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Abstract

The spin-fermion model describes a two level quantum system S (spin 1/2) coupled to finitely many free
Fermi gas reservoirs R ; which are in thermal equilibrium at inverse temperatures 3;. We consider non-equilibrium
initial conditions where not all 3, are the same. It is known that, at small coupling, the combined system
S+ ; Rj has a unique non-equilibrium steady state (NESS) characterized by strictly positive entropy pro-
duction. In this paper we study linear response in this NESS and prove the Green-Kubo formula and the Onsager
reciprocity relations for heat fluxes generated by temperature differentials.
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1 Introduction

This is the third in a series of papers dealing with linear response theory in quantum statistical mechanics. In
the first two papers in the series [JOP1, JOP2] we have given an abstract axiomatic derivation of the Green-Kubo
formula for the heat fluxes generated by temperature differentials. In this paper we verify that this axiomatic
derivation is applicable to the spin-fermion model (abbreviated SFM).

The Green-Kubo formula is one of the pillars of non-equilibrium statistical mechanics and is discussed in many
places in physics literature (see e.g. [KTH]). A mathematical justification of this formula is one of the outstanding
open problems in mathematical physics [Si]. In the literature, most existing results concern currents induced
by mechanical driving forces such as time-dependent electric or magnetic fields (see [NVW, GVV, BGKS] for
references and additional information). In contrast, there are very few results dealing with fluxes generated by
thermodynamical driving forces such as temperature differentials. The central difficulty is that a mathematically
rigorous study of linear response to thermodynamical perturbations requires as input a detailed understanding
of structural and ergodic properties of non-equilibrium steady states (NESS). In the papers [JOP1, JOP2] we
have bypassed this difficulty by assuming the necessary regularity properties as axioms. The general axiomatic
derivation of the Green-Kubo formula in [JOP1, JOP2] has led to some new insights concerning the mathematical
structure of non-equilibrium quantum statistical mechanics. Concerning applications to concrete models, it reduced
the proof of the Green-Kubo formula to the study of regularity properties of NESS.

In most cases, the study of NESS of physically relevant models is beyond existing mathematical techniques.
The information necessary to study linear response theory has been obtained only recently and only for a handful
of models [JP2, JP3, AH, AP, FMU]. To the best of our knowledge the SFM and its obvious generalizations are
the first class of non-trivial models in quantum statistical mechanics for which the Green-Kubo formula and the
Onsager reciprocity relations have been proven. We would also like to mention related works [AJPP1, AJPP2]
where the Green-Kubo formula was established for some exactly solvable quasi-free models. Linear response
theory for the quantum Markovian semigroup describing the dynamics of the SFM in the van Hove weak coupling
limit was studied by Lebowitz and Spohn in [LeSp] and this work has motivated our program. The Green-Kubo
formula for a class of open systems in classical non-equilibrium statistical mechanics has been established in
[RBT].

Acknowledgment. The research of the first author was partly supported by NSERC. A part of this work has been
done during the visit of the first author to CPT-CNRS. Y.O. is supported by the Japan Society for the Promotion of
Science. This work has been done during the stay of Y.O. to CPT-CNRS, partly supported by the Canon Foundation
in Europe and JSPS.

1.1 The model and the results

The spin-fermion model describes a two level quantum system S (spin 1/2) coupled to finitely many, say M, free
Fermi gas reservoirs R ;. This model—a paradigm of open quantum system—has been much studied and we shall
be brief in its description. The reader not familiar with the model or with the algebraic formalism of quantum
statistical mechanics may consult [JP2] or any of the references [Da, BR1, BR2, LeSp, JP3, FMU, AJPP1] for
additional information.

The system S is described by the Hilbert space C? and the Hamiltonian Hs = ¢, (04, 0y, 0 denote the usual
Pauli matrices). Its algebra of observables is the matrix algebra Os = M (C?) and its dynamics is

TE(A) = eltfls Ae1tHs
A convenient reference state of the system S is

ws(A) = STH(A),

but none of our results depends on this choice.
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The reservoir R ; is a free Fermi gas in thermal equilibrium at inverse temperature 3; described by the quantum
dynamical system (O, 7j,w; ), where the algebra of observables O; = CAR(};) is the CAR algebra over a single
fermion Hilbert space b, the C*-dynamics T; is the group of Bogoliubov x-automorphisms generated by a single
particle Hamiltonian h;, and wj is the unique (75, 3;)-KMS state on O;. We denote by J; the generator of ;. The
complete reservoir system R = j R is described by the quantum dynamical system (Ox, 7, wr ) Where

M M M
Or = ®j=10j7 TR = &Q=1T}> WR = Q= wj.
Since we are interested in the non-equilibrium statistical mechanics of the SFM, we assume that M > 2.

Notation. In the sequel, whenever the meaning is clear within the context, we will write A for the operators A® I,
I® A

In absence of interaction the joint system S + R is described by the quantum dynamical system (O, 79, w),
where

0 =0s® 0g, To =Ts @ TR, w=ws X wr.
We denote by
M
So =i[Hs, -1+ > _dj,
j=1

the generator of 7.
The interaction of S with R ; is described by

Vi =02 ® @j(a;), (1.1)
where «; € b, is a given vector (sometimes called "form-factor"), and

1 X
pjla;) = \ﬁ(%‘(%‘) + aj(ay)) € Oy,

is the field operator associated to a;. The complete interaction between S and R is given by V' = Z]J\il V;. Let
A € R be a coupling constant and 7, the C*-dynamics on O generated by

S = 60 +iA[V, -.

The interacting joint system S + R is described by the C*-dynamical system (O, 7) and the reference state w.
Time-reversal invariance plays an important role in linear response theory. We remark that due to its simple

form, the spin-fermion system is automatically time-reversal invariant. Indeed, for all j there exists a complex

conjugation ¢; on h; which commutes with h; and satisfies c;a; = a;. The map ©(a(f;)) = a(c; f;) uniquely

extends to an involutive anti-linear *-automorphism of O; such that ©; o 7} = T]-_t 0 ©;. Let O be the standard

complex conjugation on Og. Obviously, Os(c,) = 0, Os(0,) = 0., and in particular O g o 75 = Tgt 0Bgs. Let
©=05®0;®---0O). ThenO(V;) =V forall j,and © o 7t = 7,7 0 O forall A € R.

Let 3.q > 0 be a given reference (equilibrium) inverse temperature. Since we are interested in linear response
theory, without loss of generality we may restrict the inverse temperatures 3; of the reservoirs to an interval
(Beq — € Beq + €), where 0 < € < [(q is a small number. For our purposes the size of € is not relevant. We
introduce the thermodynamical forces

X] = BEq - ﬁ_ﬂ
and set X = (Xy,---,Xn). The vector X uniquely describes the initial state of the system (note that the

value X = 0 corresponds to the equilibrium case where all 3; are the same and equal to 3.,). The restriction
B; € (Boq — € Beq + €) is equivalent to | X | < €, where | X | = max |X;|. WesetI. = {X € RM || X|, < ¢},
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D, = {X € CM||X|; < €}. We shall explicitly indicate the dependence of the reference states on X by denoting
wx; = Wj, WRX = WX, ® - Qwx,y, and

wé?) =Ws QWRX-

We denote by Nx the set of all w&?)-normal states on O.
We will need several results concerning non-equilibrium thermodynamics of S + R established in [JP2]. We
first list technical conditions needed for these results.

(A1) h; = L*(R,ds; §;) for some auxiliary Hilbert space §); and h; is the operator of multiplication by s € R .
Let I(§) = {z € C||Imz| < ¢} and let H]2 (0) be the usual Hardy class of analytic functions f : I(§) — ;.

(A2) For some § > 0, a > fBoq, and all j, e *a;(|s]) € H;(9).

(A3) Forall j, [|(2)]|g, > 0.

(A1) and (A2) are regularity assumptions needed for the spectral theory of NESS developed in [JP2]. As-
sumption (A3) is the "Fermi Golden Rule" condition which ensures that S is effectively coupled to each reservoir
R;.

The following result was proven in [JP2].

Theorem 1.1 Assume that (Al)-(A3) hold. Then, there exist A > 0, ¢ > 0 and states wyx 4 on O such that for
O<|AN<AXel,neNx,and A€ O,

lim n(7i(A)) = wrxs(A). (1.2)

t——+oo

The states wy x + are the NESS of the joint system S + R and are the central objects of the non-equilibrium
statistical mechanics of this system. We remark that w4 is the unique (7, feq)-KMS state on O and in this case
Relation (1.2) is the statement of the zeroth law of thermodynamics. We denote wxeq = wWro+-

If the thermodynamical forces X; are not all the same, then one expects that the NESS w) x4 is thermodynam-
ically non-trivial and has strictly positive entropy production. This result was also established in [JP2] (see also
[JP3]). The observable describing the heat flux out of R is

D; = A3 (V) = Ao @ p;(ihja;).

The entropy production of the NESS w) x+ is defined by
M
Ep(waxy) = Y Xjwrx+(®)).
j=1

If (A1)-(A3) hold and the X;’s are not all the same, then for A non-zero and small enough, Ep(wxx4) > 0, see
[JP2]. In particular, the NESS w)y x4+ carries non-vanishing heat fluxes. We will return to this topic in Subsection
1.2.

In this paper we study the linear response of wyx 1 to thermodynamical forces X ;. Our first result is:

Theorem 1.2 Assume that (Al)-(A3) hold. Then there are A > 0 and € > 0 such that for 0 < |\| < A the maps
I.>X — W)\XJr((I)j),

extend to analytic functions on D..
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The kinetic transport coefficients are defined by
Lyji = Ox,wxx+(®5)] y_q- (1.3)

Our main result is:

Theorem 1.3 Assume that (Al)-(A3) hold. Then there is A > 0 such that for 0 < |\| < A the following holds:

ey
1 oo
L)\ji = 5/ W)\eq(q)jTi((bi))dt. (14)
2
Lyji = L. (1.5)

Remark 1. The relations (1.4) are the Green-Kubo formulas for heat fluxes. The relations (1.5) are the Onsager
reciprocity relations.
Remark 2. The Onsager reciprocity relations are an immediate consequence of (1.4). Indeed, Theorem 1.1 yields
that for A, B € O,

im_ waeq(A74(B)) = waeq(A)wreq(B)-

[t]|— o0

This fact implies that

T
lim / w)\cq([@j,Tf\(@i)])dt:O,
T—o0 _T

see Theorem 5.14.12 in [BR2]. Since wycq is obviously 7y-invariant, (1.4) implies (1.5).

. . . T .
Remark 3. In general, in the Green-Kubo formula | fooo is interpreted as limy .o | - However, since wxeq(®;) =

0 for all 7, by the result of [JP2]
|w)\eq | = Alt‘

for some A > 0, and the integral in (1.4) is absolutely convergent.
Our final result is:

Theorem 1.4 Assume that (Al)-(A3) hold. Then there is A > 0 such that the functions A — Ly;; are analytic for
|A| < A and have power expansions

(oo}
Lyji= Y ALY (1.6)
Moreover, for j # 1,
. 2 . 2
L(,Q,) _ T ||0‘z(2)H55i”aJ(2)Hﬁj ’ a7
’ (cosh Beq)? 3oy llon(2)15,

)
and L;; —Z]#

Remark. Starting with formula (1.4), this theorem can be proven by an explicit computation based on the spectral
theory of the standard Liouvillean [JP2]. Our proof in Section 4 is somewhat indirect and emphasizes the important
connection between Lﬁ) and the weak coupling Green-Kubo formula established in [LeSp]. This connection is
discussed in more detail in Subsection 1.3
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1.2 Thermodynamics of the SFM revisited

Some technical results established in this paper could be used to improve existing results concerning the thermo-
dynamics of the SFM. In this subsection we do not assume that € is small and 3., does not play any particular
role. For this reason, in this subsection we replace the subscripts X by 5 = (B1, - ,Bm). Hence, wg, = wj is
the initial state of the reservoir Rj, wp 7 = wg, ®@ -+~ @ wp,,, Wz = ws ® w7 is the reference state of the joint
system, \V- 7 is the set of all wz -normal states on O, etc. For 0 < 71 < 2 we denote L, = 1,72 C RM. In
this subsection we will always assume the constant a in Assumption (A2) satisfies a > ~s.

The following results hold:

Theorem 1.5 Let 0 < v1 < 72 be given and assume that (Al)-(A3) hold. Then there exist A > 0 and states w e
on O such that: .
(1) Forall0 < |[A\| < A, B €l q,,n €Nz and A € O,

lim n(7i(A)) = wy g, (A). (1.8)

t——+o0

(2) The limit (1.8) is exponentially fast in the following sense: There exist PG > 0, a norm dense set of states
./\/'05 C NE’ and a norm-dense *-subalgebra Oy C O such that forn € N,z A € Oy, and t > 0,

03
IN(T3(A)) — wy 5, (A)] < Capae " (1.9)

Moreover, ws € ./\/05, ®; € Oy, and
= Z la; (2)]13, | A2+ 00, (1.10)

where the reminder is uniform in g e Iy -
(3) There exists a neighborhood O.,, of L, ~, in CM such that for all A € Oy the functions

(A B) = w5, (A), (1.11)
extend to analytic functions on {\ | |A| < A} X O, ,.

Remark. Parts (1) and (2) are proven in [JP2] and are stated here for reference purposes. The new result is (3)—in
[JP2] the analyticity of the functions (1.11) was discussed only w.r.t. A.
We denote by I the "off-diagonal” part of I, ,, i.e.,

Lyive = Lyiye \ BB =" =Bu}
Theorem 1.6 Let 0 < 1 < 2 be given and assume that (Al)-(A3) hold. Then there exists A > O such that for
0<|\<Aandfj e L., the following holds:

(1) Ep(w,5,) > 0.
(2) There are no Ty-invariant states in N 3

Y172

Remark 1. Statements (1) and (2) are equivalent. Indeed, the exponentially fast approach to NESS (Part (2)
of Theorem 1.5) and Theorem 1.1 in [JP2] yield that (2) implies (1). On the other hand, if 1 is a normal 7-
invariant state in . 7 then, by Part (1) of Theorem 1.5, 7 = w NGt This fact and Theorem 1.3 in [JP5] yield that
Ep(w/\ﬁ+) = 0, and so (2) implies (1).

Remark 2. Theorem 1.6 was proven in [JP2] under the additional assumption that for some § > 0,

Z |67 — ﬂ]| > 0.
4,J

The constant A was dependent on 9.
Remark 3. A result related to Part (2) of Theorem 1.6 was recently established in [MMS].
The proofs of Theorems 1.5 and 1.6 are given in Section 5.
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1.3 Some generalizations

All our results easily extend to more general models where S is a N-level atom described by the Hilbert space CV
and the Hamiltonian Hs. Each V} is a finite sum of terms of the form

Qjk @ wj(ajr1)  ¢i(Qkn,,) +hc,

where nj, > 1,Q;k € Os = M(CN) and ok € b satisfy:
(A0) If k = L or n # m, then (v o n, €Mty ,,) = 0 forall t € R.

We shall call this model the general spin-fermion model (abbreviated GSFM). The GSFM may not be time-
reversal invariant. Assume that (A1) holds. Let c; be a distinguished complex conjugation on f; and

G () = o kn(S) if s >0,
S (cjajkn)(s]) ifs <O.

Assumption (A2) is replaced with
(A4) For some 6 > 0, a > [oq, and all j, k,n, e~ *d; k. n(s) € H (9).

The general "Fermi Golden Rule" non-degeneracy condition is formulated as follows. Assumptions (A0), (A1)
and (A4) ensure that for all X there exists a linear map Kx : Os — Og such that for all A, B € Og,

Jim WO A7y o 7N (BY) = %Tr(AetKX (B)). (1.12)
As usual, we write Ko = Kcq. This relation (the quantum Markovian semigroup approximation of the dynamics
of an open quantum system in the van Hove weak coupling limit) is a celebrated result of Davies [Da] who has
proven it under very general technical conditions (see also [De, JP2, JP3]). The result of Davies was the starting
point of numerous studies of thermodynamics of open quantum systems in weak coupling limit (see [LeSp, AJPP1]
for references and additional information). We will return to this point at the end of this subsection.

We recall that he generator K x has the form

M
Kx = ZKX]»7

j=1

where Ky, is the generator obtained by considering the weak coupling limit of the system S + R; w.r.t. the
initial state ws ® wy,. By construction, the spectrum of Kx; is contained in {z |Rez < 0} and 0 € o(Kx,).
Assumption (A3) is replaced with

(A5) For all j and | X;| <€, 0(Kx,) NiR = {0} and 0 is a simple eigenvalue of Kx,.

In the literature one can find various algebraic characterizations of (A5) (see [Sp, De] for references and additional
information).

If Assumptions (A1), (A4) and (AS) hold, then Theorem 1.1 holds for the GSFM. The heat fluxes are again
defined by ®; = AJ;(V;), and if not all X;’s are the same, the entropy production of w) x  is strictly positive for
small X (see [JP2, JP3]).

Our next assumption concerns time-reversal invariance.

(A6) The complex conjugations c; commute with h; and satisfy cja; k. = ok, for all j, k, n. Moreover, the
matrices Hg and @), are real w.r.t. the usual complex conjugation on M (C).
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This assumption ensures that there exists an involutive, anti-linear *-automorphism (time-reversal) © of O such
that for all j, ©(V;) =V;, © OT; = Tj_t 00,and O o7} = Tgt 0 ©. In particular, © o 7} = T;t o® forall A € R.
Our main result concerning the GSFM is:

Theorem 1.7 Assume that (A0), (Al), (A4) and (AS5) hold. Then there are A > 0 and ¢ > 0 such that for
0 < |A| < A the following holds.
(1) The maps

I.>X+— W)\XJr((I)j),

extend to analytic functions on D..
(2) Let Lyj; be given by (1.3). Then for all j, i,

1 o0 Beq )
L)\ji = 7/ dt/ duwkeq(rf\(@j)n{“(@i)). (113)
ﬁeq 0 0

(3) Assume in addition that (A6) holds. Then for all j,1,

1 oo
Lyji = 5/ Waeq (D573 (P))dt, (1.14)
and
Lyji = Lyj-

Remark. The relation (1.13) is the Green-Kubo formula without time reversal assumption. For additional discus-
sion of this point we refer the reader to [JOP2].

Before discussing the generalization of Theorem 1.4 we recall a few basic definitions and results of the weak
coupling (sometimes also called Fermi Golden Rule or FGR) thermodynamics of open quantum systems. Assump-
tion (AS) ensures that there exists a density matrix wsx+ on Hs such that for any initial density matrix p on Hs
and A € Og,

lim Tr(pe'®X(A)) = Tr(wsx+A) = wsx(A).

t——+oo

The density matrix wsx .+ is the weak coupling NESS of the open quantum system S + > ; R;. Clearly,
wso+ = e_ﬁeqHS /’]_"r(e_ﬂeqfls)7

and we will write wso1 = wseq. Weak coupling heat flux observables are defined by Ej x = Kx; (Hs) and we
denote @ ., = P ;0. The weak coupling entropy production is

M
Eip = ZXjWSX+(6jX)~
j=1

One always has Ep > 0. Lebowitz and Spohn [LeSp] have shown that if (A4) holds then Ep > 0 whenever X
are not all equal. In the same paper they have also proven the Green-Kubo formula for weak coupling heat fluxes:
If (AS) holds, then the functions X — wsx(®;x) are differentiable at X = 0 and

Lj = 8Xiw8X+(¢jX)|X:O = /0 wgeq(etKeq (Ejeq)gieq)dt.

Thesg resultﬁ are very robust and can be derived under very mild technical conditions. If in addition (A6) holds,
then L;; = L;;, that is, the weak coupling Onsager reciprocity relations hold.
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One naturally expects that the weak coupling thermodynamics is the first non-trivial contribution (in \) to
the microscopic thermodynamics. Indeed, it was proven in [JP2, JP3] that if (A0O), (A4) and (AS) hold, then for
A € Og and X small enough,

W>\X+(A) = CUSX+(A) + O()\),
wax+(P;) = Nwsx(P;x) + ON?), (1.15)
Ep(w,\x+) = >\2E7p + O()\g)

In the next theorem we relate L j; and fji and complete the link between the microscopic and the weak coupling
thermodynamics for this class of models.

Theorem 1.8 Assume that (A0), (Al), (A4) and (A5) hold. Then there is A > 0 such that the functions X — Ly j;
are analytic for |\| < A and have power expansions

Lyji = > ALY
k=2

Moreover,

L? =T, (1.16)

Ji

Remark 1. Relation (1.16) yields

IS Y S . > -
;H%’\ 27/ dt dtt wreq (T3(P5)7x (‘Di))dt:/ wWseq (€1 (® joq) Bieq)dt,
- eq JO 0 0

and if in addition (A6) holds

o0

B A2 [ wreq(7(@,)®:)dt = / W0 (€5 (B jog ) B ),
0

A—0 o

i.e. the rescaled microscopic flux-flux correlation functions converge to the corresponding weak coupling correla-
tion functions.

Remark 2. The relation between the microscopic and the weak coupling thermodynamics is discussed in detail in
the lecture notes [AJPP1] in the context of an exactly solvable quasi-free model.

The proofs of Theorems 1.7 and 1.8 are only notationally different from the proofs of Theorems 1.3 and 1.4
and the details can be found in the forthcoming review article [JP4].

Theorems 1.5 and 1.6 also hold for the GSFM under the Assumptions (A0), (A1), (A4) with a > 79, and (AS)
for all 5 € I,,~,. The only parts that need to be modified are Relations (1.9) and (1.10). In general, the constant
C A, is replaced by a polynomial in ¢. The leading term in the expansion (1.10) is equal to the absolute value of
the real part of the non-zero eigenvalue of K 7 closest to iR and in general depends on ﬁ For additional discussion
of these points we refer the reader to [JP4].

2 Strategy of the proof

The proofs of Theorems 1.2 and 1.3 are based on two ingredients: the abstract derivation of the Green-Kubo
formula in [JOP1, JOP2] and the detailed information about the NESS of the SFM obtained in [JP2]. In this
section we outline how to combine these ingredients and extract a specific technical result needed to complete the
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proofs. This technical result will be established in the next section. Throughout this subsection we assume that
(A1)-(A3) hold.
Consider the C'*-dynamics crg?) on O generated by

0 = 3"(1— X;/Beq)d;.
J

The state wg?) is the unique (o&?), Beq)-KMS state on O. Let 0 x be the C*-dynamics on O generated by

X
dax = 0% +ilHs + AV, J=6-30 32
. eq
J

The Araki perturbation theory [Ar, BR2, DJP] yields that there exists a unique (o x, Beq)-KMS state on O. We
denote this state by w) x. The states wﬁ?) and w) x are mutually normal and in particular wyx € Nx.

Lemmas 3.5 in [JOP1] and 4.6 in [JOP2] yield that for all A and ¢ the function
X = wax (13(®5)),
is differentiable at X = 0. Theorem 2.3 in [JOP1] specialized to the SFM yields:

Theorem 2.1 Let A be as in Theorem 1.1 and let 0 < |\| < A be given. Suppose also that:
(a) The function X — wxx4(®;) is differentiable at X = 0.
(b) The limit and the derivative in the expression
. ¢
Jm Ox,wax (T3(®))] x_o»

can be interchanged.

Then,

1 oo
Ox;wrx+(Pj) = 5/ Weq(®;7X(Pi))dt.

By this result, the proof of Theorem 1.3 reduces to the verification of (a) and (b) in Theorem 2.1. We remark that
(a) and (b) have been assumed as axioms in the abstract derivation of [JOP1, JOP2]. In study of concrete models
they are the central technical points that need to be verified. This brings us to the second point of the proof, namely
the dynamical properties of the SFM established in [JP2]. Using the results of [JP2], in the next section we will
prove:

Theorem 2.2 There exist A > 0 and € > 0 such that for 0 < |\| < A and t > 0 the functions X — wxx (75(®P;))
have an analytic extension to D.. Moreover,

sup  |wax (T5(®;))| < oc.

XeD,t>0

This theorem is our key technical result. Theorems 1.1 and 2.2 yield:

Theorem 2.3 Let A and € be as in Theorem 2.2. Then for all X € D. and 0 < |\| < A the limits
T (X) = limwax (73(2))),

exist. The limiting functions X — hy,;(X) are analytic on D.. Moreover, as t — +oo, all derivatives of the

functions X — wxx (75(®;)) converge uniformly on compact subsets of D, to the corresponding derivatives of
hj (X).
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Proof. This result follows from the multivariable Vitali theorem. We sketch the proof for the reader convenience.
Set 1y (X) = wax (75(®;)). For 0 < p < e we denote

T, ={X € CM||X;| = p forall j }.

The Cauchy integral formula for polydisk yields that for X € D,

1 he(€1,--+,€0)
helX) = (2mi)M /Tp (61— X1) - (6m — XM)df1 Ao @17

It follows that the family of functions {h;},>¢ is equicontinuous on D, for any p’ < p. Hence, by the Arzela-
Ascoli theorem, for any p' < p the set {h;};>0 is precompact in the Banach space C(D,/) of all continuous
functions on D, equipped with the sup norm. The Cauchy integral formula (2.17), where now X € D, and the
integral is over T, yields that any limit in C'(D,/) of the net {h:} as t — oo is an analytic function in D,. By
Theorem 1.1, any two limit functions coincide for X real, and hence they are identical. This yields the first part of
the theorem. The convergence of partial derivatives of /(X)) is an immediate consequence of the Cauchy integral
formula. O

Theorem 2.3 yields Theorem 1.2—the functions hy;(X) are the analytic extensions of wyx4(®;) to D.. In
particular, assumption (a) of Theorem 2.1 holds. Similarly, the second part of Theorem 2.3 implies that assumption
(b) of Theorem 2.1 holds and Theorem 1.3 follows. Hence, to complete the proofs of Theorems 1.2 and 1.3 it
remains to establish Theorem 2.2.

3 Proof of Theorem 2.2

The proof of Theorem 2.2 is based on techniques and estimates of [JP1, JP2]. We recall the ingredients we need.
Throughout this section we assume that (A1)-(A3) hold. B($)) denotes the C*-algebra of all bounded operators on
the Hilbert space ).

The GNS-representation of the algebra O associated to the product state wgg) can be explicitly computed [AW].
We will describe it in the glued form of [JP2]. Denote by e the eigenvectors of o, associated to the eigenvalues
+1. Set Hs = C? ® C? and define a unit vector in Hs by

1
Os=—(e_Qe_+erQey).

V2

Let ms : Os — B(Hs) be given by
ms(A)=A®I.

The triple (Hs, 7s,s) is the GNS representation of O associated to ws. We set
Ls=Hs®I1—-1® Hg.

Let F be the anti-symmetric Fock space over h; = L?(R, ds; £);) and Q2 the vacuum vector in F;. We denote
by a;, a; the annihilation and creation operators and by IV; the number operator on F;. Let £; = dT'(s) be the

second quantization of the operator of multiplication by s on b ;. Toany f; € bh; we associate fj €h j by

P o) = fi(s) ifts >0,
i(s) {(ijj)(ISI) ifs < 0.

For X € RM we set
—1/2

f]X(S) — (e(Xj_Beq)s + 1) fg(s)
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Finally, we define a map 7;x : O; — B(F;) by
mix(pi(fi) = &;(fix) = % (&j(ij) + d}k-(ij)) :

The map 7;x uniquely extends to a representation of O; on the Hilbert space F;.
We set
Hr = ®j1vil.7:j, TRX = ®§w:17rjX7 OQr = ®§Vile-
The triple (Hg, mrx, %) is the GNS representation of the algebra O associated to the state wr x. Let

H=Hs @ Hp, T =TS @ TRX, Q=05 ®0r.

The triple (H, wx,(?) is the GNS-representation of the algebra O associated to the state wg?). Note that H and 2

do not depend on X.
The spectral theory of NESS is based on a particular non-selfadjoint operator acting on H, the adjoint of the
so-called C-Liouvillean. This operator is defined as follows. Let Lz = >, £; and

Lo=Ls+ Lr.
Let
Vix =nx(V;) =0, I ® ¢j(a;x),
1 e e~ o
Wix =190, ® ﬁ(—I)N] (aj(e(X] Peadsijx) — aj(%‘X)) :
and

VX:Z‘/jX7 WX:ZWjX'
J J

The adjoint of the C-Liouvillean associated to the triple (O, 7, wg?)) is

Lyx = Lo+ AVx + Wx).

This operator is closed on Dom (L) and generates a quasi-bounded strongly continuous group e!*“*X on H. The
operator L) x is characterized by the following two properties:

(i) Forany A € O and any t € R, x (7L(A)) = e Xy (A)e 1thrx

(1) L5 =0.
Thus, for A, B € O we have

W (TL(A)B) = (nx (A*)Q, e "X 14 (B)Q), (3.18)
and hence the function

. /O T 0O (HL(A)B) €tdt — i(mx (AT, (2 — Lax)~ mx (B)Q),

is analytic in the upper half-plane. The basic strategy of [JP2] is to show that for appropriate A, B this function
has a meromorphic continuation to a larger half-plane and that the behavior of ¢ — wg?)(rf\(A)B) ast — oo is
controlled by the poles of this continuation (the resonances) via the inverse Laplace transform.

Let p; = 10, be the generator of the group of translations on b j» Pj = dI'(p;) its second quantization. Let
U;(0) = e™Pi =T (e71%), § € R, be the second quantization of this group and

Vx(0) =D Uj(O)V;xUj(—0) = > 0a @ T @ ¢;(e " d;x),

J

Wx(0) = Z U;(0)W;xU;j(—0) = ZI ® 0z ® %(—I)N" (a}%(e*ij&jX) — aj(e™'Ps (e(Xrﬁe‘*)sde))) :
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Lemma 3.1 There exist € > 0 and &' > 0 such that the maps
(X,0) = Vx(0),  (X,0) = Wx(0),

extend to analytic operator-valued functions on D, x 1(§') satisfying

sup (IIVX( N+ 1Wx (0)]]) < oo. (3.19)
XeD.,0eI(é
In particular, one has _
sup Helw”‘ || < 00. (3.20)
XeD.,|t|<1

Proof. The proof of the first part of this result is the same as the proof of Lemma 4.1 and Proposition 4.4 (iii) in
[JP1]. The only additional fact needed is that for some € > 0 and 1 > 0 the function

R xR > (z,5) — w(z,s) = (e +1)"/2,
has an analytic continuation to the region O = {z : |z — Beq| < €} x I (1) such that

sup |w(z,0)| < .
(2,0)€0

Since L is self-adjoint, the bound (3.20) is a simple consequence of (3.19). O
Let N =3, N;. For X € D.and 6 € I(6') we set

£0(0) =Ly + 6N,

Lax(0) = Lo(0) + A(Vx (0) + Wx (0)).

The family of operators Ly x (6), X € D.,0 € 1(d"), is a complex deformation of the family of operators £ x,
X € L. Note that Lox(0) = Lo(8) is a normal operator which does not depend on X. The spectrum of Ly(6)
consists of two simple eigenvalues +2, a doubly degenerate eigenvalue 0 and a sequence of lines {x +inIm 6§ |z €
R,n > 1}. The next lemma is a consequence of Lemma 3.1 and regular perturbation theory and is deduced in the
same way as the corresponding results in [JP1, JP2].

Proposition 3.2 There exist A > 0, ¢ > 0 and 0 < p < ¢ such that for |]\| < A, —p < Im6 < —3p/4 and
X € D, the spectrum of Ly x (0) is contained in the set

{z|Imz > —p/8} U{z|Imz < —p/2}.

The spectrum inside the half-plane {z | Im z > —u/8} is discrete and, for X # 0, consists of four simple eigenval-
ues E;\x which do not depend on 0 and are bounded analytic functions of (A, X) € {\||A\| < A} x D.. Moreover,
FEoyx =0andImEjzx < O0forj =1,2,3, X € D, and 0 < |\| < A. The corresponding eigenprojections
Pjx (8) are bounded analytic functions of the variables (A, X, §).

With regard to the results of [JP1, JP2], the only part of Proposition 3.2 that requires a comment are the relations
FEoxx =0andIm Ej,x < 0forj = 1,2, 3, whichhold for X € D, and 0 < |A| < A. Regular perturbation theory
and an explicit Fermi Golden Rule computation yield that the eigenvalues E;x, j = 2, 3, which are respectively
near 2, satisfy

A2 lé; (5|13
EQ)\X = —2+ 72 ( 17THOZ] ||.7) —PV/ j 57)7d +)\4R2(>\ X)

J

z2 , , la (s)13, \
Eg)\X = 2+ ?Z <17T||Oéj(2)||y)j -+ PV/]R 8—72(15 -+ )\ Rg(A,X),

J
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where PV stands for Cauchy’s principal value and the functions R; (A, X), j = 2, 3, are bounded and analytic for
X € D, and |A| < A. Clearly, by choosing A small enough, we have that Im E;3x < 0for j = 2,3, X € D,
and 0 < |A\| < A. The eigenvalues E;»x, j = 0, 1, which are near 0, are the eigenvalues of a 2 x 2-matrix ¥ x
which has the form

x = A28 (X) + M R(\, X),

where the matrix-valued function R(\, X) is analytic and bounded for X € D, and |A| < A and

]_ eﬁj —e 6]
0= -in D125, 350y M R St G21)

The eigenvalues of X5 (X)) are 0 and —im >~ [ (2) ||52§J , and we conclude that for A small enough the eigenvalues
Eg)x and E1)x are analytic functions, that Egyx # Eixx for A # 0, and that Im 1, x < 0 for X € D,
0 < |A] < A. By construction of the C-Liouvillean, Fy)x = 0 for X real. Hence, by analyticity, Egyx = 0 for
X € D.and |\ < A.

The next technical result we need is:

Proposition 3.3 There exist A > 0, € > 0, and 1 > 0 such that for all |\| < A, all 0 in the strip —pp < Im 6 <
—3u/4 and all ¥ € H, the functions defined by

Fy(z) = sup [I(z = Lax(0)) "W, F_(z) = sup [[(z— Lax(6)) ' 0],

XeD. XeD.
satisfy
1
/ |Fi(z £+ ip)|?de < ﬁ||\If||2, (3.22)
R K
and
lim Fy(xz+in)=0. (3.23)
x| =00

Jorall |n| < p/4.
Proof. We only deal with F; (), the other case is similar. We start with A, €, and x as in Proposition 3.2 and set
Qu=R+iu/4)U (R —ip/4)U{z € C|[Rez| > 2+ p/4, [Im 2| < p/4}.
Since L (6) is normal and dist(Q,,, o(Lo(6))) > p/4 for Im 6 < —311/4, the spectral theorem yields that
4

sup - [|(z = Lo(0)) Ml < - (3.24)
2€Q,,Im0<—3u/4 M
The estimate T2
/|\(xj:iu/4—£0(0))_1\11||2dm < Al e” (3.25)
R

holds for all ¥ € ‘H, and the dominated convergence theorem yields

lim (2 = Lo(6)) 10| =0. (3.26)

|z|—00,2€Q
We further impose that A and y satisfy
W

sup IVx(8) + Wx (O)I] < o3
XeD,.,—pu<Im6<0



The Green-Kubo formula for the spin-fermion system 15

The resolvent identity yields
(z = Lax(0))7t =Gz, )\ X,0) (2 — Lo(0) 71,

where )

G = G2\ X,0) = (I — Az — Lo(6) ™ (Vx (6) + Wx ()

The estimate (3.24) yields
sup |G| <2,

where the supremum is taken over z € @, |A\| < A, X € D, and 6 in the strip —p < Im 6 < —31/4. Hence, for

Z2 € Qus
sup |[(z — Lax (0)) 71| < 2]|(z — Lo(0)) 1],
XeD,

and (3.25), (3.26) yield (3.22), (3.23). O

Assumption (A2) ensures that there is € > 0 such that the operators
M 1
‘/v()(7 u) = Z (o ® I ® ﬁ (d; (efu(lij/ﬁcq)s&jx) _|_ El] (eu(lij/ﬁcq)sdjx)> ,
j=1

acting on 7 are well-defined continuous functions of (X, u) € I x [0, Beq] satisfying

sup 1V (2, u)]| < oco.
(X, u)€le X[0,Beq]
If we set
g)\X - ]1 + Z(_ﬁeq)"/ ()\V(X7 ﬁeqtn) + WX(Hs)) e ()\V(X, ﬁEQtl) + WX(HS))dtl - dtn’
n>1 0<t, <---<t;<1

then the Araki perturbation theory [Ar, BR2, DJP] yields that the reference state w) x can be written as

(2, mx(A)G\x )
(2, Gxx )

wax (4) = (3.27)

Consider the unitary group .
U§) =e 0250

on H.

Proposition 3.4 There exist € > 0 and 1 > 0 such that:
(1) The function
I. xR> (X,0) — U0)G\xt € H,

extends to a bounded analytic H-valued function in the region D, x I(u) for all \ € R. We denote this analytic
extension by {2y xg.
(2) The functions

I. xR> (X,0) — U@)rx(P;) € H,

extend to bounded analytic H-valued functions in the region D. x I(u). We denote this analytic extensions by
Vixe.
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Proof. We sketch the proof of (1). The proof of (2) is similar and simpler.
For (X, u,0) € I x [0, Beq] x R we set

Vo(X,u) =U(0)V (X, u)U(6)"

M
E 1~*—i-—u—' s~ ~ (A—ifp; u(1-X; s~

— O—gﬁ@]@\ﬁ(aj(e 91’16 (1=X;/Beq) an)_|_aj(e Gpae (1=X;/Beq) an))«
=1

Since U ()2 = Q, we can write U (0)Gxx Q2 = Gax¢S) where G x¢ is obtained by replacing V (X, u) by Vp (X, u)
in the definition of G x. It is easy to see for any ¢ > 0, > 0 and p > 0 the entire analytic function g(u, z, s) =
et(1=2/Bea)s gatisfies

g(u, z, s)
cosh(ls)

sup
[ul <(14p)Beq;|z| <€, [Im s|<p

< 00,

where | = (14 p)(€ + Beq). Let a > Beq be as in Assumption (A2). Choose p and € such that [ < a. Since by
(A2) one has cosh(as)a;x € H;(d), it follows that Vp(X, u) has a bounded analytic extension to the set

{(X,u,0)| X € D,u € C, |u| < (14 p)feq, |Im 8] < pu}.

This yields the statement. O

Proof of Theorem 2.2. We choose A > 0, ¢ > 0, and i > 0 sufficiently small so that the statements in Propositions
3.2,3.3 and 3.4 hold. Combining (3.18) and (3.27) we can write

(mx (2;), e 2 X G x Q)

wax (T3(®;)) = (Q,6,x9)

(3.28)

Since for X € I,
(Q,Grx Q) = ||e—ﬁeq(2,-(l—Xj/Beq)£j+rrx(kV+Hs))/QQ||2 >0,

by Proposition 3.4 (and by possibly taking e smaller), the function X +— (2, G» x{2) extends to an analytic function
in the region D, such that
XIQI& [(2,G,x82)| > 0.
Thus, it suffices to consider the numerator in (3.28). For Im z > 0 we set
Dx(Z) = i(ﬂx((I)j)Q7 (Z - L:Ax)_lg)\xg).
For [A\| < A, X €I and —p < Im @ < —3p/4 one has
Dx (2) = (¥, x5, (z = Lax(6)) "' xe),

which, by Proposition 3.2, has a meromorphic extension to the half-plane {Im z > —u/2}. For @ > 0 denote by
T',, the boundary of the rectangle with vertices +a + i11/4. For large enough « one has

3

; dz . B

Lx(t) = jg eﬂtZDX(Z)Qﬂi - IZ(\I}J‘X@PJ/\X(e)Qxxe)G tBiax
« =

Denote by S, the part of the above contour integral corresponding to the two vertical sides of I',,. It follows
from the dominated convergence theorem and Proposition 3.3 that lim,_, o, S, = 0. Since by Proposition 3.3 the
function x +— Dx (z +iu/4) is in L?(R, dx) it follows from the Plancherel theorem that there exists a sequence
«, such that
an d .
lim [ e @t/ Dy (x4 iu/4)2—x = (mx (D;)Q, e X G, Q)
s

n
—CQn
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for Lebesgue almost all ¢ > 0. Integration by parts and (3.23) yield that for ¢ > 0

an d o d
lim e @I/ Dy (x — iu/4)2—x = / e =i/ pl (¢ — i,u/4)—x
™

g
noJ o, oo 2mit

where D’y () denotes the derivative of D x (z) with respect to z. Combining these facts we obtain the identity

3
(mx (27)Q,e 7N GA Q) = > (T, 5, Pjax (0)Qxo)e” HFx
=0

! (3.29)

efpt/4 0 L . B
s / e lm(\Ileg’ (z—lu/4*£>\x(9)) QAXO)dI,

which holds for Lebesgue for almost all ¢ > 0. By Proposition 3.3 the integrand on the right hand side of (3.29)
is in L' (R, dx). Hence, both side of this identity are continuous functions of ¢ and (3.29) holds for all ¢ > 0. By
Propositions 3.2 and 3.4 both terms on the right hand side of (3.29) have analytic extensions to X € D, which are
bounded uniformly in X and ¢ > 1. The bound (3.20) and Proposition 3.4 yield that

sup  |(¥;x0,e X Qyx0)| < 00,
XeD.,te[0,1]

and the result follows. O

4 Proof of Theorem 1.4

In Theorem 1.2 we have established that for given A, X — wyx4(®;) is analytic near zero. In fact, a stronger
result holds.

Theorem 4.1 Assume that (Al)-(A3) hold. Then there is A > 0 and € > 0 such that the maps
(A X) = WAX+((I)j)a
extend to analytic functions on {\||\| < A} x D..
Proof. By the construction of the NESS w) x .,
wix+(®;) = (2, Poxx (O)U (0)mx (2;)1),

where —p < Im6 < —3u/4 and Pyx () and p are as in Proposition 3.2. The analyticity of Pyyx () and Part
(2) of Proposition 3.4 yield the statement. O

Theorem 4.1 yields that the function A — L ; is analytic near zero. To compute the leading term in its power
expansion we argue as follows.
By the relation (1.15) established in [JP2, JP3],

wax+(P)) = Nwsx +(Pjx) + O(N?),
where the remainder is uniform in X. Hence, (1.6) holds and

Lﬁ) = Ox,wsx+(®jx)| x_-
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Let D C Og be the set of observables which are diagonal in the eigenbasis {e,e_} of Hs. The generators K x
and Kx; preserve D. The vector space D is naturally identified with C2. After this identification, K x = i¥2(X)*,
where Yo (X) is given by (3.21), and

Kx, =

_7T||aj(2)||%j ePi —ePi
! 2 cosh 3;

e e—ﬁ]} v By = Peq —

These relations between the generators Kx, K X, and the Fermi Golden Rule for the resonances of the C-
Liouvillean are quite general—for the proofs and additional information we refer the reader to [DJ]. Hence,

7lla; (2)]1%, { ofi }

_ 1
(bJX — KXj |:1:| - COShﬂj _e—ﬂj

The density matrix describing ws x 4 (which we denote by the same letter) is also diagonal in the basis {e, e_} and
the vector in C? associated to its diagonal elements is the eigenvector of (X ) corresponding to the eigenvalue

0. Hence,
(2)||2 e=Bi
. 2 cosh 3;
wsx+ = ZH% ||s§] ||aj(2)||%jeﬁj )
" 2coshfB;
and we get
—1
_ ||5§ sinh(8, — 5;)
Do) = 2)|2 RANALLEF ) 2 —_— 7 4.30
w3X+( Jx) s <; ||Oék( >||ﬁk> coshﬁ ZH k fok cosh 3, ( )
It follows that for ¢ # 7,
r Na@F, lle; )3,

L§1 = Ox,wsx+(®jx)|y_o =

~ (cosh Bea)? Dok llax(2) ||%k

Since } wsx+(®;x) = 0 we can conclude that LS) == iz L;?).
Finally, we remark that the formula (4.30) yields that

5.5 )13,

-1
. ) los(2) _. |
=3 (; ||Oék(2)y;k> Z cosh 3; cosh §; (B; — B;) sinh(B; — 5;). (4.31)

2,

Clearly, Ep > 0 whenever ;s are not all equal.

5 Proofs of Theorems 1.5 and 1.6.

In this section we use the notational conventions of Subsection 1.2.

Proof of Theorem 1.5. The only part that requires a proof is (3). We only sketch the argument. Let ﬁo =
(B10,- -, Baro) be a given point and O, = {F € CM || — fy| < €}. Arguing as in the proof of Lemma 3.1 one
shows that there exists € > 0 and ¢’ > 0 such that such that the maps

(5,0) = V5(0),  (5,0) = W50),
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extend to analytic operator-valued functions on O, x I(d") satisfying

s (IO + W0 < oo

BEO,0€1()
This implies that Proposition 3.2 holds with D, replaced with O, (of course, the index X is also replaced by
ﬁ). Note that A depends on the e. Complementing the construction in [JP2] with arguments used in the proof of
Proposition 3.4 one easily shows that there exists a norm-dense *-algebra Oy of O such that:
(a) Oq does not depend on the choice of ﬁo;
(b) @, € Oy;
(c) for all A € Oy the functions .

(8,0) — U(G)TFB‘(A)Q cH,

extend to bounded analytic H-valued functions in the region O, x I(). The representation
w,\5+ (A) = (Qv POAE(Q)U(H)WE(A)Q)v

where —p < Im6@ < —3u/4 and P, 5(0) and g are as in the analog of Proposition 3.2, yields the following

statement: For any given 50 el there exists A and e such that the function

Y172

()‘7 B) = w)\ﬁ.l,. (A)7
extends to an analytic functions on {\||A\| < A} x O, for all A € Oy. This fact and the compactness of I, -,
yield the statement. O

Proof of Theorem 1.6. By Remark 1 after Theorem 1.6, it suffices to establish Part (1). By Remark 2, it suffices
to show that there exists § > 0 and A > 0 such that for 0 < [A\| < A

Ep(w)\5+) > 0,

for 3 € Ly, satisfying 0 < >, - |8 — B;] < 6.
Let 50 = (Bo, -+, Bo) be a given point on the diagonal of L,,,,. We set

Os ={FeCM | 18— Bol < 3},
J

and Iy = Os N RM. One can choose A and § such that (X, 3) — Ep(w,7,) is an analytic function on {[A] <
A} x Os. We set
Y= (Bo— P, Bu — 1)

Setting 31 = fq one deduces from the formula (4.31) and the Taylor series for Ep(w, 7, ) (use that Ep(w, 7, )
and 93,Ep(w, 3, ) vanish when all ; are equal) that there exists (M —1) x (M —1)-matrix valued functions A( 3)

-,

and B(\, () such that:
(a) A(ﬁ) is analytic for E € Os and strictly positive for 5 real;
(b) B(\, ) is analytic and bounded on {|\| < A} x O,;
()
Ep(w,z,) = A (Y, A(B)Y5) + A* (Y, B(A, 5)Y3).

By choosing A small enough we can ensure that for all ﬁ €lsand [A| <A,

-, -,

(Y3, AB)Yy) > AYg, BOA)Y)l.

This yields that Ep(w, 7, ) > 0 for 0 < [A| < A and 3 € I satisfying Y5 # 0. This local result combined with an
obvious compactness argument yields the statement. O
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