wxy+($) 0. (519)
j=1

The definition of the centered observable is the same as igeBtibn 3.7. We set

@19 = (ﬂjj\ilDom (57)) N (ﬂjj\ilDom (57)) N Oy,

@19,,3 = @19 ncC.
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If Ve Oy, then®;, J; € @M for all j (after obvious notational changes, Proposition 3.2 apmlieectly to the
model consider in this section).
Theorem 4.2 is replaced with:

Theorem 5.1 Suppose that Assumptions (G1) and (G5) hold aneilet(%,c. Then for allt € R the function
(X,Y) = wx,y(T'(A)),
is differentiable a{0, 0) and
Ox,wxy (T"(A))| y_y—o = (A, @5, 1),

(9§/ij,y(Tt(A))’X:Y:0 = S(A, jj,t).

The definition of the regular observable is the same as hedakwe have:

Theorem 5.2 Suppose that Assumptions (G1), (G3) and (G5) hold.
(1) Let A € Oy . be aregular observable. Then

Ox,wx, v+ (A)| y_y_o = (A, @),

aYg wX,YH'(A) |X:Y:0 = ’Q(A’ j])
(2) If in addition (G2) and (G4) hold and € Oy is a regular self-adjoint observable such tiatA) = — A, then

anwX7Y,+(A)‘X:Y:0 = ‘C(A7 q)j)a

8}/ij7y,+(A)‘X:Y:0 = E(A, ._7J)

Theorem 5.3 Suppose that (G1), (G3) and (G5) hold and tlst .7; are regular observables iDom (4;) N
Dom (¢;). Then:
(1) The kinetic transport coefficients

i

th] = anWX,Y.,Jr(q)k)’X:Y:O’
ki

Ly = 3ijx.,Y,+((I)k)‘X:Y:0’
ki

Lcﬂ = anWX,Y,-i-(jk)‘X:Y:O’

LE = 0v,wxy+(T)| x_y—o»
satisfy

Lij, = £(®r, &),
Lﬁi = E((I)knjj)v
Lfﬂ :E(jkvq)j)v

LE = &(Ti, Jj).-
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Assume in addition that (G2) and (G4) hold. Then
(2) The Green-Kubo formulas hold:

Lyl = L(®y, @),
Lyl = L(®1, ;).
L, = L(Te, ®)),
Ll = L(Tk, J)-
(3) The Onsager reciprocity relations hold:
Ly = L,

kj _ 13k
L =1L

cec?

kj _ rik
Lhc - Lch'

The remark after Theorem 4.4 applies to Theorems 5.2 and 5.3.

In the literature one often considers a special case, destin the introduction, where one of the quantum
dynamical systems, say):, 71, w1 ,,, ), IS finite dimensional and plays a role of a "small* quantursitesmnsS
coupled to reservoirs described 69;, 7, w; 5,,,), 7 > 2. Such systems are one of the basic paradigms of non-
equilibrium quantum statistical mechanics and have playeiiportant role in the historical development of the
subject. With regard to the algebraic approach describ#dsmote, the only additional feature of these models is
vanishing of heat and charge fluxes out of the small systefy  (®1) = wx,y,+(J1) = 0.

Many other generalizations are possible and it appearsuliffo have a unified framework which covers all
cases of physical interest. The Electronic Black Box Modtlglied in [AJPP1, AJPP2, JOPP] are examples
of open quantum systems which do not fit directly into the slalsmodels described here (the non-interacting
coupled system is not a tensor product of the individual gstesns). However, the changes needed to apply our
results to these models are elementary. One may also congittelynamical systems instead 6f-dynamical
systems and unbounded interactions which are only affilitdethe algebra of observables. The models where
such generalization is necessary involve free bosonicveiss (a well-known example is the spin-boson model).
One may also consider time-dependent interactions (sek B, JP4, ASF]). Another possible generalization
involves more general gauge groups. The important poirftas dlthough all such generalizations may require
some adjustment of technique and presentation, they batigny conceptually new.
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