
UNIVERSIT�E DE GEN�EVE

SCHOLA GENEVENSIS MDLIX

Ergodic Properties of the Langevin Equation
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Abstract� We discuss the dissipative dynamics of a classical particle coupled to an infinite heat reservoir. We
announce a number of results concerning the ergodic properties of this model. The novelty of our approach is that it extends
beyond Markovian dynamics to the case where the Langevin equation is driven by colored noise.



In this Letter we discuss the dissipative dynamics of a classical particle interacting
with a large reservoir. The reservoir is an infinite gas of free classical phonons at thermal
equilibrium. We announce a number of results concerning the ergodic properties of the
combined system particle + reservoir. In particular, it follows from our analysis that the
dynamical system describing this model near thermal equilibrium is strongly mixing.

In a recent work ([JP]), we have investigated the problem of thermal relaxation for a
finite dimensional Hamiltonian system A coupled to a heat reservoirB. Our assumptions on
the systems A and B are quite general and have simple physical interpretations. However
the set of hypotheses that we need on the form of the coupling between the two systems
is complicated. To avoid many of these technical details, we concentrate here on a simple
model. This allows us to give a more transparent exposition of the results presented in [JP].

Using the statistical nature of the reservoir at thermal equilibrium, one can give a reduced
probabilistic description of the particle based on a random integro-differential equation: The
Langevin equation. The latter departs from the original Newton law by the addition of two
terms: A random force describing the direct action of the reservoir on the particle, and a
dissipative term arising from the reaction of the reservoir on the motion of the particle. We
start by discussing our results in this well-known context (see [FK], [FKM], [LT], [N], [UO]
and [W] for additional information on the Langevin equation).

Throughout this Letter, the small system A consists of a single particle of unit mass
moving on the line under the influence of a confiningC� potential V (q) y. The Hamiltonian
function of the system A is

HA(q� p) �
p2

2
+ V (q)�

with q� p � R. The equation of motion of the isolated particle is

�qt � pt�

�pt � �V �(qt)�
(1)

Since V is smooth and confining, the initial value problem associated with Equation (1) has
a global solution which defines a smooth flow on the phase space R2. The interaction of
the particle with the reservoir is described in terms of a friction constant � and a coupling
function � � L2(R), a normalized “charge density” (k�k � 1). Under the influence of the
reservoir, which is assumed to be initially in thermal equilibrium at inverse temperature �,
the equation of motion (1) is modified as follows:

�qt � pt�

�pt � �V �eff (qt) + �2
Z t

0
D(t� s)qsds + ��t�

(2)

y The potential is confining in the sense that lim jqj�� V (q) �� and exp(��V ) � L1(R) for all � � 0.
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Here �t is a stationary Gaussian random process with mean zero and covariance

h�t�si� � ��1C(t� s) � ��1
Z
j��(k)j2 cos(k(t� s))

dk

2�
�

and

D(t) � � �C(t) �
Z

kj��(k)j2 sin(kt)
dk

2�
�

The effective potential is given by Veff (q) � V (q)+�2q2�2, and ��(k) is the Fourier transform
of the function �(x). From Equation (2) it is apparent that the reservoir plays a dual role:
On one hand, its ability to absorb energy-momentum provides a physical mechanism for
dissipation. On the other hand, its thermal fluctuations, encapsulated in �t, prevent the
particle from relaxing into some stationary state (see [KKS]). Equation (2) is known as the
Langevin equation, and the resulting random process as the Ornstein-Uhlenbeck process.
The derivation of the Langevin equation from “microscopic” considerations, i.e. from the
Hamiltonian formalism describing the combined system A + B, is presented below.

The first question, of course, is whether the Langevin equation has a global solution. Our
first result is

Theorem �	 Suppose that �����	2
x + x2

�s
�
��� 
��

for some s � 1. Then for any � and for almost all � , the initial value problem associated
with Equation (2) has a global solution

T t
� (q0� p0) � (qt� pt)�

which defines a C1-flow on the phase space R2.

Let SA be the set of probability measures on R2 which are absolutely continuous with
respect to the Lebesgue measure. The elements of SA are initial states of the system A. We
say that the Ornstein-Uhlenbeck process has the property of return to equilibrium if for each
measure � � SA and for any observable f � L�(R2) we have

lim
t��

Z D
f � T t

�

E
�
d� �

Z
fd�

�
A
� (3)

where

d�
�
A
�

1

Z
�
A

e��HA(q�p)dqdp�
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is the Gibbs canonical ensemble of the system A at the temperature of the reservoir. Clearly,
return to equilibrium is equivalent to the mixing property of the Ornstein-Uhlenbeck process
with respect to �

�
A

. Our main result is a set of necessary conditions which ensure that the
OU process returns to equilibrium.

We note that, except in some special cases [TR], the question of return to equilibrium
for the OU process was previously unsolved. The difficulties are related to the presence
of memory in (2). A standard approach of these difficulties is based on an ad hoc limiting
procedure (see e.g. [FK] or [TH], Example 3.1.9) which leads to the simplified equation

�qt � pt�

�pt � �V �(qt)�

2

2
�qt + 
�t�

(4)

Here �t is the white noise process,

h�t�si� � ��1�(t� s)�

and 
 is the effective friction constant. The resulting OU process is Markovian and standard
techniques based on Fokker-Planck equation apply. It is known that the process (4) is mixing
with respect to the Gibbs measure ��

A
(see [TR]).

In [JP] we have proven a result which, specialized to the model (2), translates into the
following statement:

Theorem �	 Suppose that the conditions of Theorem 1 hold and that

j��(k)j �
C

(1 + jkj)�
� (5)

for some positive constants C and � and for all k � R. Then, for all non-zero �, the
Ornstein-Uhlenbeck process (2) has the property of return to equilibrium.

We now briefly summarize our program. Our first goal is to construct a differentiable
dynamical system (G��t� �� ) describing the combined systemA+B near thermal equilibrium.
HereG is the phase space, �t is the Hamiltonian flow, and �� is the Gibbs canonical ensemble
of the joint system at inverse temperature�. Admissible initial states which are “near” thermal
equilibrium are probability measures onGwhich are absolutely continuous with respect to�� .
We denote this class of states by S� . Observables of the system are elements of the algebra
L�(G� d�� ). The probabilistic description of the dynamics of the system A is obtained by
“integrating out” the variables of the reservoir. If these variables are initially distributed
according to the Gibbs canonical ensemble, then this reduced description should yield the
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Langevin equation (2). The problem of return to equilibrium for the combined system can
be formalized in the following way.

De
nition �	 We say that the combined system A + B returns to equilibrium if the
dynamical system (G��t� �� ) satisfies

lim
t��

Z
F � �t d� �

Z
F d�� �

for all � � S� and F � L�(G� d�� ).

The return to equilibrium for the Ornstein-Uhlenbeck process, Relation (3), is a special
case of this definition. The second and main goal of our program is to find sufficient
conditions to ensure that the system A +B returns to equilibrium.

In the rest of this Letter we sketch how this program is carried out for the simple model
of a particle coupled to an infinite harmonic string.

The heat reservoir – an infinitely extended gas of non-interacting classical phonons – is
described by the classical field theory associated with the one-dimensional wave equation. In
this Letter, L2(R) stands for the real Hilbert space of real-valued square integrable functions
onR. LetH1(R) � L2(R) be the usual Sobolev space. The phase spaceHB of finite energy
configurations of the heat reservoir is the real Hilbert space obtained from the completion of
H1(R)� L2(R) with respect to the inner product

��
�

�

�
�

�
�

�

��
�

Z �
j��(x)j2 + j�(x)j2

�
dx�

The Hamilton function of the free reservoir is

HB(�� �) �
1
2

Z �
j��(x)j2 + j�(x)j2

�
dx�

and the corresponding equation of motion is

��t(x) � �t(x)�

��t(x) � ���t (x)�
(6)

The initial value problem associated to Equation (6) is solved by the strongly continuous
unitary group exp(LBt), where

LB �

�
0 1
	2
x 0

�
�

is a skew-adjoint operator onHB.
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The phase space of finite energy configurations of the combined system A + B is given
by R2 	HB, and its Hamilton function is

H(q� p� �� �) � HA(q� p) +
�2

2
q2 + HB(�� �) + �q

Z
�(x)��(x)dx� (7)

Here � is a real coupling constant and � a normalized “charge density”. These are the friction
constant and coupling function figuring in (2). The choice of Hamiltonian (7) is motivated
by the dipole approximation of classical electrodynamics.

To describe thermal equilibrium states of the system A +B, we have to extend the phase
space HB to include infinite energy configurations. Let � be the Gaussian random field
indexed by the Hilbert space HB, with covariance

h�(f )�(g)i� � ��1(f� g)�

for f� g � HB. Denote by (GB�GB� �
�
B

) the associated probability space. The phase space

of the infinite heat reservoir at inverse temperature � is GB, and ��
B

is its thermal equilibrium
state. The construction of the space GB is discussed in detail in [JP], see also [GJ], [S]. We
just mention here that there exists a space of “test functions” N , continuously and densely
embedded in HB, and such that GB is the space of distributions on N ; more precisely,

N �HB � N �
� GB�

For � � HB the above duality reduces to the inner product, i.e.

�(f ) � (�� f )� f � N �

For notational purposes let us define the function � � HB by

��(k) �

�
(ik)�1

��(k)
0

�
�

The Hamiltonian (7) then becomes

H(q� p� �) � HA(q� p) +
�2

2
q2 +

1
2
k�k2 + �q�(�)�

The phase space of the system A + B is G � R2 	 GB, and its Gibbs canonical ensemble is
the probability measure

d�� � e��(�q�(�)+�2q2�2)d�
�
A

(q� p)d��
B

(�)�
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The evolution equation for finite energy configurations are

�qt � pt�

�pt � �V �eff (qt)� ��t(�)�
��t � LB(�t + �qt�)�

(8)

The last equation is easily integrated to give

�t(f ) � �0(e�LBtf ) + �

Z t

0
(LB�� e

�LB(t�s)f )qsds�

and insertion into the second equation leads to

�pt � �V �eff (qt)� �2
Z t

0
(LB�� e

�LB(t�s)�)qsds� �0(e�LBt�)� (9)

If the initial state of the reservoir is distributed according to ��
B

, then

�t � ��0(e�LBt�) (10)

becomes a Gaussian random process, and Equation (9) is easily seen to be identical to the
Langevin equation (2). The principal results of this Letter are:

Theorem �	 Suppose that the conditions of Theorem 1 hold. Then for all �, for all
(q0� p0) � R2, and for ��

B
-almost all �0 � GB, the initial value problem associated with

Equation (8) has a global solution (qt� pt� �t) � �t(q0� p0� �0) which defines a flow on the
phase space G. The measure �� is invariant under the Hamiltonian flow �t.

Theorem �	 Suppose that conditions of Theorem 2 hold. Then, for all non-zero �, the
system A + B returns to equilibrium.

Parenthetically, we remark that Theorems 1 and 2 are an immediate consequences of
Theorems 4 and 5.

The proof of Theorem 4 is based on standard ideas and techniques and we will not discuss
it here. The proof of Theorem 5 is difficult and requires some novel ideas. In the sequel we
sketch the basic strategy of our argument on the heuristic level.

The Koopman space of the combined system A +B is L2(G� d�� ) and the map

Ut:F 
� F � �t�
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defines a strongly continuous unitary group on this space. LetL be the skew-adjoint generator
ofUt, and letFsing � L2(G� d�� ) be the spectral subspace associated to the singular spectrum
of L. We show that Fsing consists only of constant functions. Theorem 5 is an immediate
consequence of this fact (see e.g. [M] or [CFS]). Our argument splits into the following
technically and conceptually distinct steps:

Change of variables	 The map (q� p� �) 
� (q� p� �) � (q� p� � + �q�) transforms the
Hamiltonian into HA(q� p) + k�k2�2. In the new dynamical variables, the Koopman
space factorizes as

L2(G� d�� ) � L2(R2� d�
�
A

)
 L2(GB� d�
�
B

)�

This simple transformation is the critical first step of our argument.

Dynamical reduction	 We exploit the particular (Lax-Phillips) structure of the
reservoir, the time-reversal symmetry of the model, and the bound (5) to show that a
vector � � Fsing can depend only on q� p and finitely many field coordinates

�1 � �(e1)� � � � � �N � �(eN )�

related to the value of the noise (10) and its derivatives at time zero. We obtain an
explicit description of the subspaceH0 � HB spanned by e1� � � � � eN . The proof of this
result involves inputs from the general theory of Gaussian random processes, Wiener
prediction theory and harmonic analysis of Hardy classes.

Elimination of the reservoir	 We show that the reservoir completely dominates
the small time dynamics on the subspace of functions �(q� p� �1� � � � � �N ). Using the fact
that the evolution of the free reservoir has no invariant subspaces inH0, we inductively
eliminate the field variables � .

Kinematic reduction	 The last step in the previous elimination process yields that
Fsing contains only functions of (q� p) which satisfy

fHA��g � 0� fq��g � 0� (11)

where f�� �g is the Poisson bracket on R2. It is easily shown that the constants are the
only solutions of the system (11). This concludes the proof.

This strategy is effective in a more general setting. In fact, all what we require is that
the system A is a Hamiltonian system whose configuration space is a finite-dimensionalC�

manifold M . In particular, the system A could be a macroscopic gas of interacting particles
in R3. The system B could be any linear dynamical system for which there is an outgoing
subspace in the sense of Lax-Phillips theory. For the classical hyperbolic systems (wave
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equation, Maxwell’s equations...) the existence of an outgoing subspace is a well-known fact.
For our method to work, however, the coupling between the two systems has to be “simple”,
in the sense that it is a finite sum of terms of the form u(�)�(�), where u(�) � C�(T �M ).
Clearly, in this more general setting we require some additional hypotheses. First, we have to
ensure that the combined system has a time-reversal symmetry. Second, we need a hypothesis
ensuring kinematic completenessy. The latter has an intrinsic physical meaning: we require
that the coupling could push the particle in any direction of its phase space. For additional
information and proofs we refer the reader to [JP].
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