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1 Introduction
In this paper we study spectral properties of random Schrodinger operators
hy, = ho + v,(n), (1.1)

on [*(Z) where hg is not the usual free Hamiltonian but only a bounded self-adjoint operator
with some off-diagonal decay. We assume that v,(n) are independent and identically distributed
random variables on a probability space (£2, F, P) with density p(xz). We denote by V the support
of the probability measure p(z)dz. In the sequel, unless otherwise stated, we will always assume
that V is compact. We further assume that hq is translation invariant, namely that there is a

function j : Z — C such that

(hot)(n) = >_j(n — m)(m). (1.2)

m

We are interested in the case where
i(n)] < C{n)™7, (1.3)
for some constants v > 1 and C' > 0. Here and in the sequel, (z) = (1 + 2?)"/2. Let

i) =3 jn)e™,  pe|-m7

If (1.3) holds, then o(hy) = [minj(p), maxj(¢)]. We remark that if in addition the function
}(go) is piecewise monotone, then the spectrum of hg is purely absolutely continuous.

Let ¥ = o(ho) + V. The standard argument yields that o(h,) = ¥ P-a.s. Furthermore,
there exist sets Yy, Yse, Lpp C R such that P-a.s., 04c(hy) = Zaes 0sc(hw) = Zse, 0pp(hy) = Xy,
and ¥ = X, UX, UX,, see eg. [CFKS|. As usual, we denote ¥, = X, U X,.. We are
interested under what conditions the spectrum of h, is pure point P-a.s., or in other words,
under what conditions is ¥, = (). To the best of our knowledge, the only known result is proven
in [AM]: If h, = ho + Av,(n), then for |A| sufficiently large ¥, = (). This result also holds for
the d-dimensional analog of (1.1) if v > d. Simon and Spencer [SS] have studied deterministic
Hamiltonians of the form (1.1), and they derived a set of sufficient conditions under which these
operators have no absolutely continuous spectrum. Their results motivated our work, and we
will discuss them below.

Since the model (1.1) has been rarely studied, we will briefly discuss on the typical example
some of its main features. Assume that j(0) = —1, j(n) = |n|77/2((7y), where ( is the usual
Riemann zeta function. Then the long range Laplacian hy generates a random walk on Z which

is transient if v < 2, and recurent if v > 2. Let h(¢) = —j(¢). The function h is strictly
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monotone and differentiable on (0, 7), and we denote its inverse by h™'(E), E € o(—hg). Note
that o(—hgy) = [0, h(m)]. The density of states of —hg, constructed using the periodic boundary
conditions, is n(E) = h™'(E)/m. The asymptotics of n(E) as E | 0 is computed from the
asymptotics of h(p) as ¢ | 0. It is not difficult to show that as FE | 0,
1/2 -
n(B) ~ { ng—n o f’;’< 3,
where ¢,’s are computable constants. One can also compute the asymptotics of n(E) if v = 3,
which includes logarithmic terms. Thus, if v = 1 4 2/d, the operator hy has some characteristic
features of the usual free Laplacian on Z¢ defined by
Bablm) =3 T (lm) = vla),

m,/m—n|;=
where |n|; = Y |n;|. We remaind the reader that the random walk generated by A, is transient
if d > 2 and recurent if d = 1,2. Furthermore, o(—2A4) = [0, 2], and its density of states, nq(E),
satisfies ng(E) ~ cqE%? as E | 0. These observations suggest that it is possible that in the
weak coupling regime and for ~ sufficiently close to 1 the model (1.1) has delocalized states.
On the other hand, it is natural to conjecture that mathematical localization holds whenever
~ > 2. This paper deals with this conjecture. In particular, we will show that X, = () under the
following conditions:
a) v > 8.
b) j(p) is an even real function strictly monotone on [0, 7], or, ess.supp,|v,(n)| is sufficiently
large.
If ¥ > 4 and b) holds, we will show using the theorem of Simon and Spencer [SS] that ¥,. = 0.

Let us state our results precisely. We recall that V is the support of the measure p(z)dz.

Theorem 1.1 Assume that j(p) is an even real function strictly monotone on [0, 7], and that
int(V) # 0.

1. If v > 4 then X4 = 0.

2. If v > 8 then X, = ().

Remark 1. The first condition of the theorem is satisfied, for example, if j(n) is an even positive
sequence such that nj(n) is convex for n > 0 (see Theorem 4.1 in [K]). In particular, the theorem
holds if j(n) = |n|™”. The second condition of the theorem, int) # (), is a condition on the
density p(z). It is satisfied, for example, if p is non-zero and continuous on some interval.
Remark 2. Our estimates give some control of the decay of the eigenfunctions of h,. For exam-
ple, if j(n) decays faster then any polynomial (i.e. j(¢) is C*), then P-a.s. the eigenfunctions
of h, decay as
[¥pw(n)| < Copp(n) ™
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for any k& > 0. On the other hand, if j(n) decays exponentially (i.e. j(¢) is analytic), it does not
follow from our argument that the eigenfunctions of h, decay exponentially. To establish such
decay using our techniques appears to be difficult technical problem.

If }(go) does not satisfy the conditions of Theorem 1.1, we can still prove localization providing

random variables v,(n) could get large enough. Let

Vo = ess.sup,|u,(n)l,
jo = Xli(n)], (1.4)
Mo = Vo — Jo-

Note that vy does not depend on n since the random variables v, (n) are identically distributed.

If 7o > 0, we set I, = [—ng, o], otherwise I, = ().

Theorem 1.2 Assume that intV # 0 and let J =1, U (R\ (0(hy + ag)), where ag € int(V).
1. If v > 4 then X,. N T = 0.
2. If y> 8 then . N J = 0.

Remark. The assumption that V is a compact set is made for convenience reasons, and is not
used in the proof of Theorem 1.2, part 2. Thus, whenever V is unbounded and v > 8, . = (.
Remark 2 after Theorem 1.1 holds also for Theorem 1.2.

Our proofs are based on an approach to localization in d = 1 pioneered by Simon and Spencer
[SS], and further developed in [KMP], [M], [M1], [GJMS]. The principal idea is to show that a
particle with energy in a given interval Z has to tunnel through an infinite sequence of “barriers”
to reach infinity. These barriers can be the usual potential barriers, as in Theorem 1.2, or the
tunneling can be forced due to the gaps in the spectrum of long periodic approximations of h,,
as in Theorem 1.1. In either case, under the conditions of the theorems, we can prove that such
barriers exists and that they are effective in preventing tunneling.

Simon and Spencer have discussed the deterministic model h = hy + v, where v is a bounded
potential. Their result (see (¢) in Introduction and Theorem 7.5 in [SS]) can be paraphrased as

follows:

Theorem 1.3 (Simon-Spencer) Assume that v > 4. Let I, k € Z, be a sequence of intervals
with centers ¢, and of width I, such that ¢, — 00 and [, — o0 as k — +oo. If vy is a potential
and

max v(n) — wo()] — 0 (15)

as k — too, then g,.(h) C o(hy + vo).

Our proof of Theorem 1.1, part 1, goes as follows. We show that for each fixed energy F € ¥
there is an open interval Z > E, and a periodic potential v,, such that Z N o(hy + v,) = 0,



and that conditions of Theorem 1.3 are satisfied for a.e w. That is, for a.e. w there exists a
sequence of intervals [(w) satisfying the conditions of Theorem 1.3 so that (1.5) holds with
v = v, and vy = v,. Then ¥£,.NZ = (), and since F is arbitrary, Theorem 1.1, part 1, follows. We
remark that if hg is the usual free Laplacian, a similar proof of absence of a.c. spectrum for one
dimensional Anderson model is given in [SS]. Our main contribution here is a novel construction
of spectral gaps for periodic approximations of h, which is applicable in the long range case.
This construction is presented in Section 4.

To idea of Simon and Spencer has been to use trace class perturbations to show the absence
of a.c. spectrum. A more detailed analysis is needed to prove localization. Following the ideas of
[KMP], [M], [M1], [GIMS], we will prove Theorem 1.1, part 2, by constructing a suitable cluster
expansion of the resolvent (h, — z)~! with respect to the intervals Iz(w). Such an expansion
allows for a finer analysis of tunneling. However, we need a more restrictive condition on vy to
control the convergence of the expansion. Let m be the Lebesgue measure on R. Under the
conditions of Theorem 1.1, part 2, we will show that for a.e. (F,w) with respect to the product
measure m ® P,

lim 3 |6, (ho — E —i¢) 16,)[ < . (1.6)
3o nez

The result then follows from the Simon-Wolff theorem [SW] (for its various reformulations see
[AM)).

The proof of Theorem 1.2 follows a similar strategy, except that tunneling is now forced by
a trivial gap if E ¢ o(ho + ag), and by potential barriers if E € [—nyg, 1]

The results proven here are used in [JM] to study the propagation properties of surface waves
in regions with random boundaries in dimension d = 2. For additional information on the theory
of surface waves and its relation to spectral theory of long range Hamiltonians, we refer the
reader to [JMP], [G] and [JL].

The paper is organized as follows. In the next section we collect some preliminary technical
results. In Section 3 we study deterministic operators of the form hy + v. We prove there our
principal technical result, Theorem 3.1, which shows that under suitable assumptions on the
existence of tunneling barriers, (1.6) holds in a deterministic setting. In Sections 4 and 5 we
study gaps in the spectrum of the operators hy + v,, where v, is a periodic potential. Finally,
in Section 6 we combine these results with some probabilistic arguments to finish the proofs of
Theorems 1.1 and 1.2.

Acknowledgments. We are grateful to B. Simon for many useful discussions. The research
of the first author was supported in part by NSERC and of the second by NSF. Part of this
work was done while the first author was a visitor at California Institute of Technology. V.J. is
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of the second author to University of Ottawa which was supported by NSERC.

2 Preliminaries

In this section we collect a few technical results which we will use in the sequel. Henceforward
we will use normalization j(0) = 0 in (1.2).

A path T connecting n and m is any sequence of sites 7 = (ig, i1,...%;) such that ig = n,
ir. = m. The length of this path is |[7| = k. To the path 7 we associate a sequence of bonds
7 = (b1,...,0bx), where

bl = (i07i1)7 bl = (i17i2)7 e '7bk = (ik—laik)'

We write s € 7 if s is one of the sites of the path 7, and b = (s,t) € 7, if b is one of its bonds.
We use the shorthand j(b) = j(s —t). Let h = ho + v, where v is an arbitrary potential, and

Recall that jo is given by (1.4). Let d,,, be the usual Kronecker symbol.

Proposition 2.1 If Im(z) > jj then

Z—’U

R(n,ms 2) — —— 0§ ln

2 ’U(TL) T Lser

Lgb j } (2.7)

where the sum is over all paths connecting n and m. For each € > 0 the series converges uniformly

in the half-plane Im(2) > jo + €.

Proof: We split the set of paths connecting n and m into the disjoint classes 7, such that 7 € Ty
iff || = k. For any £k,
k
> I Li®)l< (Zb ) = s,
TETL beTy

and if Im(z) > jp then

3D

k>071€Ts

H‘z—v ” [HU ] ZW<O®.

SET ber, k>0

Thus, the series (2.7) converges uniformly in the half-plane Im(z) > jy + ¢ for any € > 0. Since

(ho + v)R(z) = I + zR(2),



we get
(hoOn, R(2)0m) = 0pm + (2 — v(n))R(n, m; z).

Expanding hod, in the basis {d;} we get

0. i(n—1 .
R(n,m;z) = —Z_nién(n) + zl: Z/(—iv(n))R(Z’ m; z).
Iterating this formula we derive Relation (2.7). O
Proposition 2.1 is known as the path expansion of the resolvent. A similar result holds if
the system is restricted to a box. Let I C Z be an arbitrary set, and let hY be the operator hy
restricted to I with Dirichlet boundary condition. This operator is obtained by removing the
couplings between the points in I and Z \ I, and acts on [*(I) according to the formula

(hg¥)(n) = 3 j(n —m)p(m). (2.8)

mel

Note that if the support of v € [*(Z) is contained in I then (¢, hot)) = (¢, h{). Tt follows
that o(hl) C o(hg) and ||h{]] < jo. We now define the operator iy on [*(I) by the formula
hr = h(’)j +v. We will refer to h; as the restriction of h = hy+ v to I with the Dirichlet boundary
condition. Let R;(z) = (hy — z)~'. Then for n,m € I,

Z = U(TL) r lser ® — U(S) beT,

Ry(n,m;z) = ——m___ §~ [H —] - [Ha(b)], (2.9)
where the sum is over all paths which connect n and m and belong to I. If n or m & I, we set
Ri(n,m;z) = 0. (2.10)

In the proofs of Theorems 1.1 and 1.2 we will make use of the following result which is an easy
consequence of Corrolary 7.3 in [SS]. We sketch the proof for readers convenience. If Z = (¢, d)

is an interval in R, we write I; = (¢ + 0,d — ¢). Recall that v is given by (1.3).

Proposition 2.2 Let Z be an interval such that o(h;) NZ = () and I be an integer such that

v > 1+ 1. Then for every 6 > 0 there is a constant Cs, which depends on & only, such that for
E €1,
|Ri(n,m; E)] < Cs5(n —m)".

Proof: We define the operator x on [?(I) by (z¢)(n) = n¢(n). Since v > [ + 1, one can show
(see Lemma 7.1 in [SS]) that the k-fold commutator [z,...[z, hy]...] is a bounded operator if
1 < k <, and that its norm does not depend on I. Using the identity

e, expithy)] = explishy) [z, hi] exp(i(t — s)hy)ds,
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and arguing inductively, one shows that
[z, ... [z, exp(ithr)]...]|| < C(1 + [t])F,

for any 1 < k <1[. Choose now Cg° function f such that f =1 on o(h;) and f =0 on I/,. Let
gu(t) = (t — E)7'f(t). Clearly, as long as E € Zs, f can be chosen so that g is a C§° functions
whose derivatives have bounds which depend only on §. Note that gg(hr) = (h; — E)™". Since

ge(hr) = \/% /§E(s) exp(ishy)ds,

it follows that the k-fold commutators [z, ... [z, gr(h;)]...] are bounded operators if 1 < k <[,
whose norms have bounds which depend only on § (if £ € Zj). Finally, the result follows from
the identities

(TL - m)l(éna (hI - E)_lém) = (n - m)l(5n7 gE(h’I)(Sm)
= (0n,[x,...[x,98(h1)]...]0m). O
Recall that jp is given by (1.4). We will also need

Proposition 2.3 Let [ an integer such that v > 1+1 and T C R, I C Z sets such that for some
d>0
nellr,lhfel [v(n) — E| 2 jo +0.
Then o(h;) NZ =0, and for oll E € T,
|R;(n,m; E)| < Cs(n —m) ",
where Cs depends on ¢ only. Furthermore, there is a constant C' such that for 6 > 1, Cs < C/$.

Proof: Since |[h2|| < o,

o(hr) C [—Jo,Jo] +{v(n) : n € I},

see e.g. Lemma 5.3 below. It follows that o(h;) NZ = (). To prove the bound on the resolvent,
we consider first the case n # m. Let a = jo + 9 and £ = n — m. The path expansion of the
resolvent Ry (recall (2.9)) leads to the bound

131 ;
|Ri(n,m; B)| < = k > IL 1i(sal
(07 k=1 « 81,---SL,€Z lglgk
sl+...+sk:[

If
h(e) = e"?lj(s)],
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then

S il =5 [ e hip)de.
s €2 1<4<k -
Sl+ s = =/

Since |h(¢)| < jo < «, we have that

© k x
|Riln,m; )| < 5~ S e (@) dp=s [Tt MO (,‘fép) de.
Since the function h(¢)/(a — h(yp)) is [-times continuosly differentiable, the result follows from
integration by parts. The estimate of C if § > 1 is obvious.
If n = m, the argument is simpler, and in fact follows from the observation that if £ € 7
then dist{E,o(h;)} > 0. One can also argue directly:

1 > 1 .
Ri(n,m;E) < —+> ] > IT 17(so)l
a k=2 a 81,.--SL,€EZ lglgk
s1+-.-+s8,=0
1 & £
< =-. 0
T« 19231 ak“ (Z (s > )
We will also make use of the following two versions of the well-known Kolmogorov inequality.
For the proofs we refer the reader to [M1], [GIMS]. The history of the Kolomogorov inequality

is discussed in [A]. In the sequel |A| stands for the Lebesgue measure of the set A.

Proposition 2.4 Let aq,...,q, and Ny, ..., A\, be real numbers such that Y |ag| < 1. Let h and
f be functions defined by

=3 5

k:l k=1

where A € R. Then

{A (N> M} < 2/M,
A f ) > MY < A(n/M)M2.

The final technical result we need is:

Proposition 2.5 Let I, be a sequence of finite intervals such that Iy T Z as { — oo, and let M
be a measurable set. Then, Vn € Z and a.e. E € M,

lim > (0, (h = B —i¢) "o \ <l1m1nf2‘ ns (hy, — E)7'6 )\ .

(=0 meZ mely



Proof: Let M' = M\ (U (hy,)). Since each h;, has a discrete spectrum, |[M'| = |[M|. We
denote by pf and p,, the spectral measures associated to the vector 6, and the operators h;, and
h. For each E € M', (h;, — E)~" is well-defined and

Cie 2 A (V)
XE; ‘(57” (h1, — E) 5m)‘ =/ - Ep
mel,
Thus,
3 _ _ s\l 2 _ N dﬂn()‘)
dpin ()

i T Ry e

< liminf 37 |00, (h1, = E) "6)

mel,

2
‘.D

3 The main theorem

Let hy be given by (1.2), v be a potential, and h = hy + v. We will use freely the notation

introduced in the previous section. In this section we prove

Theorem 3.1 Assume that (1.3) holds for some v > 8. Let I = (¢, d) be an open interval and

a > 2 an integer. Assume that there exists an integer N > 0 such that, ¥Yn > 0, the intervals
+[aV "+ 1, 0N — 1] (3.11)
contain sub-intervals Iy, of length I+, > n such that
o(hr.,)NZ =10. (3.12)
Then for a.e. E € T with respect to the Lebesque measure,

lim Y |60, (h — E —i¢)™'6,)|” < oo (3.13)
Lo meZ

Note that it follows from (3.12) and Proposition 2.2 that for all F € Zs, = (¢ + do,d — &),
Ry, (k,K'; E)| < Csy(k — k'), (3.14)

where [ is an integer such that v > [+ 1 (e.g. [ = 7), and the constant Cjs, depends only on do.
In the sequel we fix small §y > 0 and establish Relation (3.13) for a.e. E € Zs,. Since dy > 0 is
arbitary, this suffices.

We begin by introducing several sequences of intervals which will play an important role in the
sequel. Let the I,,’s be as in the theorem, I, = [a,, b,| and [, = |a, — b, |+1. Let My = [a_1, by].
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For n > 0, we set M, = [an, by 1], and for n < 0, M, = [ap_1,b,]. We will refer to the intervals
M,, as the main blocks. Let Ay = [b_1,a;]. For n > 0, we set A, = [b,, an+1], and for n < 0,
A, = [by_1, a,]. In the sequel we will refer to the I,,’s as the black blocks and to A,,’s as the white
blocks. Note that for n > 0,

M,=I,UA, UI,. (3.15)

A similar relation holds for n < 0.

The strategy of our argument is the following. The black blocks are long barriers. Although
we do not have any information about the values of the potential within the white blocks, we
know that these blocks are not “too long.” We will construct a suitable expansion of the resolvent
(h — z)~! in terms of the main blocks M,,. We then use the decomposition (3.15) and tunneling
estimates to further refine this expansion, and to establish (3.13).

We denote by hy, the restriction of h to M, with Dirichlet boundary condition. Let Ry, (2)
be the resolvent of hy;, and Ry, (p,q;2) its matrix elements. We first collect some a priori

estimates on Ry,. Let
= Qp, 1‘( = bp, xsb?,) = Qn+1, 37%4) = bn—i—l-

Recall that v > 8 and that (z) = (1 4+ 2?)"/2. Throughout, we will freely use the convention
(2.10).

Proposition 3.2 Let § > 0 be such that v/4 > 2(1 4+ 6). Then for every € > 0 there is a set
M. C R such that:

1. R\ M. =0.

2. For each E € M, there is a positive integer ng. such that for |n| > ng. the following

estimates hold:

max | Ry, (o) +p,2) + ¢: )| < en)'*(p) 0 {g) '+, (3.16)
2
max ‘RMn Dip G B)| < (M| 4 1) ()20 ()20, (3.17)
qEMn
max |Rr,(p,¢; E)] < e(p—q)". (3.18)
[p—q|>1n/2

Proof: Let L, = |M,| + 1. Then

L

. )+ zld) +

RMn( _|_p, %) e E) Z d)k( p)d)k( q),
e E—FE,

where ¢y, are eigenfunctions and Ej, eigenvalues of hy;, . Let
€ o
Aulp. @) = {E s [Ras, (@) + .2 + @ B) > )2 p) () for 1 <45 < 4
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Note that

Ln vz . 1/2
S fouel) 4011 oute? + ) < (S loutal) +0) - (Soeld <) =1
k=1 k=1
It follows from Proposition 2.4 that |A,(p, q)| < [(n)(p)(g)] 1% /c. Since

>3 1An(p, )] < o0,

n p.q

it follows from the Borel-Cantelli lemma that there exists a measurable set M. such that 1. and

2., (3.16) hold.
We now consider Relation (3.17). Note first that

(@) +p)?
E — /v n 20
Z |RMn +p7Q7 )| Z |E Ek|2

qEMy, k=1

It follows again from Proposition 2.4 and the Borel-Cantelli lemma that there exists a measurable
set M" (which does not depend on ¢) such that 1. and 2., (3.17) hold. Taking M. = M. NM",
we deduce that 1., and 2, (3.16), (3.17) hold.

Recall that Cj, is given by (3.13). Let ¢. be an integer such that

n>gq = 2C5/n<ec. (3.19)

Clearly, we may assume that ng. is chosen in such a way that ng. > ¢., and thus that (3.16)-
(3.18) hold for each E € M, and |n| > ng,. O
Remark 1. The various parametrizations () in the previous lemma are introduced for later
convenience.
Remark 2. Note that ng, is not specified uniquely. To avoid some ambiguites, for given € > 0
and E € M. we define ng. as the smallest positive integer such that (3.16)-(3.18) hold for all
In| > nge.

Proposition 3.2 gives information on the resolvent matrix elements of R, starting with a
sufficiently large index n which depends on the energy. To circumvent some difficulties which

arise from this F-dependence, we introduce the sets

k
Mk,g = U{E : Fe I50 and NEe = ]}
§=0
Since Ry, (s, t; E') are Lebesgue measurable functions of E, the sets M, . are measurable. Clearly,
if ¢ > k then M. C M, Furthermore, it follows from Proposition 3.1 that for each ¢ > 0,

Uk>0M is of full measure in Zs,. Note that some of the sets My . might be empty. However,

12



for each € > 0 there is k(¢) > 0 such that My, # 0 if k¥ > k(¢). Let C be a constant from
Proposition 2.3 and let
L = max{|¢|, |d|} + jo + C/e,

(recall that Z = (¢, d)). For given k and ¢, we introduce an auxiliary potential v; . by the formula

Ve o(n) = L if n € M, |s| <k,
BT w(n) ifnoe My, |s| > k.

The reasons for introducing this auxiliary potential are the following:

a) If E € My and v is replaced by vy then the inequalites (3.16) and (3.17) hold for all n.

b) If |n| < k then it follows from Proposition 2.3 and the choice of L that the inequality (3.18)
holds for all p,q € I,,.

Let

JgE U Mj.

Jlil<e
We denote by hy . the operator hy + vy . restricted to J, with Dirichlet boundary condition. We

will prove below the following result.

Proposition 3.3 There exists £y > 0 such that for k > k(g), E € My..,, and i € Uk__, M,
_ _ 2
limsup ‘(51', (hegeo — E) lém)‘

£—00 meJ,

< 0.

Let us show how Relation (3.13) (for n = 0) follows from this proposition. Denote for the moment
by Ry, the resolvent of the operator hy + v;.,. It then follows from Propositions 2.5 and 3.3
that for £ € My, and i € UF__, M,

m Y[R (iym; E +iQ))? < Ciey < 0. (3.20)

(=0 meZ

Furthermore, it follows from the resolvent identity that

R(0,m; E +iC) = Ry (0,m; E+iC)+ > (L —v(i))R(0,% E + iC) Ry, (¢, m5 E + i().

i€ M. |s|<k

Since for a.e. E € R, lim_,o R(0,4; E+1() exists and is finite, we derive that for a.e. £ € My .,

IRO,m; E+i0)P<Cr S |Risy(iym; B +iC)[7.

i€ M., |s|<k

This inequality and (3.20) yield Relation (3.13) for n = 0 and for a.e. E € UMy, .
The rest of this section is devoted to the proof of Proposition 3.3.

Notation. In the sequel we will denote by the same letter C' various constants which depend
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only on Cysin (3.14). The values of these constants may change from estimate to estimate.
Furthermore, we will drop the subscripts k& and ¢ in the sequel whenever there is no danger of
confusion. For example, we denote by Ry(n,m;z) the matrix elements of the resolvent (hgy. —
z)7 L, ete.

We will prove Proposition 3.3 in the case where i = 0. Also, we will assume that a = 2 in
(3.11). A similar argument applies to the other values of 7 and a.

Let ¢ > 0 be given. Our first goal is to develop a suitable expansion of the matrix resolvent
element Ry(0,m; z) with respect to Ryy,. Let 7 be any path in the expansion (2.9) which connects
0 and m, 7 = (0,19, N9, ...,nE,m). To such a path we associate a sequence of bonds (b1, ..., b)
and a sequence of blocks (M, ..., Mj,) in the following way. Let ny, be the first of the n;’s which
is not in the block M. Then let by = (ng, 1,1, ). We denote the block to which ny, belongs by
Ms,. Let ny, be the first of the n;’s, for [ > &y, which is not in M;,, and let by = (ng,—1, ng,). We
denote the block to which ny, belongs by My,. If ng, € M;NM, then, by definition, s, = min{s, ¢}
if s,t > 0, and sy = max{s,t} if s,£ < 0. We now continue inductively. It is helpful to invoke
the following picture. The path 7 starts in the block M,, and wanders for some time within
this block. It then leaves M, and jumps to a different block M,,. In the bond b; we record
the site ng, 1 € My at which the path takes off, and the site ny, € M, at which it lands. The
path now wanders through M, and then jumps to M,,, etc. The last bond b, = (ng,_,,n,)
corresponds to the last entry into the block M, = M, which contains m. Since neighboring
blocks intersect, the paths can land at the site which belongs simultaneously to two blocks; in
this case, by definition, we say that the path landed in the block which is closer to 0. Clearly,
the sequences {b;} and {M;,} do not uniquely determine the path: great many paths 7 will
determine the same sequences of blocks. Note that {b;}, however, uniquely determines {Mj,}.
Let B be the set of all sequences of bonds 7, = {b;} obtained in the above way.

Regrouping the elements in the expansion (2.9) we get

Rﬂ(ov m; Z) = (ng/(U(O) - Z) + Z RMO (Ov Mgy —15 Z)j(nkl—l - nkl)RMsl (nkl? Mky—1; Z) st

EB
S RMSF1 (nszu Ny —1; Z)j(nszl - nkz)RMnO (nkzv m; Z)

At this point, of course, this relation holds only for Im(z) > jy,. However, for any z € C, if the
series on the right hand side converges absolutely then its sum is R(0,m;z2). To show this, for
z € C we define

Ré(oa m; Z) = (ng/(U(O) - Z) + Z RM0(07 Mky—15 Z)j(nkl_l - nkl)RMsl (nk17nk2—1; Z) st

TEB
Ry, (Mey_ s y—1; 2) 7 (Mg —1 — n,ycl)R]\/]n0 (1, M5 2). (3.21)

whenever the sum converges absolutely. We then have
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Proposition 3.4 If z € C and if R(0,m;z) is defined for all m € Jy, then z ¢ o(hy) and
RE(Oa ms; Z) = RE(Oa ms; Z)

Remark. In the sequel, we will apply this proposition in the case z = E € R.
Proof: 1f the series (3.21) converges absolutely, the various sums can be interchanged, and one

easily shows that the vector Ry(0,-;2) € [?(J;) satisfies the equation

Z ](n - m)Rf(Oa n; Z) + (Uk,E(m) - Z)RK(Oa m; Z) = 50ma m e JE-

neJy
However, if this equation has a solution then z ¢ o(hy), the solution is unique and is equal to
Ri(0,m;2). O.
We proceed to prove the following statement: There exists 9 > 0 such that for & > k(gg)
and E € M. ,, the formal series (3.21) converges absolutely and

3 [Re(0,m; B) < C < o0 (3.22)

meJy

where the constant C' does not depend on ¢. Proposition 3.3 then follows from Proposition 3.4.

Let us consider a typical term in the formal expansion (3.21):

RMsi,l (nki—l » Tl —15 E)j(nkifl - nki)RMsi (nku Mk —15 E)

For notational convenience, our analysis of such terms is based on case by case analysis, de-
M, and M There are 4! = 24 such

arrangments. We will consider only the arrangment s;,; > s; > s;_1 > s;_9 > 0. After this case

pending on the arrangment of the blocks M, ,, M, ., 1
is analyzed, the reader can easily convince himself that one argues similarly in all the other cases.
We denote by d(s;_1, s;) the distance between the blocks My, and M;,. Clearly, if s; = s;_1 + 1,
then d(s;_1,s;) = 0. In the sequel we fix £ > 0 and k > k(g), and proceed to obtain a suitable

estimate on
RMsi_l (nki—l kg —15 E)j(nki—l - nkl) (323)

for E € My, .. Even after specifying the arrangment of the main blocks, our argument is based

on the case by case analysis, depending whether the sites ny nk,—1 belong to white or black

i—17

blocks. Recall that M, | = I, , UA,_, Ul _ 1. The following cases have to be considered:

1. Mhey_1> Mk, —1 € Asi_l.
Mg,y € ASi—l’ Nk, -1 € Isi—1+1'
nkiilynkifl € [si,1+1-

Ng,_, € Asi_l, Nk, —1 € [Si—l'

otk W

Mgy € [Si—1+17 Ng;—1 € Asi—l'

15



6. Ng,_, € [Si—1+17 Nk, -1 € [Si—l'
Case 1. Recall that A, | = [bs,_,,as, ,+1]. It follows from (1.3) that

. —v/4
(et — 1) < € [(g,m1 = 1)1 — by )it 30)) (i, — )]

where C is a universal constant. The last term in the product, (ny, —b,)~"/*, is used in estimating

the term in the expansion which follows after (3.23); in estimating (3.23) we will make use of the

similar term which arises in the estimation of j(ng,_, — ng,_1), namely (ng,_, — bs._,)~"/%. With
this convention, it follows from Proposition 3.2 that for £' € M,
146
‘RMSZ-,I (nki—17 Mok —15 E)‘ <e |:<Si*1><nki—l - bsi—1><nki*1 - a5i71+1>]

Since ls,_,+1 > |s;—1] and v/4 > 2(1 + §), we get that

—1-6
|RMsi_1 (nki—17 Mg —15 E)| < Ce |:<Si*1><nki—1 - bsi—1><nki*1 - a5i71+1>} <d(5i*17 Si)>77/47
(3.24)
for some constant C'. Thus, for £ € M.,

> [Rav, (oo 15 B)| - 1 (a1 = )| < Ce(sia) ™ (d(si0,80)) 7/ (3.25)

nkifleAsi—l

Thi_1>

Case 2. The critical input in deriving estimate (3.24) is that the path jumps over the long black

block I, 1. If ng, 1 € I, ,+1 and the sum is over ny, 1 such that
Nij—1 = Oy 41 < 3l5i—1+1/47 (3'26)

then the same argument (with a change of the constant, of course) yields the estimate (3.24).
We have choosen the constant 3/4 for definiteness; any 0 < ¢ < 1 will do as well. Difficulties
arise if ng,_; is close to by, ,11; in this case, the jump M;,_, — M;, could be very short and we

cannot use the previous arguments. So we now assume that

Ng,—1 — As;_1+1 > 3l5i—1+1/4‘ (327)
In this case we use the formula
RMsi,l (nki—l7nki*1;E) = Z RMsi,l (nki—17T;E)j(r - t)RIsi_1+l (t7 nkifl;E)'
rels, (UAs; 4
tels; 141

We will make use of the following two elementary estimates:

IN

i1 =)l < C [t = by i) (i1 0) (= b))

oy (3.28)
|](7” B t)| < C [(7” o a‘si—1+1><t - G’Si—1+1>:| ! .
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It now follows from Propositions 3.2 that for E' € M, . (recall a) stated before Proposition 3.3)
146
‘RMSZ-,I (nki—17 r E)‘ <e |:<Si*1><nki—1 - bsi—1><r - a5i71>]
We now again drop the last term in in the first Equation in (3.28) and use the similar term
arising from j(ny,_, — ng,_,). With this convention and arguing as before, we deduce

> [Ras,,, (a1 )| i1 =i )| < Ce i) 0 (d (i, 5)) 7S

Ty g €8s
nk.i_1€lsi,|nk.i_17asi_l+1|>313i71/4

where

S

max Z <t - a5i71+1>77/2|RIsi_1+1 (t, N, 13 E)|

[Nk, —1—@s; _;+11>3ls;_;+1/4 tels, 11

We break the sum over ¢ into the regions where t —ag, 41 <ls, ,11/4and t—as, 11 > I, +1/4
To bound the first sum, we use the bound (3.18) and (3.27) and for the second sum we use that

1+46

ls,_ 11 > |si—1]. In this way, we arrive at the estimate S < C(s;_;)~20*9. Combining now the

estimates for the cases (3.26) and (3.27) we derive an estimate analogous to (3.25):

> ‘RMSH (T, s Ty 15 E)‘ i1 — )| < Celsia) 2 {d(sion, 80)) 7 (3.29)

This concludes the discussion of the Case 2.
Case 3. Assume now that ny, ,,ng,_1 € I, 1. Again, we encounter difficulties only if ng,_; —

as, ,+1 > 3ls,_,+1/4. In this case we use the formula

RMsi_l (nki—17 N —1; E) = Rfsi,lﬂ (nki—17 Mg —15 E)+ (330)
Z Rlsi_1+1 (nki—17 r; E)](T - t)RMsi,l (t7 T —1; E)
r€ls; 141
tea

si—1Uls, 441

If E € My, and s;_; + 1 < k, then it follows from the definition of vy . (recall b) stated before
Proposition 3.3) that |R;,
establish Relation (3.31) below. So we consider only the case s;_; + 1 > k. We now have that
ls, ,+1 > C/e (recall (3.18) and the definition of My ). We will also use the estimate (3.28),

with the previous convention of droping the last term and using a term (ng, , —b,, ,)~"/* arising

. _7 ..
(ks B)| < e(ng,_, — mg,—1) 7, and it is elementary to

from j(ng,_, — ng,_,). Using these facts, one shows that

Z |Rlsi_1+1 (nki—17 N —13 E)| ' |j(nki*1 - nkz| < 05<Si*1>7176<d(8i*17 Si)>77/47

Py Mk —1€Ts; g +1
Ing, —1—-as;_+11>3ls;_, 41/4

by distingushing the cases |ny, | — ng, 1| > ls,_,+1/2(< ls,_,+1/2). In the first one uses (3.18)
and in the second case that ng,_, — bs,_, > l5,_,+1/4 > C/e.

17



To handle the second term in (3.30) one argues similarly as in the Case 2. Thus we again

arrive at the estimate

< Celsisy) 1 d(si1, 5:)) 74 (3.31)

Z ‘RMSZ-,I (nki—17nki*1;E)‘.|j(nki*1_nki)
Tk _q oMk —1€1s;_1+1
Cases 4-6. In each of these cases, the path jumps over the long block I;._, 1. Arguing as in Case
1, one derives estimates analogous to (3.24) and (3.25).

We add that a similar argument shows that

> 1R (0,8 B)j(t —na)| < Ce(d(0,50)) 7%,
teMp
for a suitable constant C. Since the first parameter is fixed to be zero, here we do not need
a contribution from j on the left-hand side to compensate for the sum with respect to this
parameter.
We emphasize that for all the other initial arrangments of the main blocks M, ,, M, ., M,
and M,

Si+17

a similar argument leads to the estimates analogous to (3.25), (3.29) and (3.31). We
also remark that in our analysis the blocks M, , and M, , played a minor role - they contributed
only in a sense that a certain part of the estimate is carried over to be used in the estimation of
the next term.

We now go back to the formal expansion (3.21). It follows from the above considerations that

S /1000) = Bl + 3 [Raty (010,13 B)| | (a1 — 1)l | R, (15 ) .

TEB

Rty (k1 B)| 1 (o1 = )| [ Ragy (5 )|

< Bon/10(0) ~ E| + Y (Osz ,f) G(m). (3.32)

j>1 k>0

Here C' is a constant which depends only on Jy in (3.14), and

G(m) = max ) (ngg — )/ ‘RMn0 (t, m; E)‘ .

The contribution (z() — t)=7/* is the remaining part of the estimate analogous (for example) to
(3.28) used in the estimation of (3.21) in the case s;_; = s, (recall the conventions introduced
in the derivation of (3.25), (3.29), (3.31) and the form of the expansion (3.21)). Thus, if ¢ is
chosen so that

CeC(146) < % (3.33)

we get that for k > k(¢), a.e. E € Mg,, V{ and Vm € J,, the formal series (3.21) converges

absolutely. Here and in the sequel, ¢ is the usual Riemann function.
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We remark that in the estimation (3.32) we have not used the contributions arising from
d(s;_1,5;), and it follows from analysis that all the conclusions of the previous paragraph hold
for any v > 6. The contributions arising from d(s; 1, s;) are however essential to estimate the
sum (3.22) uniformly in ¢. To that end we need an improvement of the estimate (3.32).

We split the set of bonds B as B = B; U By where B; (B,) consists of bonds associated to the
paths whose length is < ny/2 (> ny/2). Accordingly, we decompose R;(0, m; E) as

Re(0,m; E) = A1(0,m; E) + A2(0,m; E).

To simplify the notation, we will assume that no > 0 is even, ny = 2nj. A similar argument
applies if ng is odd or if ng = 0. To estimate Ay we again do not need the contributions arising
from d(s;_1,s;). It € is chosen so that (3.33) holds, we get that for £ € M,

|45(0,m; E)] < 3 [Ce¢(1 4 0)F G(m) < 2[C=¢(1+ )" G(m),

izng

We now proceed to estimate A;. Here, we have to make use of the contributions arising from
d(s;_1,5;). Let us split B; into sets of disjoint bonds such that the associated paths have lengths
1,2,...,ny — 1. Accordingly, A; splits as

ng—1
A= A0,
=1
To estimate A" (0,m; E), we note that if the path has the length [ and ng > 2[, then at least
one of d(s;_1, s;) satisfies d(s;_y,s;) > 2"~ This leads to the estimate
!
[AD(0,m; B)| < 270/ (Ce((1+6)27?)
If we choose ¢ such that Ce((1+ 6)2"/2 < 1/3, we arrive at the estimate
|A1(0,m; E)| < 2-2 10/1G(m).

Thus, we summarize: if ¢ is sufficiently small, and k > k(e), then for all E € My . we have a

sharper estimate then (3.32):

Re(0,m; E)? < 4 ((C=C(L + )™/ + 277/) G(m)?. (3.34)
We proceed to estimate G(m)?. Let L, = |M,|+ 1. Then

G(m)? < Ly, max > (ngg - t>_4(1+‘5)|RMn0 (t,m; E)|.

t€ Mg,
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This inequality can be rewritten as
. 2
G(m)? < Loy Y- ()" max |Ray,, (20 + p,m; B)[ .
P 2

It now follows from Proposition 3.2 that

3o G(m)® < L2 C(2(1+ 6))(ng)* "™ < €270 (ng) >+, (3.35)
meMp,,
We have absorbed N from (3.11) into the constant C. Choosing ¢ in (3.34) so that Ce((1+0) <
1/2°, it follows easily from (3.34) and (3.35) that for E € M,

Z |R4(0,m; E)|2 S 027n0/2<n0>2(1+5).

meMno

Thus, we conclude: if gy is chosen sufficiently small, k > k(ey), and E € My, then

> RAOm B < X3 R(O,m B

meJ, n,|n|<€ meMy

< C Z 27\n|/2<n>2(1+5),

where the constant C' does not depend on ¢. This yields (3.22). The reader can easily convince
himself that none of the constants in above arguments depends on the particular choice i = 0
and therefore that Proposition 3.3 holds, with the exactly same argument, for each i € Uk_ , M,.
Finally, we remark that if j(n) decays faster then any polynomial then + can be taken
arbitrarily large. We leave it as an exercise for the reader to show that in that case for a.e.
E € 7 and any m we have that
sup | (%0, (h = E' = i¢)™'6m)| < Crpe(m)~,
0<(¢<1
for any £ > 0. This estimate combined with Simon-Wolff theorem [SW] will yield the decay of

eigenfunctions described in Remark 2 after Theorem 1.1.

4 Periodic potentials and gaps

In this section we study the operators h., = hy + v.,, where v., is a periodic potential of the

form

| e ifn=0mod p,
Vep(n) = { 0 if n #Z 0 mod p. (4.36)

Here p is a positive integer and £ > 0 a positive parameter. The operator hq is given by (1.2),

and in the Fourier representation, it acts as the operator of multiplication by the function j(gp)

20



In this section we make the following assumption on j(¢):

(H) j(¢p) is a continuous real even function, strictly monotone and twice continuosly differen-
tiable on (0, 7).

Remark. Note that conditions of Theorem 1.1 imply (H

). This hypothesis allows for some mild
singularity of ;' at ¢ = 0. For example, it is satisfied if j(n) = |n|™7 and v > 1.

Notation. In the sequel we will use the shorthand ey, = j(k7/p).

The principal result of this section is

Theorem 4.1 Assume that (H) holds and let (01, 02) C o(hy). Then there exists £ > 0 and
po > 0, which depend only on 6, and Oy, such that for 0 < e < ey, p > po, and ex, € (01, 602),

0 (hep) N (€kps €hp + Ockp) = 0,
for some 0, > 0.

Remark. If j(p) = 2cos ¢, a similar result was proven in [KKS].
Notation. In the sequel, whenever there is no danger of confusion, we write h for h., and R(z)
for (he, —2)7"

The rest of this section is devoted to the proof of Theorem 4.1.

Our argument is based on

Proposition 4.2 Let Z be an open interval. If for oll E € T and n € Z,

12{612 |R(m,n; E +i¢)|* < oo, (4.37)

then o(h) NZ = .

Proof: Fix n € Z and let u, be the spectral measure associated to the vector 9,,. We denote by
F(z) the Borel transform of s, i.e.

F(z) = d;‘"f(z) = (5., (h— 2)"15,).

It follows from the theorems of Fatou and de Vallée Poussin (see e.g. Chapter 1 in [S] for detailed

discussion) that

suppit, C {E : limsupImF(E +i¢) > 0}.
¢io

Since
ImF(E +i¢) = ¢ 3 |R(m, n; E +i¢)[?,
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it follows from (4.37) that suppu, NZ = (). Finally, since

o(h) = |J supppi,
nez
we derive that o(h) NZ = 0. O
We will prove Theorem 4.1 by showing that (4.37) holds for each 0 < n < p — 1 and
E € (ekp, €rp + 0cpp). Since R(n+ p,m + p; z) = R(n,m; z), this suffices. Let

G (p; 2) M R(m,n; 2).

- T

Since

/27r
0

to prove Theorem 4.1 it suffices to show that for each eg, € (6,,6,), there exists J., > 0 such
that for all E € (e, €kp + 0cp) and 0 < n < p — 1, the limit

G (g E+i¢)| dp =3 |R(m,n; E +i¢)[?

lim G™ (., E +i 4.38
im (¢, E +1Q), (4.38)

exists uniformly in . To establish this fact, we proceed to compute G™ (i; 2).

The Fourier transform of the resolvent equation
(ho + ev,(m))R(m, n; z) = zR(m, n, 2) + 0,

is

7(©)G™ (5 2) +eS™(g; 2) = 2G™(p, 2) + €™ /2, (4.39)

where

S™(p;2) =

PP R(mp, n; 2).

e
Notation. In the sequel, n is a fixed integer, and we will drop superscripts (n) whenever there
is no danger of confusion.

Let

Gi(p;2) = Glp+2nl/p; 2),
ale) = jle+2rl/p),

XZ(QO) = 6in(np-l—?wl/p)/ /271..

We write xo = x, Go = G. Since S(¢+27nl/p; z) = S(p; z), translating the argument in Equation
(4.39) by 27l/p, we get
§iGy +eS = 2Gy + .
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Thus, for 0 <1 <p—1,

- S
G=X"° (4.40)
]z -z
Since
p—1
Z G, = Z Z em(e+2l/p) R(m,n; z)
1=0 2”1 0 m
p—1
— eszpR m n; Z) el(27rim/p)
v 2
= pS(p;2)
adding together Equations (4.40) and solving for S we get
-1
121 bl 1
S= (=3 X 1+-Y = .
Pi=o i —* Pizon—~=
It now follows from Equation (4.40) that
K
G=_ XTH™1 (4.41)
(1 —2)(1 + Ky)
where ) )
p— _ p— 1
K=-2A2X 0 =Sy (4.42)
Py n—z PiZon—=2

Note that K» is a periodic function with a period 27 /p.
This explicit expression for G will play a central role in the sequel. The principal technical

ingredient in our proof is

Proposition 4.3 Assume that the conditions of Theorem 4.1 are satisfied and let ey, € (61, 62).
Then there exists g > 0 and py > 0, which depend only on 0y, 0y, such that for 0 < e < gy and

p > Po,
inf 1+ Ks(p, E)| > 1/2, (4.43)

for all E € (exp, €rp + 0ckp) and some 0cpp > 0.

Let us show how this proposition yields Relation (4.38) and Theorem 4.1.
Let E € (erp, erp + 0ckp) and let o and ¢~ be the unique solutions of equation j(p) = F
which belong to intervals (0,7) and (—m,0) respectively. Let

b =@ +2r/p,  0<I<p—1
Then it follows from (4.41)-(4.43) that the limit

limG(y: E + i 4.44
im (¢; E +1Q), (4.44)
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exists uniformly in ¢ on compact intervals which do not contain the points gpli. If 6. k. p is chosen
so that, Y5, €, & (exp, €rp + Ockp), then o — ¢~ is not an integer multiple of 27/p. Thus,
if [ # 0, only the terms with the index p — [ in the sums (4.42) do become singular in a small
neighborhod of gpli, and these two terms cancel each other in expression (4.41). More precisely,
if 0 < lp < p—1is fixed, we can rewrite (4.41) in a small neighborhood of the singular points
gpi as G = Ry /Ry, where

3

Ri = xpio =2+~ ((x B U S =l Xﬂ)

I=1,l#p—lo Ji—z

~ ~ 9 pt j-—l —Z
Ry = (=2 (Upty=2)+ - (14 3
p 1=0,iZp—lo Jl — %

It follows that the limit (4.44) exist uniformly in ¢ in a small neighborhood of any point ",
[ # 0. It remains to consider the case [ = 0. We rewrite G in small neighborhoods of the points
¢ as G = (x + K,)/R3, where

p—1

. £ € —z
Ry=(j—2)+-+- 17 .
p Pz

It follows that the limit (4.44) exists uniformly in ¢ in small neighorhoods of points ¢*, and
therefore for all .

It remains to prove Proposition 4.2. We will need

Lemma 4.4 Let f : [—a,a] — R be a strictly monotone, twice continuosly differentiable func-

tion. For 0 < |z| < h < a/2 we define a function

h
Fah=" 2 som T

z4+kh€[—a,a]

(4.45)

Let a = |x|/h. Then

sign(x) {1 1 ]
F(x,h) = - — h
(xa ) f,(o) o 1— +T(x7 )
where (@)
max x
r(x,h)| < l+a———FF7= |-
o1 < gt (1 oS o
Proof: We will discuss only the case x > 0, one argues similarly if z < 0. Write F' = F| + F5,
where
Rk = Y " Ba= Y —
v f@+kh)—£(0) v fle+kh) - f(0)
z+kh€[0,a] z+kh€[—a,0]
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We deal first with Fy. Let n, = max{k : x + kh € [0,a]}. Note that if n is the integer such that
(n+1)h < a < (n+2)h, then n < n, <n+ 1. It follows from Taylors formula that

1 1 1 maxgeq |f"(z)]

f(x+kh) = £(0)  f(0)(z + kh) : 2/f'(0)| mingepo,q) |f'(x)]

Since (n, + 1)h < 3a/2, we have that

1 e 1
Fi(z, h) = h
o) = 5 4 Fom T
where ,
|7"1 (1‘, h)| < a mame[O,a} |f (‘,'U)| (446)

|(0)] mingepoq | ()]
If g(z) = f(—=x), the same argument yields

Nh—z 1 1 Nh—z 1
];)g (h—x+kh)—g(0) ¢(0)(1—a) kz:lg 0)(k+1—a)

+ TZ(xa h’)a

where 75(z, h) satisfies the estimate analogous to (4.46). Since ¢’'(0) = —f'(0), we get that

1 1 1 1 & 1 -2«
Fah) = g la 14 FO) 2 T (1 a)
1 6n+1,nac 5n+1,nh—z
. - |+ rtoy 4 rate

n+l4+a n+2-—«

Since 0 < a < 1, the result follows. O

We now finish the proof of Proposition 4.2. For definitness, we assume that j'(¢) < 0 on
(0,7). Let @1, s € (0,7) be such that j(p;) = 6;. Choose po such that 47 /py < min{e;, ™ — @, }.
Let p > po and ey, € (01, 02) be given. Let § > 0 be a small number. For each E € (e, €5+ 0)
we denote by (% respectively the positive and negative solution of the equation j((p) =F. We
will study Ks(p; E) for ¢ € (o5, ¢ + 27/p). We can choose § sufficently small so that for some
b > 47 /p, the intervals [pF —b, p5+b] C (—m,7) for all E € (egp, erp+0). If p € (0f, oh+27/p),
we split Ky(p, E) into three terms,

Ko(p; E) = K (3 E) + Ky (¢; E) + Ko (p, B),

where .
€
K5 (p; F) = -,
? zl: p]z(@) - E
p+2nl/pElpt—b,0T+b]

€ 1
Ky (g E) = A —
? Xl: Phle) — E

p+2ml/p€Elp™ —b,po~ +b]

25



Raolei B) = 21: 1%51(90)1— E

o+2nl/pglpE —b,pT +b]

From this definition it follows that for all o € (o™, " + 27/p),
|Ka(p, B)| < Ct, (4.47)

where the constant C' depends only on b and the function j. To analyze the terms K, and Ky,
we will use Lemma 4.3. It is apparent that, after translation, the sum which constitute K, and
is of the form (4.45), with h = 27/p and

It then follows from Lemma 4.3 that

K5 (¢ E) = —
? 215 (ph)
+

The error term 7 is uniformly bounded and the bound depends only on b and j. Note that

€ 1 1
[E 7 _Oj +erf(p; E).

2k 2myg
+ —
Yp—¥Yp=—* ;
E E D D

where vp < 0 if £ > e;,. Furhermore, v is a continuous function of E in a neighborhood of

exp and v — 0 as E — e ,. Thus, we can choose ¢ such that |yg| < 1/2 for E' € (egp, €xp +6).

One now easily shows that, after translation, the sum which consitute K, is of the form (4.45)

with h = 27 /p and

) _ o —h—2kn/p| _
h

(07 |Oé + "}/E|
It then follows from Lemma 4.3 that

B £ 1 sign(a+ys)
2mj(¢p) Lot e 1= lat gl

Ky (¢ E) +erg(p; B),
where again r3(¢; E) is uniformly bounded and the bound depends only on b and j. Thus, we

conclude that for ¢ € (o, ok + 27/p),

€ ~
KQ = = i + 6(R1 + RQ)ZU + KQ,

21 (o) (e + 7E)

where

R 1 1 sign(a + vg)
1= = - )
7'(eh) [L—a 1= |a+7gl

Furthermore, R; is always positive while Ry is bounded . Finally, it remains to analyze the

Ry(p; E) =g +1f.

function

- e (4.48)

277 (o) ala + vg)
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for 0 < a < 1. This function is negative on the interval (0, |yg|), and positive on the interval
(|vel, 1), with vertical assymptotes at 0 and |yg|. The maximal value of the function on the

interval (0, |yg|) is
2e

3 (k) el
Choose now &g such that K, < 1/4 (recall (4.47)), go|Ry| < 1/4 and that eoR; < 1/4 for
a € (0,1/2). Note that o depends only on b and on the function j. Since vz — 0 as E — ¢,
we can find 0 such that for all E € (e, exp +6), and for a € (0, |yg|) the function (4.48) is less
then —3. Thus, we summarize: there exists 0. 5, > 0 such that for all E € (e, exp + 0ckp) and

¢ € (¢h, o5+ 2m/p),
11+ Ks(p; B)| > 1/2.

The Proposition 4.2 follows.

5 Dirichlet decoupling

Let v be a periodic potential with the period p, and let hf be the operator hy with Dirichlet
boundary condition at £2pL,

hg = ho — Yo G(E = k)(Ok, )k A Gk — k) Sk, )0
|k| <2pL,|K|>2pL
Note that the operator h¥, restricted to 1?([—2pL, 2pL]), coincides with operator h defined by
(2.8) if I = [-2pL,2pL]. We set h = hy + v, h* = h{ + v. Let (a,b) be an interval such that
0 ¢ (a,b) and
o(h) N (a,b) = 0.

For any L, h* — h is a trace class operator, and the spectrum of hY within (a,b) consists of
(possibly empty) discrete set of eigenvalues of finite multiplicity which can accumulate only at a
and b. We denote this set of eigenvalues by S;, = {E;(L)}. In the next section we will need some
control over the set Sy, as L 1 oo to verify the conditions of Theorem 3.1 for random Hamiltonians

(1.1). The following technical result will suffice.

Proposition 5.1 Assume that v > 2 and let € > 0 and § > 0 be given small numbers. Then
there exists finitely many points ri,..., g, 5 in (a+€,b—¢€) and a positive number L. s, such that
for L > L,

Sy (a+eb—e) CUr — 6, +4).

The points r; and the numbers L. 5 and ks depend only on € and §. Furthermore, supssg kes <

ke < oo, where ke depends only on €.
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This section is devoted to the proof of this proposition.

In our argument we will make use of the following three simple facts.

Lemma 5.2 Let A : [*(Z) — I*(Z) be a selfadjoint operator and let A;; = (0;, Ad;). Let
M, :supZ|Ai]~|, MgzsupZ|AZ-j|.
i iy

Then ||Al| < max{M, M}.
For the proof, see [Kal, Section 1.4.3, or Lemma 7.1 in [SS].

Lemma 5.3 Let A and B be bounded selfadjoint operators. Then
o(A+ B) C o(A) + [-[|B], | BIl]-

Proof: Assume that E ¢ o(A) + [—||B]|, ||B]|]. Then dist(E,o(A)) = ||B]| + d for some § > 0,
and ||[(A— E) Y| =1/(]|B|| +6). In particular, the series

o0

> (B-A)'B)"

n=0

converges to a bounded operator R. Let C = R(A — E)™'. One easily shows that
C(A+B-E)=(A+B-E)C =1,
so E¢o(A+ B). O.

Lemma 5.4 Let A and B be bounded selfadjoint operators such that o(A) N (a,b) = 0. Then
E € o(B) N (a,b) if and only if 1 € o((A — B)(A — E)™1).

Proof: The lemma follows from the identity
I-(A-B)(A-E)'=(B-E)(A-E),

which holds for £ € (a,b). O
We now proceed with the proof.
Let d(e,0) = min{e/2,0/2}, and let n. s be a positive integer such that

> lin)] < d(e,0).

|n‘2n5,5

Our first requirement on L s is
Le,6 2 Nes- (549)
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If L > L.s, we decompose hy — h{ into three parts:

o, = Y. Gk = K)(Ow, )0k + j (K — k) (O, )0k,
2pL*LE,5<kSZpL
k!>2pL

Hy = > gk — K" (0ks, )0k + j (K" — k) (Ok, -) Ok
72pLSk<72pL+LE’5
k'<—2pL

H; = > gk — k") (0ks, )0k + 7 (K — k) (0, -)Op
72pLSk32pL7LE,5
k!>2pL

+ > J(k =K ) (O, )0k + j (K" — k) (Sk, ) Op
72pL+LE,5SkSZpL
k'<—2pL
The operators H; are selfadjoint and HH, = HyH; = 0. It follows from Lemma 5.2 that
||Hs|| < d(e,6). We denote
T;(E) = Hy(h — E)™".

It follows from Lemma 5.3 that o(hl) C o(h* + H3) + [—d(e, d),d(e, )], Thus, if E € S; N

(a+¢€,b—¢), then

A(E) = o(hh + H3) N [E — d(e,0), E +d(e, 0)] # 0.
If E € A(FE), applying Lemma 5.4 with A = h and B = h” 4 H; and using that A— B = H, + H>,

we get that

1€ o(Ti(F)+ Ty2(E)). (5.50)
Note that if £ € [a+€/2,b—€/2],

1T BB+ ITETE) < 2 (15— B) Bl + | Hy(h — B) )

< E( > |j(k—k')|) sup ‘(5k,(h—E)_15k')

€ \k<0,k'>0 |k—k'|>Le s

Since v > 2, the series converges, and it follows from Proposition 2.2 that

sup  ([|TU(E)LL(E)| + [T2(E)TU(E)[]) < Cc/Les, (5.51)

Ecla+e/2,b—e/2]

Note also that for any F € (a,b),

T\(E)*Ty(E) = Ty(E)*T\(E) = 0. (5.52)

Since T1(E) + T»(E) is compact (in fact trace class), it follows from (5.50) that there is a
vector 1, [|1]| = 1, such that
Ti(E)) + To(E)p = b, (5.53)
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It now follows from (5.52) that
L= T E)el? + 1T (E)l”,
We conclude that if (5.50) holds for some L > L. s, then the relation
ITE)I* > 1/V2,

holds for either ¢ = 1 or i = 2. Assume for definitness that i = 1 and let ¢ = T1¢/||T1¢||.
Applying T to both sides of (5.53) we get Ty (E)¢ — ¢ = x, where x = —T1Totp/||T1¢||. Tt now
follows from (5.51) that ||x|| < v2C./Lcs. In this way we conclude that if E € S;, N (a+¢,b—¢)
and L > Lz, then for some E € [E —d(e,8), F +d(e,8)] and i € {1,2}, either 1 € o(T;(E)) or

I(Ti(E) = D)7Y| > Les/V2C. (5.54)

We will use this relation shortly.

In the sequel i = 1,2. Since H;’s are selfadjoint trace class operators and 0 ¢ (a,b), the
spectrum of the operators h — H; within (a+¢/4,b—€/4) consists of finitely many eigenvalues of
finite multiplicity. We collect these eigenvalues into the set {ry,rs,..., 7 _;}. These eigenvalues
do not depend on the choice of L. This follows from the observation that for different values of
L, the operators h — H; are unitarily equivalent. Let us now show that sups.okes < ke < 00.

Indeed, if r € (a + €/4,b — €/4) is an eigenvalue of h — H; with normalized eigenvector 1, then

(%, Hiyp) = (&, (h = r)*) > (e/4)%.
Therefore,
Tr(HY) + Tr(Hy) > 2k 5(e/4)>.

On the other hand,
T(H?) + Te(H3) < 4o S Lilk — k).

k>0,k/ <0
Since v > 2, the series on the right hand converges, and the statement follows.
Assume now that E € S, N (a +€,b— ¢€), and that

E & Ui — 6,1 + 6] (5.55)

Then for any E € A(E), we have that F ¢ Uf;’f [ry —6/2,7, 4+ /2] and that (5.50) holds. In
particular, since dist{E,o(h — H;)} > min{e/4,6/2},

I(h — H; — B)™Y| < 1/ min{e/4,6/2}.

Since
Ty(E) =1 = (Hi—h—E)(h—E),
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we have

I(T(B) = 1) Y| < ||h = E|lll(h — H; — E) Y]] < C/ min{e, 6}

where C' is a uniform constant. Our last requirement on L. 4 is that if C¢ is as in (5.51), then

L
\/566’ > C'/ min{e, 0} (5.56)
This yields that if L > L¢s
(Ti(E) = DY < Les/V2C. (5.57)

We conclude that if L. s satisfies (5.49) and (5.56), L > L5, E € S, N (a +¢,b—€) and (5.55)
holds, then for either i = 1 or i = 2, Relations (5.54) and (5.57) hold simultaneously for some
E € A(E), which is imposible. Thus, we must have that F € Uf;’f [r; — 6, + d], and the

proposition is proven.

6 Proofs of Theorems 1.1 and 1.2

We start with the proof of the Theorem 1.2, part 2. We first show that X. N [—ng, no] = 0. Let
(2, F, P) be the probability space associated to the model (1.1) (see, e.g., [CFKS] or [CL]). Let
e >0 and p. =ny —e. Note that

P ({|vw(n)| > e+ o + %}) = 0. > 0.

Let a be an integer such that ad? > 1. Let us consider the sub-intervals of [a®, a" '], [-a"*!, —a"]

of the following form:
IW =" +20k —Dn+1La"+2(k-1/2m+1], 1% =_1® (6.58)

where 1 < k < [a(a” —1)/2n] — 1 ([-] is the greatest integer part). Clearly, these are mutually

disjoint intervals of length n. Let
A = {w ()] > e + o + % for all i € I,* U I’“n} .
The probability of this event is P(A, ;) = 62". Let B, be the event that no A, take place, i.e.
B, =Q\ (UgAnz)-

Clearly,
P(Bn) — (1 _ 53n)[a(a”—1)/2n}—1.

A simple analysis leads to a (rough) bound
P(B,) = O(2702a7" /2m),
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Since ad? > 1,
> P(B,) < o0,

and the Borel-Cantelli lemma yields that for typical w only finitely many events B,, take place.
This result, combined with Proposition 2.3 yields that for typical w there is N(w) such that all
the conditions of Theorem 3.1 are satisfied with Z = (—p., it.). We conclude that for a.e. w € Q
and a.e. E € (—p., fi.)

lim 3| (3, (h — B - 1)) < 0. (6.59)

It now follows from the Simon-Wolff theorem [SW] that ¥. N (—p., ) = 0. Since £ > 0 is
arbitrary, the statement follows.

We now show that . N (R\ o(hy+ag)) = 0 if ag € int(V). Without loss of generality we can
assume that ap = 0. Let 6 > 0 be such that (—0,0) C V. Let Ey € R\ o(ho) be a fixed point.
Choose a and b such that Ey € (a,b) C R\ o(hg). We will use Proposition 5.1 with v = 0 and
p=1: For any € > 0 and 6 > 0 we can find L4 such that

c(hEY N (a+e,b—€) C U [r — 6, + ).
Since sup;.g kes < ke < 00, we can choose €, ¢, and xy € (—0/2,0/2) so that
zo+ Ep € (a+¢,b—¢) and o+ Ey & Uf;"f [ry — &, 7+ 4]. (6.60)

Clearly, one can take a small open set Z around Ej, such that for E € Z Relations (6.60) hold
and that
a = dist{zy + Z, Uf;’f (1 — 6,1+ 6]} > 0.

Let ¢ = min{a/2,¢/2}. If L > L4 then
dist(o(hy — z0), T} > 2e. (6.61)

Note also that
P ({|v,(n) + x| < e}) = 6. > 0.

We now repeat the probabilistic argument form the begining of this section. Pick an integer
a such that ad? > 1. Then for a.e. w there exist N = N(w) such that, Yn > 0, the intervals
+[aV " +1, ¥+ —1] contain sub-intervals I, (w) of the length [, = n so that for k € I, (w),
|vw (k) + x| < €. By increasing N(w), we can assume that [y, > L.s. It then follows from (6.61)
and the translation invariance that o(h, 1., () NZ = 0. Therefore, for a.e. w, the conditions of
Theorem 3.1 are satisfied, and we conclude that for a.e. w and a.e. E € T Relation (6.59) holds.
Thus, X, NZ = (). Since Ey € R\ o(hy) was arbitrary, the statement follows.
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It should be now obvious how to modify the above argument to show that for if v > 4 then
Y4 = 0. For example, let us show that 3,. N (R \ o(hg)) = 0. Choose a sequence ¢ | 0 and
note that

P ({|vy(n)| <ex}) =6, > 0.

It follows from the above probabilistic argument that for a.e. w there exists a sequence of intervals
I, (w) which satisfy the condition of Simon-Spencer theorem (Theorem 1.3 of Introduction) and
that maxper, () [Vw(n)| < k. Thus Xa C o(ho).

We now turn to the Theorem 1.1, part 2. We again assume that 0 € int(}). Clearly, we have
only to show that ¥.No(hy) = 0, since it follows from Theorem 1.2 that . N (R \ o(hy)) = 0.
Let § > 0 be such that (—#, ) is contained in V. Let Ey € (61,65) C (min j(), maxj(yp)) be a
given point. We will again show that there exists an interval Z > FEj such that for a.e. w the
conditions of Theorem 3.1 are satisfied. Choose £y and py such that Theorem 4.1 holds. Then,
since the set points {j(k7/p) : p > po, 0 < k < p} is dense in o(hy), we can find p > py and k such
that |j(k7/p) — Eo| < /4 and that kr/p € (61,6;). Choose now € such that e < min{sg, #/4},
and let v, be the periodic potential (4.36). We now use Proposition 5.1: For any ¢ > 0 and
d > 0 we can find L.; such that for L > L. 5 the spectrum of the operator hg + v, restricted to
[—2pL, 2pL] with Dirichlet boundary condition satisfies

Sp N (a+€,b_€) C Uf;(lg[rl —(S,Tl—i—(S],

where a = j(kn/p), b = j(km/p) + 6k, Choose now €, § and 2o € (—60/4,0/4) so that (6.60)
holds. Clearly, one can take a small open set Z around Ej such that for all E € Z (6.60) holds
and that

dist{o(hL, — z0), I} = > 0.

Since xg,x9 — € € (—0/2,60/2), for each n,

P ({m(n) 2o — v.(n)] < %}) > 60 > 0,

where 0, does not depend on n. We now repeat the previous probabilistic arguments to show
that the conditions of Theorem 3.1 are satisfied for a.e. w, and that ¥, NZ = (). We remark
that now the integer n in (6.58) should be replaced by 4np. Since Ey € (minj(y¢), maxj(y)) is
an arbitrary point, the statement follows.

We leave it as an exercise to the reader to combine the above arguments with Theorem 1.3

of the Introduction to finish the proof of Theorem 1.1, part 1.
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