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Abstract

We study spectral properties of random Schr�odinger operators h� � h��v��n� on l��Z�

whose free part h� is long range� We prove that the spectrum of h� is pure point for typical

� whenever the o��diagonal terms of h� decay as ji� jj�� for some � � 	�
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� Introduction

In this paper we study spectral properties of random Schr�odinger operators

h� � h� � v��n�� �����

on l��Z� where h� is not the usual free Hamiltonian but only a bounded self�adjoint operator

with some o	�diagonal decay� We assume that v��n� are independent and identically distributed

random variables on a probability space �
�F � P � with density p�x�� We denote by V the support

of the probability measure p�x�dx� In the sequel� unless otherwise stated� we will always assume

that V is compact� We further assume that h� is translation invariant� namely that there is a

function j � Z �� C such that

�h����n� �
X
m

j�n�m���m�� ���
�

We are interested in the case where

jj�n�j � Chni��� �����

for some constants � � � and C � �� Here and in the sequel� hxi � �� � x������ Let

�j��� �
X
n

j�n�ein�� � � ���� ���

If ����� holds� then ��h�� � �min �j����max �j����� We remark that if in addition the function

�j��� is piecewise monotone� then the spectrum of h� is purely absolutely continuous�

Let � � ��h�� � V� The standard argument yields that ��h�� � � P �a�s� Furthermore�

there exist sets �ac��sc��pp � R such that P �a�s�� �ac�h�� � �ac� �sc�h�� � �sc� �pp�h�� � �pp�

and � � �ac � �sc � �pp� see e�g� �CFKS�� As usual� we denote �c � �ac � �sc� We are

interested under what conditions the spectrum of h� is pure point P �a�s�� or in other words�

under what conditions is �c � �� To the best of our knowledge� the only known result is proven

in �AM�� If h� � h� � 	v��n�� then for j	j su�ciently large �c � �� This result also holds for

the d�dimensional analog of ����� if � � d� Simon and Spencer �SS� have studied deterministic

Hamiltonians of the form ������ and they derived a set of su�cient conditions under which these

operators have no absolutely continuous spectrum� Their results motivated our work� and we

will discuss them below�

Since the model ����� has been rarely studied� we will brie�y discuss on the typical example

some of its main features� Assume that j��� � ��� j�n� � jnj��

����� where � is the usual

Riemann zeta function� Then the long range Laplacian h� generates a random walk on Z which

is transient if � � 
� and recurent if � 	 
� Let h��� � ��j���� The function h is strictly






monotone and di	erentiable on ��� ��� and we denote its inverse by h���E�� E � ���h��� Note

that ���h�� � ��� h����� The density of states of �h�� constructed using the periodic boundary

conditions� is n�E� � h���E�
�� The asymptotics of n�E� as E 
 � is computed from the

asymptotics of h��� as � 
 �� It is not di�cult to show that as E 
 ��

n�E� �
�
c�E

��� if � � ��
c�E

������� if � � � � ��

where c��s are computable constants� One can also compute the asymptotics of n�E� if � � ��

which includes logarithmic terms� Thus� if � � � � 

d� the operator h� has some characteristic

features of the usual free Laplacian on Zd de�ned by

��d���n� �
�


d

X
m�jm�nj���

���m�� ��n���

where jnj� �
P jnij� We remaind the reader that the random walk generated by �d is transient

if d � 
 and recurent if d � �� 
� Furthermore� ����d� � ��� 
�� and its density of states� nd�E��

satis�es nd�E� � cdE
d�� as E 
 �� These observations suggest that it is possible that in the

weak coupling regime and for � su�ciently close to � the model ����� has delocalized states�

On the other hand� it is natural to conjecture that mathematical localization holds whenever

� � 
� This paper deals with this conjecture� In particular� we will show that �c � � under the

following conditions�

a� � � ��

b� �j��� is an even real function strictly monotone on ��� ��� or� ess�supp�jv��n�j is su�ciently

large�

If � � � and b� holds� we will show using the theorem of Simon and Spencer �SS� that �ac � ��
Let us state our results precisely� We recall that V is the support of the measure p�x�dx�

Theorem ��� Assume that �j��� is an even real function strictly monotone on ��� ��� and that

int�V� �� ��
�� If � � � then �ac � ��
�� If � � � then �c � ��
Remark �� The �rst condition of the theorem is satis�ed� for example� if j�n� is an even positive

sequence such that nj�n� is convex for n � � �see Theorem ��� in �K��� In particular� the theorem

holds if j�n� � jnj��� The second condition of the theorem� intV �� �� is a condition on the

density p�x�� It is satis�ed� for example� if p is non�zero and continuous on some interval�

Remark �� Our estimates give some control of the decay of the eigenfunctions of h�� For exam�

ple� if j�n� decays faster then any polynomial �i�e� �j�
� is C��� then P �a�s� the eigenfunctions

of h� decay as

j�E���n�j � C��E�khni�k

�



for any k � �� On the other hand� if j�n� decays exponentially �i�e� �j�
� is analytic�� it does not

follow from our argument that the eigenfunctions of h� decay exponentially� To establish such

decay using our techniques appears to be di�cult technical problem�

If �j��� does not satisfy the conditions of Theorem ���� we can still prove localization providing

random variables v��n� could get large enough� Let

�� 
 ess�sup�jv��n�j�
j� 
 P jj�n�j�
�� 
 �� � j��

�����

Note that �� does not depend on n since the random variables v��n� are identically distributed�

If �� � �� we set I� 
 ����� ���� otherwise I� 
 ��

Theorem ��� Assume that intV �� � and let J 
 I� � �R n ���h� � a���� where a� � int�V��

�� If � � � then �ac � J � ��
�� If � � � then �c � J � ��

Remark� The assumption that V is a compact set is made for convenience reasons� and is not

used in the proof of Theorem ��
� part 
� Thus� whenever V is unbounded and � � �� �c � ��
Remark 
 after Theorem ��� holds also for Theorem ��
�

Our proofs are based on an approach to localization in d � � pioneered by Simon and Spencer

�SS�� and further developed in �KMP�� �M�� �M��� �GJMS�� The principal idea is to show that a

particle with energy in a given interval I has to tunnel through an in�nite sequence of �barriers�

to reach in�nity� These barriers can be the usual potential barriers� as in Theorem ��
� or the

tunneling can be forced due to the gaps in the spectrum of long periodic approximations of h��

as in Theorem ���� In either case� under the conditions of the theorems� we can prove that such

barriers exists and that they are e	ective in preventing tunneling�

Simon and Spencer have discussed the deterministic model h � h� � v� where v is a bounded

potential� Their result �see �c� in Introduction and Theorem ��� in �SS�� can be paraphrased as

follows�

Theorem ��� �Simon�Spencer� Assume that � � �� Let Ik� k � Z� be a sequence of intervals

with centers ck and of width lk such that ck � �� and lk �� as k� ��� If v� is a potential

and

max
n�Ik

jv�n�� v��n�j � � �����

as k � ��� then �ac�h� � ��h� � v���

Our proof of Theorem ���� part �� goes as follows� We show that for each �xed energy E � �

there is an open interval I � E� and a periodic potential vp� such that I � ��h� � vp� � ��

�



and that conditions of Theorem ��� are satis�ed for a�e �� That is� for a�e� � there exists a

sequence of intervals Ik��� satisfying the conditions of Theorem ��� so that ����� holds with

v � v� and v� � vp� Then �ac�I � �� and since E is arbitrary� Theorem ���� part �� follows� We

remark that if h� is the usual free Laplacian� a similar proof of absence of a�c� spectrum for one

dimensional Anderson model is given in �SS�� Our main contribution here is a novel construction

of spectral gaps for periodic approximations of h� which is applicable in the long range case�

This construction is presented in Section ��

To idea of Simon and Spencer has been to use trace class perturbations to show the absence

of a�c� spectrum� A more detailed analysis is needed to prove localization� Following the ideas of

�KMP�� �M�� �M��� �GJMS�� we will prove Theorem ���� part 
� by constructing a suitable cluster

expansion of the resolvent �h� � z��� with respect to the intervals Ik���� Such an expansion

allows for a �ner analysis of tunneling� However� we need a more restrictive condition on � to

control the convergence of the expansion� Let m be the Lebesgue measure on R� Under the

conditions of Theorem ���� part 
� we will show that for a�e� �E� �� with respect to the product

measure m� P �

lim
���

X
n�Z

������� �h� � E � i�����n�
���� ��� �����

The result then follows from the Simon�Wol	 theorem �SW� �for its various reformulations see

�AM���

The proof of Theorem ��
 follows a similar strategy� except that tunneling is now forced by

a trivial gap if E �� ��h� � a��� and by potential barriers if E � ����� ����
The results proven here are used in �JM� to study the propagation properties of surface waves

in regions with random boundaries in dimension d � 
� For additional information on the theory

of surface waves and its relation to spectral theory of long range Hamiltonians� we refer the

reader to �JMP�� �G� and �JL��

The paper is organized as follows� In the next section we collect some preliminary technical

results� In Section � we study deterministic operators of the form h� � v� We prove there our

principal technical result� Theorem ���� which shows that under suitable assumptions on the

existence of tunneling barriers� ����� holds in a deterministic setting� In Sections � and � we

study gaps in the spectrum of the operators h� � vp� where vp is a periodic potential� Finally�

in Section � we combine these results with some probabilistic arguments to �nish the proofs of

Theorems ��� and ��
�
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� Preliminaries

In this section we collect a few technical results which we will use in the sequel� Henceforward

we will use normalization j��� � � in ���
��

A path � connecting n and m is any sequence of sites � � �i�� i�� � � � ik� such that i� � n�

ik � m� The length of this path is j� j � k� To the path � we associate a sequence of bonds

�b � �b�� � � � � bk�� where

b� � �i�� i��� b� � �i�� i��� � � � � bk � �ik��� ik��

We write s � � if s is one of the sites of the path � � and b � �s� t� � �b if b is one of its bonds�

We use the shorthand j�b� � j�s� t�� Let h � h� � v� where v is an arbitrary potential� and

R�z� � �h� z����

R�n�m z� � ��n� R�z��m��

Recall that j� is given by ������ Let �nm be the usual Kronecker symbol�

Proposition ��� If Im�z� � j� then

R�n�m z� � � �nm
z � v�n�

�X
�

�Y
s��

�

z � v�s�

�
�
��Y
b��b

j�b�

�� � �
���

where the sum is over all paths connecting n and m� For each � � � the series converges uniformly

in the half�plane Im�z� 	 j� � ��

Proof� We split the set of paths connecting n and m into the disjoint classes Tk such that � � Tk
i	 j� j � k� For any k� X

��Tk

Y
b��b

jj�b�j �
	X

n

jj�n�j

k

� jk� �

and if Im�z� � j� then

X
k	�

X
��Tk

�Y
s��

����z � v�s����
���� �

��Y
b��b

jj�b�j
�� � X

k	�

jk�
jIm�z�jk��

���

Thus� the series �
��� converges uniformly in the half�plane Im�z� 	 j� � � for any � � �� Since

�h� � v�R�z� � I � zR�z��

�



we get

�h��n� R�z��m� � �nm � �z � v�n��R�n�m z��

Expanding h��n in the basis f�ig we get

R�n�m z� � � �nm
z � v�n�

�
X
i

j�n� i�

z � v�n�
R�i�m z��

Iterating this formula we derive Relation �
���� �

Proposition 
�� is known as the path expansion of the resolvent� A similar result holds if

the system is restricted to a box� Let I � Z be an arbitrary set� and let hD� be the operator h�

restricted to I with Dirichlet boundary condition� This operator is obtained by removing the

couplings between the points in I and Z n I� and acts on l��I� according to the formula

�hD� ���n� �
X
m�I

j�n�m���m�� �
���

Note that if the support of � � l��Z� is contained in I then ��� h��� � ��� hD� ��� It follows

that ��hD� � � ��h�� and khD� k � j�� We now de�ne the operator hI on l��I� by the formula

hI � hD� � v� We will refer to hI as the restriction of h � h� � v to I with the Dirichlet boundary

condition� Let RI�z� � �hI � z���� Then for n�m � I�

RI�n�m z� � � �nm
z � v�n�

�X
�

�Y
s��

�

z � v�s�

�
�
��Y
b��b

j�b�

�� � �
�!�

where the sum is over all paths which connect n and m and belong to I� If n or m �� I� we set

RI�n�m z� � �� �
����

In the proofs of Theorems ��� and ��
 we will make use of the following result which is an easy

consequence of Corrolary ��� in �SS�� We sketch the proof for readers convenience� If I � �c� d�

is an interval in R� we write I
 � �c � �� d� ��� Recall that � is given by ������

Proposition ��� Let I be an interval such that ��hI� � I � � and l be an integer such that

� � l � �� Then for every � � � there is a constant C
� which depends on � only� such that for

E � I
�
jRI�n�m E�j � C
hn�mi�l�

Proof� We de�ne the operator x on l��I� by �x
��n� � n
�n�� Since � � l � �� one can show

�see Lemma ��� in �SS�� that the k�fold commutator �x� � � � �x� h�� � � �� is a bounded operator if

� � k � l� and that its norm does not depend on I� Using the identity

�x� exp�ithI�� � i
Z t

�
exp�ishI� �x� hI � exp�i�t� s�hI�ds�

�



and arguing inductively� one shows that

k �x� � � � �x� exp�ithI�� � � �� k � C�� � jtj�k�

for any � � k � l� Choose now C�
� function f such that f � � on ��hI� and f � � on I
��� Let

gE�t� � �t�E���f�t�� Clearly� as long as E � I
� f can be chosen so that gE is a C�
� functions

whose derivatives have bounds which depend only on �� Note that gE�hI� � �hI � E���� Since

gE�hI� �
�p

�

Z bgE�s� exp�ishI�ds�

it follows that the k�fold commutators �x� � � � �x� gE�hI�� � � �� are bounded operators if � � k � l�

whose norms have bounds which depend only on � �if E � I
�� Finally� the result follows from

the identities

�n�m�l��n� �hI � E����m� � �n�m�l��n� gE�hI��m�

� ��n� �x� � � � �x� gE�hI�� � � ���m�� �

Recall that j� is given by ������ We will also need

Proposition ��� Let l an integer such that � � l� � and I � R� I � Z sets such that for some

� � �

inf
n�I�E�I

jv�n�� Ej 	 j� � ��

Then ��hI� � I � �� and for all E � I�

jRI�n�m E�j � C
hn�mi�l�

where C
 depends on � only� Furthermore� there is a constant C such that for � � �� C
 � C
��

Proof� Since khD� k � j��

��hI� � ��j�� j�� � fv�n� � n � Ig�
see e�g� Lemma ��� below� It follows that ��hI� � I � �� To prove the bound on the resolvent�

we consider �rst the case n �� m� Let � � j� � � and � � n � m� The path expansion of the

resolvent RI �recall �
�!�� leads to the bound

jRI�n�m E�j � �

�

�X
k��

�

�k

X
s�����sk�Z

s������sk��

Y
��i�k

jj�si�j�

If

h��� �
X
s

eis�jj�s�j�

�



then X
s�����sk�Z

s������sk��

Y
��i�k

jj�si�j �
�


�

Z �

��
e�i��h���kd��

Since jh���j � j� � �� we have that

jRI�n�m E�j � �


��

�X
k��

Z �

��
e�i��

	
h���

�


k

d� �
�


��

Z �

��
e�i��

h���

�� h���
d��

Since the function h���
�� � h���� is l�times continuosly di	erentiable� the result follows from

integration by parts� The estimate of C
 if � � � is obvious�

If n � m� the argument is simpler� and in fact follows from the observation that if E � I
then distfE� ��hI�g 	 �� One can also argue directly�

RI�n� n E� � �

�
�

�X
k��

�

�k��

X
s�����sk�Z

s������sk��

Y
��i�k

jj�si�j

� �

�
�

�X
k��

�

�k��

	X
s

jj�s�j

k

�
�

�
� �

We will also make use of the following two versions of the well�known Kolmogorov inequality�

For the proofs we refer the reader to �M��� �GJMS�� The history of the Kolomogorov inequality

is discussed in �A�� In the sequel jAj stands for the Lebesgue measure of the set A�

Proposition ��� Let ��� � � � � �n and 	�� � � � � 	n be real numbers such that
P j�kj � �� Let h and

f be functions de�ned by

h�	� 

nX

k��

�k

	� 	k
� f�	� 


nX
k��

j�kj
�	� 	k��

�

where 	 � R� Then

jf	 � jh�	�j � Mgj � 

M�

jf	 � f�	� � Mgj � ��n
M�����

The �nal technical result we need is�

Proposition ��� Let I� be a sequence of �nite intervals such that I� � Z as ���� and let M
be a measurable set� Then� �n � Z and a�e� E � M�

lim
���

X
m�Z

�����n� �h� E � i�����m�
���� � lim inf

���

X
m�I�

�����n� �hI� � E����m�
���� �

!



Proof� Let M� � M n �����hI���� Since each hI� has a discrete spectrum� jM�j � jMj� We

denote by ��n and �n the spectral measures associated to the vector �n and the operators hI� and

h� For each E � M�� �hI� � E��� is well�de�ned and

X
m�I�

�����n� �hI� � E����m�
���� �

Z d��n�	�

j	� Ej� �

Thus�

lim
���

X
m�Z

�����n� �h� E � i�����m�
���� � lim

���

Z d�n�	�

j	� Ej� ��

� lim
���

lim
���

Z d��n�	�

j	� Ej� � ��

� lim inf
���

X
m�I�

�����n� �hI� � E����m�
���� � �

� The main theorem

Let h� be given by ���
�� v be a potential� and h � h� � v� We will use freely the notation

introduced in the previous section� In this section we prove

Theorem ��� Assume that ����� holds for some � � �� Let I � �c� d� be an open interval and

a 	 
 an integer� Assume that there exists an integer N 	 � such that� �n � �� the intervals

��aN�n � �� aN�n�� � �� ������

contain sub�intervals I�n of length l�n 	 n such that

��hI�n� � I � �� ����
�

Then for a�e� E � I with respect to the Lebesgue measure�

lim
���

X
m�Z

������� �h� E � i�����m�
���� ��� ������

Note that it follows from ����
� and Proposition 
�
 that for all E � I
� 
 �c � ��� d� ����

jRIn�k� k� E�j � C
�hk � k�i�l� ������

where l is an integer such that � � l � � �e�g� l � ��� and the constant C
� depends only on ���

In the sequel we �x small �� � � and establish Relation ������ for a�e� E � I
� � Since �� � � is

arbitary� this su�ces�

We begin by introducing several sequences of intervals which will play an important role in the

sequel� Let the In�s be as in the theorem� In 
 �an� bn� and ln � jan � bnj��� Let M� � �a��� b���

��



For n � �� we set Mn � �an� bn���� and for n � �� Mn � �an��� bn�� We will refer to the intervals

Mn as the main blocks� Let �� � �b��� a��� For n � �� we set �n � �bn� an���� and for n � ��

�n � �bn��� an�� In the sequel we will refer to the In�s as the black blocks and to �n�s as the white

blocks� Note that for n � ��

Mn � In ��n � In��� ������

A similar relation holds for n � ��

The strategy of our argument is the following� The black blocks are long barriers� Although

we do not have any information about the values of the potential within the white blocks� we

know that these blocks are not �too long�� We will construct a suitable expansion of the resolvent

�h� z��� in terms of the main blocks Mn� We then use the decomposition ������ and tunneling

estimates to further re�ne this expansion� and to establish �������

We denote by hMn the restriction of h to Mn with Dirichlet boundary condition� Let RMn�z�

be the resolvent of hMn and RMn�p� q z� its matrix elements� We �rst collect some a priori

estimates on RMn� Let

x���n � an� x
���
n � bn� x

���
n � an��� x

�	�
n � bn���

Recall that � � � and that hxi � �� � x������ Throughout� we will freely use the convention

�
�����

Proposition ��� Let � � � be such that �
� � 
�� � ��� Then for every � � � there is a set

M
 � R such that�

�� jR nM
j � ��


� For each E � M
 there is a positive integer nE�
 such that for jnj 	 nE�
 the following

estimates hold�

max
i�j

���RMn�x�i�n � p� x�j�n � q E�
��� � �hni��
hpi��
hqi��
� ������

max
i

X
q�Mn

���RMn�x�i�n � p� q E�
���� � �jMnj� ��hni����
�hpi����
�� ������

max
jp�qj	ln��

jRIn�p� q E�j � �hp� qi�
� ������

Proof� Let Ln � jMnj� �� Then

RMn�x�i�n � p� x�j�n � q E� �
LnX
k��


k�x
�i�
n � p�
k�x

�j�
n � q�

E � Ek

�

where 
k are eigenfunctions and Ek eigenvalues of hMn � Let

An�p� q� �
n
E �

���RMn�x�i�n � p� x�j�n � q E�
��� � �

�
hni��
hpi��
hqi��
 for � � i� j � �

�
�

��



Note that

LnX
k��

j
k�x�i�n � p�j � j
k�x�j�n � q�j �
	

LnX
k��

j
k�x�i�n � p�j�

��� 	 LnX

k��

j
k�x�j�n � q�j�

���

� ��

It follows from Proposition 
�� that jAn�p� q�j � �hnihpihqi����

�� Since

X
n

X
p�q

jAn�p� q�j ���

it follows from the Borel�Cantelli lemma that there exists a measurable set M�

 such that �� and


�� ������ hold�

We now consider Relation ������� Note �rst that

X
q�Mn

jRMn�x�i�n � p� q E�j� �
LnX
k��

j
k�x�i�n � p�j�
jE � Ekj�

It follows again from Proposition 
�� and the Borel�Cantelli lemma that there exists a measurable

set M�� �which does not depend on �� such that �� and 
�� ������ hold� Taking M
 � M�

 �M���

we deduce that ��� and 
� ������� ������ hold�

Recall that C
� is given by ������� Let q
 be an integer such that

n � q
 � 
C
�
n � �� ����!�

Clearly� we may assume that nE�
 is chosen in such a way that nE�
 � q
� and thus that �������

������ hold for each E � M
 and jnj � nE�
� �

Remark �� The various parametrizations x�i�n in the previous lemma are introduced for later

convenience�

Remark �� Note that nE�
 is not speci�ed uniquely� To avoid some ambiguites� for given � � �

and E � M
 we de�ne nE�
 as the smallest positive integer such that ������������� hold for all

jnj 	 nE�
�

Proposition ��
 gives information on the resolvent matrix elements of RMn starting with a

su�ciently large index n which depends on the energy� To circumvent some di�culties which

arise from this E�dependence� we introduce the sets

Mk�
 �
k�

j��

fE � E � I
� and nE�
 � jg

Since RMn�s� t E� are Lebesgue measurable functions of E� the sets Mk�
 are measurable� Clearly�

if i � k then Mk�
 � Mi�
 Furthermore� it follows from Proposition ��� that for each � � ��

�k	�Mk�
 is of full measure in I
� � Note that some of the sets Mk�
 might be empty� However�

�




for each � � � there is k��� � � such that Mk�
 �� � if k � k���� Let C be a constant from

Proposition 
�� and let

L � maxfjcj� jdjg� j� � C
��

�recall that I � �c� d��� For given k and �� we introduce an auxiliary potential vk�
 by the formula

vk�
�n� �

�
L if n �Ms� jsj � k�
v�n� if n �Ms� jsj � k�

The reasons for introducing this auxiliary potential are the following�

a� If E � Mk�
 and v is replaced by vk�
 then the inequalites ������ and ������ hold for all n�

b� If jnj � k then it follows from Proposition 
�� and the choice of L that the inequality ������

holds for all p� q � In�

Let

J� 

�

j�jjj��

Mj�

We denote by h��k�
 the operator h� � vk�
 restricted to J� with Dirichlet boundary condition� We

will prove below the following result�

Proposition ��� There exists �� � � such that for k � k����� E � Mk�
�� and i � �k
s��kMs�

lim sup
���

X
m�J�

�����i� �h��k�
� � E����m�
���� ���

Let us show how Relation ������ �for n � �� follows from this proposition� Denote for the moment

by Rk�
� the resolvent of the operator h� � vk�
�� It then follows from Propositions 
�� and ���

that for E � Mk�
� and i � �k
s��kMs�

lim
���

X
m�Z

jRk�
��i�m E � i��j� � Ci�k�
� ��� ���
��

Furthermore� it follows from the resolvent identity that

R��� m E � i�� � Rk�
���� m E � i�� �
X

i�Ms�jsj�k

�L� v�i��R��� i E � i��Rk�
��i�m E � i���

Since for a�e� E � R� lim���R��� i E� i�� exists and is �nite� we derive that for a�e� E � Mk�
��

jR��� m E � i��j� � CE

X
i�Ms�jsj�k

jRk�
��i�m E � i��j� �

This inequality and ���
�� yield Relation ������ for n � � and for a�e� E � �kMk�
��

The rest of this section is devoted to the proof of Proposition ����

Notation� In the sequel we will denote by the same letter C various constants which depend

��



only on C
� in ������� The values of these constants may change from estimate to estimate�

Furthermore� we will drop the subscripts k and � in the sequel whenever there is no danger of

confusion� For example� we denote by R��n�m z� the matrix elements of the resolvent �h��k�
 �
z���� etc�

We will prove Proposition ��� in the case where i � �� Also� we will assume that a � 
 in

������� A similar argument applies to the other values of i and a�

Let � � � be given� Our �rst goal is to develop a suitable expansion of the matrix resolvent

element R���� m z� with respect to RMs � Let � be any path in the expansion �
�!� which connects

� and m� � � ��� n�� n�� � � � � nk� m�� To such a path we associate a sequence of bonds �b�� � � � � bl�

and a sequence of blocks �Ms� � � � � �Msl� in the following way� Let nk� be the �rst of the nl�s which

is not in the block M�� Then let b� � �nk���� nk��� We denote the block to which nk� belongs by

Ms� � Let nk� be the �rst of the nl�s� for l � k�� which is not in Ms�� and let b� � �nk���� nk��� We

denote the block to which nk� belongs by Ms� � If nk� �Ms�Mt then� by de�nition� s� � minfs� tg
if s� t 	 �� and s� � maxfs� tg if s� t � �� We now continue inductively� It is helpful to invoke

the following picture� The path � starts in the block M�� and wanders for some time within

this block� It then leaves M� and jumps to a di	erent block Ms� � In the bond b� we record

the site nk��� � M� at which the path takes o	� and the site nk� � Ms� at which it lands� The

path now wanders through Ms� and then jumps to Ms� � etc� The last bond bl � �nkl�� � nkl�

corresponds to the last entry into the block Msl 
 Mn� which contains m� Since neighboring

blocks intersect� the paths can land at the site which belongs simultaneously to two blocks in

this case� by de�nition� we say that the path landed in the block which is closer to �� Clearly�

the sequences fbig and fMsig do not uniquely determine the path� great many paths � will

determine the same sequences of blocks� Note that fbig� however� uniquely determines fMsig�
Let B be the set of all sequences of bonds �b � fbig obtained in the above way�

Regrouping the elements in the expansion �
�!� we get

R���� m z� � ��m
�v���� z� �
X
�b�B

RM���� nk��� z�j�nk��� � nk��RMs�
�nk� � nk��� z� � � �

� � � RMsl��
�nkl�� � nkl�� z�j�nkl�� � nkl�RMn�

�nkl� m z��

At this point� of course� this relation holds only for Im�z� � j�� However� for any z � C� if the

series on the right hand side converges absolutely then its sum is R��� m z�� To show this� for

z � C we de�ne

R���� m z� � ��m
�v���� z� �
X
�b�B

RM���� nk��� z�j�nk��� � nk��RMs�
�nk� � nk��� z� � � �

� � � RMsl��
�nkl�� � nkl�� z�j�nkl�� � nkl�RMn�

�nkl� m z�� ���
��

whenever the sum converges absolutely� We then have

��



Proposition ��� If z � C and if R��� m z� is de�ned for all m � J�� then z �� ��h�� and

R���� m z� � R���� m z��

Remark� In the sequel� we will apply this proposition in the case z � E � R�

Proof� If the series ���
�� converges absolutely� the various sums can be interchanged� and one

easily shows that the vector R���� �  z� � l��J�� satis�es the equation

X
n�J�

j�n�m�R���� n z� � �vk�
�m�� z�R���� m z� � ��m� m � J��

However� if this equation has a solution then z �� ��h��� the solution is unique and is equal to

Rl��� m z�� ��

We proceed to prove the following statement� There exists �� � � such that for k � k����

and E � Mk�
�� the formal series ���
�� converges absolutely and

X
m�J�

jR���� m E�j� � C �� ���

�

where the constant C does not depend on �� Proposition ��� then follows from Proposition ����

Let us consider a typical term in the formal expansion ���
���

RMsi��
�nki�� � nki�� E�j�nki�� � nki�RMsi

�nki � nki���� E��

For notational convenience� our analysis of such terms is based on case by case analysis� de�

pending on the arrangment of the blocks Msi��� Msi�� � Msi and Msi��� There are �" � 
� such

arrangments� We will consider only the arrangment si�� � si � si�� � si�� � �� After this case

is analyzed� the reader can easily convince himself that one argues similarly in all the other cases�

We denote by d�si��� si� the distance between the blocks Msi�� and Msi � Clearly� if si � si�� � ��

then d�si��� si� � �� In the sequel we �x � � � and k � k���� and proceed to obtain a suitable

estimate on

RMsi��
�nki�� � nki�� E�j�nki�� � nki� ���
��

for E � Mk�
� Even after specifying the arrangment of the main blocks� our argument is based

on the case by case analysis� depending whether the sites nki�� � nki�� belong to white or black

blocks� Recall that Msi�� � Isi�� ��si�� � Isi����� The following cases have to be considered�

�� nki�� � nki�� � �si�� �


� nki�� � �si�� � nki�� � Isi�����

�� nki�� � nki�� � Isi�����

�� nki�� � �si�� � nki�� � Isi���

�� nki�� � Isi����� nki�� � �si���

��



�� nki�� � Isi����� nki�� � Isi���

Case �� Recall that �si�� � �bsi�� � asi������ It follows from ����� that

jj�nki�� � nki�j � C
h
hnki�� � asi����ihasi���� � bsi����ihd�si��� si�ihnki � bsii

i���	
�

where C is a universal constant� The last term in the product� hnki�bsii���	� is used in estimating

the term in the expansion which follows after ���
�� in estimating ���
�� we will make use of the

similar term which arises in the estimation of j�nki�� � nki���� namely hnki�� � bsi��i���	� With

this convention� it follows from Proposition ��
 that for E � Mk�
����RMsi��
�nki�� � nki�� E�

��� � �
h
hsi��ihnki�� � bsi��ihnki�� � asi����i

i��

Since lsi���� 	 jsi��j and �
� � 
�� � ��� we get that

jRMsi��
�nki�� � nki�� E�j � C�

h
hsi��ihnki�� � bsi��ihnki�� � asi����i

i���
 hd�si��� si�i���	�
���
��

for some constant C� Thus� for E �Mk�
�X
nki�� �nki����si��

���RMsi
�nki�� � nki�� E�

��� � jj�nki�� � nki�j � C�hsi��i���
hd�si��� si�i���	� ���
��

Case �� The critical input in deriving estimate ���
�� is that the path jumps over the long black

block Isi����� If nki�� � Isi���� and the sum is over nki�� such that

nki�� � asi���� � �lsi����
�� ���
��

then the same argument �with a change of the constant� of course� yields the estimate ���
���

We have choosen the constant �
� for de�niteness any � � � � � will do as well� Di�culties

arise if nki�� is close to bsi���� in this case� the jump Msi�� � Msi could be very short and we

cannot use the previous arguments� So we now assume that

nki�� � asi���� � �lsi����
�� ���
��

In this case we use the formula

RMsi��
�nki�� � nki�� E� �

X
r�Isi����si��

t�Isi����

RMsi��
�nki�� � r E�j�r � t�RIsi����

�t� nki�� E��

We will make use of the following two elementary estimates�

jj�nki�� � nki�j � C
h
hnki�� � bsi����ihd�si��� si�ihnki � bsii

i����
jj�r � t�j � C

h
hr � asi����iht� asi����i

i����
�

���
��

��



It now follows from Propositions ��
 that for E �Mk�
 �recall a� stated before Proposition �������RMsi��
�nki�� � r E�

��� � �
h
hsi��ihnki�� � bsi��ihr � asi��i

i��

�

We now again drop the last term in in the �rst Equation in ���
�� and use the similar term

arising from j�nki�� � nki���� With this convention and arguing as before� we deduceX
nki��

��si��

nki��
�Isi �jnki��

�asi����
j��lsi����

���RMsi��
�nki�� � nki�� E�

��� � jj�nki���nki�j � C�hsi��i��
hd�si��� si�i���	S

where

S 
 max
jnki���asi����j	�lsi�����	

X
t�Isi����

ht� asi����i����jRIsi����
�t� nki�� E�j�

We break the sum over t into the regions where t�asi���� � lsi����
� and t�asi���� � lsi����
��

To bound the �rst sum� we use the bound ������ and ���
�� and for the second sum we use that

lsi���� � jsi��j� In this way� we arrive at the estimate S � Chsi��i�����
�� Combining now the

estimates for the cases ���
�� and ���
�� we derive an estimate analogous to ���
���X
nki��

��si��
nki��

�Isi����

���RMsi��
�nki��� nki�� E�

��� � jj�nki�� � nki�j � C�hsi��i���
hd�si��� si�i���	� ���
!�

This concludes the discussion of the Case 
�

Case �� Assume now that nki�� � nki�� � Isi����� Again� we encounter di�culties only if nki�� �
asi���� � �lsi����
�� In this case we use the formula

RMsi��
�nki��� nki�� E� � RIsi����

�nki�� � nki�� E�� ������X
r�Isi����

t��si���Isi����

RIsi����
�nki�� � r E�j�r � t�RMsi��

�t� nki�� E��

If E � Mk�
 and si�� � � � k� then it follows from the de�nition of vk�
 �recall b� stated before

Proposition ���� that jRIsi����
�nki�� � nki�� E�j � �hnki�� � nki��i��� and it is elementary to

establish Relation ������ below� So we consider only the case si�� � � � k� We now have that

lsi���� � C
� �recall ������ and the de�nition of Mk�
�� We will also use the estimate ���
���

with the previous convention of droping the last term and using a term hnki��� bsi��i���	 arising

from j�nki�� � nki���� Using these facts� one shows thatX
nki��

�nki��
�Isi����

jnki��
�asi����

j��lsi����
��

jRIsi����
�nki�� � nki�� E�j � jj�nki�� � nkij � C�hsi��i���
hd�si��� si�i���	�

by distingushing the cases jnki�� � nki��j � lsi����

�� lsi����

�� In the �rst one uses ������

and in the second case that nki�� � bsi�� � lsi����
� � C
��

��



To handle the second term in ������ one argues similarly as in the Case 
� Thus we again

arrive at the estimateX
nki�� �nki���Isi����

���RMsi��
�nki�� � nki�� E�

��� � jj�nki���nki�j � C�hsi��i���
hd�si��� si�i���	� ������

Cases 	�
� In each of these cases� the path jumps over the long block Isi����� Arguing as in Case

�� one derives estimates analogous to ���
�� and ���
���

We add that a similar argument shows thatX
t�M�

jRM���� t E�j�t� n��j � C�hd��� s��i���	�

for a suitable constant C� Since the �rst parameter is �xed to be zero� here we do not need

a contribution from j on the left�hand side to compensate for the sum with respect to this

parameter�

We emphasize that for all the other initial arrangments of the main blocks Msi�� � Msi��� Msi

and Msi�� � a similar argument leads to the estimates analogous to ���
��� ���
!� and ������� We

also remark that in our analysis the blocks Msi�� and Msi�� played a minor role � they contributed

only in a sense that a certain part of the estimate is carried over to be used in the estimation of

the next term�

We now go back to the formal expansion ���
��� It follows from the above considerations that

��m
jv���� Ej� X
�b�B

jRM���� nk��� E�j jj�nk��� � nk��j
���RMs�

�nk� � nk��� E�
��� � � �

� � �
���RMsl��

�nkl��� nkl�� E�
��� jj�nkl�� � nkl�j

���RMn�
�nkl� m E�

���
� ��m
jv���� Ej� X

j	�


�C�X
k	�

�

k��


�Aj

G�m�� ����
�

Here C is a constant which depends only on �� in ������� and

G�m� 
 max
i

X
t�Mn�

hx�i�n� � ti���	
���RMn�

�t�m E�
��� �

The contribution hx�i�n� � ti���	 is the remaining part of the estimate analogous �for example� to

���
�� used in the estimation of ���
�� in the case si�� � sl�� �recall the conventions introduced

in the derivation of ���
��� ���
!�� ������ and the form of the expansion ���
���� Thus� if � is

chosen so that

C���� � �� �
�

�
� ������

we get that for k � k���� a�e� E � Mk�
� �� and �m � J�� the formal series ���
�� converges

absolutely� Here and in the sequel� � is the usual Riemann function�

��



We remark that in the estimation ����
� we have not used the contributions arising from

d�si��� si�� and it follows from analysis that all the conclusions of the previous paragraph hold

for any � � �� The contributions arising from d�si��� si� are however essential to estimate the

sum ���

� uniformly in �� To that end we need an improvement of the estimate ����
��

We split the set of bonds B as B � B� �B� where B� �B�� consists of bonds associated to the

paths whose length is � n�

 �	 n�

�� Accordingly� we decompose R���� m E� as

R���� m E� � A���� m E� � A���� m E��

To simplify the notation� we will assume that n� � � is even� n� � 
n��� A similar argument

applies if n� is odd or if n� � �� To estimate A� we again do not need the contributions arising

from d�si��� si�� It � is chosen so that ������ holds� we get that for E � Mk�
�

jA���� m E�j � X
j	n��

�C���� � ���j G�m� � 
 �C���� � ���n���G�m��

We now proceed to estimate A�� Here� we have to make use of the contributions arising from

d�si��� si�� Let us split B� into sets of disjoint bonds such that the associated paths have lengths

�� 
� � � � � n�� � �� Accordingly� A� splits as

A� �
n����X
l��

A�l��

To estimate A�l���� m E�� we note that if the path has the length l and n� � 
l� then at least

one of d�si��� si� satis�es d�si��� si� 	 
n���l� This leads to the estimate

jA�l���� m E�j � 
��n��	
�
C���� � ��
���

�l
If we choose � such that C���� � ��
��� � �
�� we arrive at the estimate

jA���� m E�j � 
 � 
��n��	G�m��

Thus� we summarize� if � is su�ciently small� and k � k���� then for all E � Mk�
 we have a

sharper estimate then ����
��

jR���� m E�j� � �
�
�C���� � ���n��� � 
��n��	

��
G�m��� ������

We proceed to estimate G�m��� Let Ln � jMnj� �� Then

G�m�� � Ln� max
i

X
t�Mn�

hx�i�n� � ti�	���
�jRMn�
�t�m E�j��

�!



This inequality can be rewritten as

G�m�� � Ln�

X
p

hpi�	���
� max
i

���RMn�
�x�i�n� � p�m E�

���� �
It now follows from Proposition ��
 that

X
m�Mn�

G�m�� � L�
n�
��
�� � ���hn�i����
� � C
�n�hn�i����
�� ������

We have absorbed N from ������ into the constant C� Choosing � in ������ so that C���� � �� �

�


� it follows easily from ������ and ������ that for E � Mk�
�X
m�Mn�

jR���� m E�j� � C
�n���hn�i����
��

Thus� we conclude� if �� is chosen su�ciently small� k � k����� and E � Mk�
�� then

X
m�J�

jR���� m E�j� � X
n�jnj��

X
m�Mn

jR��� m E�j�

� C
X
n


�jnj��hni����
��

where the constant C does not depend on �� This yields ���

�� The reader can easily convince

himself that none of the constants in above arguments depends on the particular choice i � �

and therefore that Proposition ��� holds� with the exactly same argument� for each i � �k
s��kMs�

Finally� we remark that if j�n� decays faster then any polynomial then � can be taken

arbitrarily large� We leave it as an exercise for the reader to show that in that case for a�e�

E � I and any m we have that

sup
�����

������� �h� E � i�����m�
��� � CE�khmi�k�

for any k � �� This estimate combined with Simon�Wol	 theorem �SW� will yield the decay of

eigenfunctions described in Remark 
 after Theorem ����

� Periodic potentials and gaps

In this section we study the operators h
�p � h� � v
�p� where v
�p is a periodic potential of the

form

v
�p�n� �

�
� if n 
 � mod p�
� if n �
 � mod p�

������

Here p is a positive integer and � � � a positive parameter� The operator h� is given by ���
��

and in the Fourier representation� it acts as the operator of multiplication by the function �j����


�



In this section we make the following assumption on �j����

�H� �j��� is a continuous real even function� strictly monotone and twice continuosly di	eren�

tiable on ��� ���

Remark� Note that conditions of Theorem ��� imply �H�� This hypothesis allows for some mild

singularity of �j � at � � �� For example� it is satis�ed if j�n� � jnj�� and � � ��

Notation� In the sequel we will use the shorthand ek�p � �j�k�
p��

The principal result of this section is

Theorem ��� Assume that �H� holds and let ���� ��� � ��h��� Then there exists �� � � and

p� � �� which depend only on �� and ��� such that for � � � � ��� p � p�� and ek�p � ���� ����

��h
�p� � �ek�p� ek�p � �
�k�p� � ��

for some �
�k�p � ��

Remark� If �j��� � 
 cos�� a similar result was proven in �KKS��

Notation� In the sequel� whenever there is no danger of confusion� we write h for h
�p and R�z�

for �h
�p � z����

The rest of this section is devoted to the proof of Theorem ����

Our argument is based on

Proposition ��� Let I be an open interval� If for all E � I and n � Z�

lim
���

X
m

jR�m�n E � i��j� ��� ������

then ��h� � I � ��

Proof� Fix n � Z and let �n be the spectral measure associated to the vector �n� We denote by

F �z� the Borel transform of �n� i�e�

F �z� 

Z d�n�	�

	� z
� ��n� �h� z����n��

It follows from the theorems of Fatou and de Vall#ee Poussin �see e�g� Chapter � in �S� for detailed

discussion� that

supp�n � fE � lim sup
���

ImF �E � i�� � �g�

Since

ImF �E � i�� � �
X
m

jR�m�n E � i��j� �


�



it follows from ������ that supp�n � I � �� Finally� since

��h� �
�
n�Z

supp�n�

we derive that ��h� � I � �� �
We will prove Theorem ��� by showing that ������ holds for each � � n � p � � and

E � �ek�p� ek�p � �
�k�p�� Since R�n � p�m � p z� � R�n�m z�� this su�ces� Let

G�n��� z� �
�p

�

X
m

eim�R�m�n z��

Since Z ��

�

���G�n��� E � i��
���� d� �

X
m

jR�m�n E � i��j�

to prove Theorem ��� it su�ces to show that for each ek�p � ���� ���� there exists �
�k�p � � such

that for all E � �ek�p� ek�p � �
�k�p� and � � n � p� �� the limit

lim
���

G�n����E � i��� ������

exists uniformly in �� To establish this fact� we proceed to compute G�n��� z��

The Fourier transform of the resolvent equation

�h� � �vp�m��R�m�n z� � zR�m�n� z� � �n�

is

�j���G�n��� z� � �S�n��� z� � zG�n���� z� � ein�

p


�� ����!�

where

S�n��� z� �
�p

�

X
m

eimp�R�mp� n z��

Notation� In the sequel� n is a �xed integer� and we will drop superscripts �n� whenever there

is no danger of confusion�

Let

Gl�� z� 
 G�� � 
�l
p z��

�jl��� 
 �j�� � 
�l
p��

�l��� 
 ein�����l�p�

p


��

We write �� � �� G� � G� Since S���
�l
p z� � S�� z�� translating the argument in Equation

����!� by 
�l
p� we get

�jlGl � �S � zGl � �l�







Thus� for � � l � p� ��

Gl �
�l � �S
�jl � z

� ������

Since

p��X
l��

Gl �
�p

�

p��X
l��

X
m

eim�����l�p�R�m�n z�

�
�p

�

X
m

eim�R�m�n z�
p��X
l��

el���im�p�

� pS�� z�

adding together Equations ������ and solving for S we get

S �


��

p

p��X
l��

�l
�jl � z

�A
�� �
�

p

p��X
l��

�
�jl � z

�A��

�

It now follows from Equation ������ that

G �
� � K�

��j � z��� � K��
� ������

where

K� �
�

p

p��X
l��

�� �l
�jl � z

� K� �
�

p

p��X
l��

�
�jl � z

� ����
�

Note that K� is a periodic function with a period 
�
p�

This explicit expression for G will play a central role in the sequel� The principal technical

ingredient in our proof is

Proposition ��� Assume that the conditions of Theorem 	�� are satis�ed and let ek�p � ���� ����

Then there exists �� � � and p� � �� which depend only on ��� ��� such that for � � � � �� and

p � p��

inf
�
j� � K����E�j 	 �

� ������

for all E � �ek�p� ek�p � �
�k�p� and some �
�k�p � ��

Let us show how this proposition yields Relation ������ and Theorem ����

Let E � �ek�p� ek�p � �
�k�p� and let �� and �� be the unique solutions of equation �j��� � E

which belong to intervals ��� �� and ���� �� respectively� Let

��l � �� � 
l�
p� � � l � p� ��

Then it follows from ������������� that the limit

lim
���

G�� E � i��� ������


�



exists uniformly in � on compact intervals which do not contain the points ��l � If �
�k�p is chosen

so that� �j� ej�p �� �ek�p� ek�p � �
�k�p�� then �� � �� is not an integer multiple of 
�
p� Thus�

if l �� �� only the terms with the index p � l in the sums ����
� do become singular in a small

neighborhod of ��l � and these two terms cancel each other in expression ������� More precisely�

if � � l� � p � � is �xed� we can rewrite ������ in a small neighborhood of the singular points

��l� as G � R�
R�� where

R� � ���jp�l� � z� �
�

p


���� �p�l�� �
p��X

l���l 
�p�l�

��jp�l� � z���� �l�
�jl � z

�A
R� � ��j � z�


���jp�l� � z� �
�

p


�� �
p��X

l���l 
�p�l�

�jp�l� � z
�jl � z

�A�A
It follows that the limit ������ exist uniformly in � in a small neighborhood of any point ��l �

l �� �� It remains to consider the case l � �� We rewrite G in small neighborhoods of the points

�� as G � �� � K��
R�� where

R� � ��j � z� �
�

p
�
�

p

p��X
l��

�j � z
�jl � z

�

It follows that the limit ������ exists uniformly in � in small neigborhoods of points ��� and

therefore for all ��

It remains to prove Proposition ��
� We will need

Lemma ��� Let f � ��a� a� �� R be a strictly monotone� twice continuosly di�erentiable func�

tion� For � � jxj � h � a

 we de�ne a function

F �x� h� �
X
k

x�kh�	�a�a


h

f�x � kh�� f���
� ������

Let � � jxj
h� Then
F �x� h� �

sign�x�

f ����

�
�

�
� �

�� �

�
� r�x� h�

where

jr�x� h�j � 


jf ����j
	

� � a
max jf ���x�j
min jf ��x�j



�

Proof� We will discuss only the case x � �� one argues similarly if x � �� Write F � F� � F��

where

F��x� h� �
X
k

x�kh�	��a


h

f�x � kh�� f���
� F��x� h� �

X
k

x�kh�	�a��


h

f�x � kh�� f���
�


�



We deal �rst with F�� Let nx � maxfk � x � kh � ��� a�g� Note that if n is the integer such that

�n � ��h � a � �n � 
�h� then n � nx � n � �� It follows from Taylors formula that����� �

f�x � kh�� f���
� �

f �����x � kh�

����� � �


jf ����j
maxx����a� jf ���x�j
minx����a� jf ��x�j �

Since �nx � ��h � �a

� we have that

F��x� h� �
�

f �����
�

nxX
k��

�

f �����k � ��
� r��x� h��

where

jr��x� h�j � a

jf ����j
maxx����a� jf ���x�j
minx����a� jf ��x�j � ������

If g�x� � f��x�� the same argument yields

F��x� h� � h
nh�xX
k��

�

g�h� x � kh�� g���
�

�

g������� ��
�

nh�xX
k��

�

g�����k � �� ��
� r��x� h��

where r��x� h� satis�es the estimate analogous to ������� Since g���� � �f ����� we get that

F �x� h� �
�

f ����

�
�

�
� �

�� �

�
�

�

f ����

nX
k��

�� 
�

�k � ���k � �� ��

�
�

f ����

�
�n���nx

n � � � �
� �n���nh�x

n � 
� �

�
� r��x� h� � r��x� h��

Since � � � � �� the result follows� �

We now �nish the proof of Proposition ��
� For de�nitness� we assume that �j ���� � � on

��� ��� Let ��� �� � ��� �� be such that �j��i� � �i� Choose p� such that ��
p� � minf��� ����g�
Let p � p� and ek�p � ���� ��� be given� Let � � � be a small number� For each E � �ek�p� ek�p � ��

we denote by ��E respectively the positive and negative solution of the equation �j��� � E� We

will study K��� E� for � � ���
E� �

�
E � 
�
p�� We can choose � su�cently small so that for some

b � ��
p� the intervals ���E�b� ��E�b� � ���� �� for all E � �ek�p� ek�p���� If � � ���
E� �

�
E�
�
p��

we split K����E� into three terms�

K��� E� � K�
� �� E� � K�

� �� E� � $K����E��

where

K�
� �� E� �

X
l

����l�p�	���b����b


�

p

�
�jl���� E

�

K�
� �� E� �

X
l

����l�p�	���b����b


�

p

�
�jl���� E

�


�



$K��� E� �
X
l

����l�p��	���b����b


�

p

�
�jl���� E

�

From this de�nition it follows that for all � � ���� �� � 
�
p��

j $K����E�j � C�� ������

where the constant C depends only on b and the function �j� To analyze the terms K�
� and K�

� �

we will use Lemma ���� It is apparent that� after translation� the sum which constitute K�
� and

is of the form ������� with h � 
�
p and

� �
�� ��

E

h
�

It then follows from Lemma ��� that

K�
� �� E� �

�


��j ����
E�

�
�

�
� �

�� �

�
� �r�E�� E��

The error term r�E is uniformly bounded and the bound depends only on b and �j� Note that

��
E � ��E �


k�

p
�


��E
p

�

where �E � � if E � ek�p� Furhermore� �E is a continuous function of E in a neighborhood of

ek�p and �E � � as E � ek�p� Thus� we can choose � such that j�Ej � �

 for E � �ek�p� ek�p � ���

One now easily shows that� after translation� the sum which consitute K�
� is of the form ������

with h � 
�
p and

�� �
j�� ��

E � 
k�
pj
h

� j� � �Ej�
It then follows from Lemma ��� that

K�
� �� E� �

�


��j ����E�

�
�

� � �E
� sign�� � �E�

�� j� � �Ej
�

� �r�E�� E��

where again r�E�� E� is uniformly bounded and the bound depends only on b and �j� Thus� we

conclude that for � � ���
E� �

�
E � 
�
p��

K� �
�


��j ����
E�

�E
��� � �E�

� ��R� � R��x � $K��

where

R� �
�

�j ����
E�

�
�

�� �
� sign�� � �E�

�� j� � �Ej
�
� R��� E� � r�E � r�E �

Furthermore� R� is always positive while R� is bounded � Finally� it remains to analyze the

function
�


��j �����

�E
��� � �E�

� ������


�



for � � � � �� This function is negative on the interval ��� j�Ej�� and positive on the interval

�j�Ej� ��� with vertical assymptotes at � and j�Ej� The maximal value of the function on the

interval ��� j�Ej� is

�

��j ����
E�j�Ej

�

Choose now �� such that $K� � �
� �recall �������� ��jR�j � �
� and that ��R� � �
� for

� � ��� �

�� Note that �� depends only on b and on the function �j� Since �E � � as E � ek�p�

we can �nd � such that for all E � �ek�p� ek�p � ��� and for � � ��� j�Ej� the function ������ is less

then ��� Thus� we summarize� there exists �
�k�p � � such that for all E � �ek�p� ek�p � �
�k�p� and

� � ���
E� �

�
E � 
�
p��

j� � K��� E�j 	 �

�

The Proposition ��
 follows�

� Dirichlet decoupling

Let v be a periodic potential with the period p� and let hL� be the operator h� with Dirichlet

boundary condition at �
pL�

hL� � h� �
X

jkj��pL�jk�j	�pL

j�k� � k���k� ���k� � j�k � k����k�� ���k�

Note that the operator hL� � restricted to l����
pL� 
pL��� coincides with operator hD� de�ned by

�
��� if I � ��
pL� 
pL�� We set h � h� � v� hL � hL� � v� Let �a� b� be an interval such that

� �� �a� b� and

��h� � �a� b� � ��
For any L� hL � h is a trace class operator� and the spectrum of hL within �a� b� consists of

�possibly empty� discrete set of eigenvalues of �nite multiplicity which can accumulate only at a

and b� We denote this set of eigenvalues by SL � fEi�L�g� In the next section we will need some

control over the set SL as L � � to verify the conditions of Theorem ��� for random Hamiltonians

������ The following technical result will su�ce�

Proposition ��� Assume that � � 
 and let � � � and � � � be given small numbers� Then

there exists �nitely many points r�� � � � � rk��	 in �a� �� b� �� and a positive number L��
� such that

for L � L��
�

SL � �a � �� b� �� � �k��	
l���rl � �� rl � ���

The points rl and the numbers L��
 and k��
 depend only on � and �� Furthermore� sup
	� k��
 �
k� ��� where k� depends only on ��


�



This section is devoted to the proof of this proposition�

In our argument we will make use of the following three simple facts�

Lemma ��� Let A � l��Z� �� l��Z� be a selfadjoint operator and let Aij � ��i� A�j�� Let

M� � sup
j

X
i

jAijj� M� � sup
i

X
j

jAijj�

Then kAk � maxfM��M�g�

For the proof� see �Ka�� Section ������ or Lemma ��� in �SS��

Lemma ��� Let A and B be bounded selfadjoint operators� Then

��A � B� � ��A� � ��kBk� kBk��

Proof� Assume that E �� ��A� � ��kBk� kBk�� Then dist�E� ��A�� � kBk � � for some � � ��

and k�A� E���k � �
�kBk� ��� In particular� the series

�X
n��

��E � A���B�n

converges to a bounded operator R� Let C � R�A� E���� One easily shows that

C�A � B � E� � �A � B � E�C � I�

so E �� ��A � B�� ��

Lemma ��� Let A and B be bounded selfadjoint operators such that ��A� � �a� b� � �� Then

E � ��B� � �a� b� if and only if � � ���A�B��A� E�����

Proof� The lemma follows from the identity

I � �A�B��A� E��� � �B � E��A� E����

which holds for E � �a� b�� �

We now proceed with the proof�

Let d��� �� � minf�

� �

g� and let n��
 be a positive integer such that

X
jnj	n	��

jj�n�j � d��� ���

Our �rst requirement on L��
 is

L��
 	 n��
� ����!�


�



If L � L��
� we decompose h� � hL� into three parts�

H� �
X

�pL�L��	
k��pL

k���pL

j�k � k����k�� ���k � j�k� � k���k� ���k��

H� �
X

��pL�k
��pL�L��	
k�
��pL

j�k � k����k� � ���k � j�k� � k���k� ���k�

H� �
X

��pL�k��pL�L��	
k���pL

j�k � k����k�� ���k � j�k� � k���k� ���k�

�
X

��pL�L��	�k��pL

k�
��pL

j�k � k����k�� ���k � j�k� � k���k� ���k�

The operators Hi are selfadjoint and H�H� � H�H� � �� It follows from Lemma ��
 that

kH�k � d��� ��� We denote

Ti�E� 
 Hi�h� E����

It follows from Lemma ��� that ��hL� � ��hL � H�� � ��d��� ��� d��� ���� Thus� if E � SL �
�a � �� b� ��� then

A�E� 
 ��hL � H�� � �E � d��� ��� E � d��� ��� �� ��

If $E � A�E�� applying Lemma ��� with A � h and B � hL�H� and using that A�B � H��H��

we get that

� � ��T�� $E� � T�� $E��� ������

Note that if E � �a � �

� b� �

��

kT��E�T��E�k� kT��E�T��E�k � 


�

�
kH��h� E���H�k� kH��h� E���H�k

�

� ��

�


� X
k���k�	�

jj�k � k��j
�A�

sup
jk�k�j	L��	

�����k� �h� E����k��
��� �

Since � � 
� the series converges� and it follows from Proposition 
�
 that

sup
E��a�����b�����

�kT��E�T��E�k� kT��E�T��E�k� � C�
L��
� ������

Note also that for any E � �a� b��

T��E��T��E� � T��E��T��E� � �� ����
�

Since T�� $E� � T�� $E� is compact �in fact trace class�� it follows from ������ that there is a

vector �� k�k � �� such that

T�� $E�� � T�� $E�� � �� ������


!



It now follows from ����
� that

� � kT�� $E��k� � kT�� $E��k��

We conclude that if ������ holds for some L � L��
� then the relation

kTi� $E��k� 	 �

p


�

holds for either i � � or i � 
� Assume for de�nitness that i � � and let 
 � T��
kT��k�
Applying T� to both sides of ������ we get T�� $E�
� 
 � �� where � � �T�T��
kT��k� It now

follows from ������ that k�k � p

C�
L��
� In this way we conclude that if E � SL � �a� �� b� ��

and L � L��
� then for some $E � �E � d��� ��� E � d��� ��� and i � f�� 
g� either � � ��Ti� $E�� or

k�Ti� $E�� I���k 	 L��


p


C�� ������

We will use this relation shortly�

In the sequel i � �� 
� Since Hi�s are selfadjoint trace class operators and � �� �a� b�� the

spectrum of the operators h�Hi within �a� �
�� b� �
�� consists of �nitely many eigenvalues of

�nite multiplicity� We collect these eigenvalues into the set fr�� r�� � � � � rk��	g� These eigenvalues

do not depend on the choice of L� This follows from the observation that for di	erent values of

L� the operators h � Hi are unitarily equivalent� Let us now show that sup
	� k��
 � k� � ��

Indeed� if r � �a � �
�� b� �
�� is an eigenvalue of h�Hi with normalized eigenvector �� then

���H�
i �� � ��� �h� r���� 	 ��
����

Therefore�

Tr�H�
� � � Tr�H�

� � � 
k��
��
����

On the other hand�

Tr�H�
� � � Tr�H�

�� � �j�
X

k	��k���

jj�k � k��j�

Since � � 
� the series on the right hand converges� and the statement follows�

Assume now that E � SL � �a � �� b� ��� and that

E �� �k��	
l���rl � �� rl � ��� ������

Then for any $E � A�E�� we have that $E �� �k��	
l���rl � �

� rl � �

� and that ������ holds� In

particular� since distf $E� ��h�Hi�g 	 minf�
�� �

g�

k�h�Hi � $E���k � �
minf�
�� �

g�

Since

Ti� $E�� I � �Hi � h� $E��h� $E����

��



we have

k�Ti� $E�� I���k � kh� $Ekk�h�Hi � $E���k � C
minf�� �g�
where C is a uniform constant� Our last requirement on L��
 is that if C� is as in ������� then

L��
p

C�

� C
minf�� �g� ������

This yields that if L � L��


k�Ti� $E�� I���k � L��


p


C�� ������

We conclude that if L��
 satis�es ����!� and ������� L � L��
� E � SL � �a � �� b � �� and ������

holds� then for either i � � or i � 
� Relations ������ and ������ hold simultaneously for some
$E � A�E�� which is imposible� Thus� we must have that E � �k��	

l�� �rl � �� rl � ��� and the

proposition is proven�

� Proofs of Theorems ��� and ���

We start with the proof of the Theorem ��
� part 
� We �rst show that �c � ����� ��� � �� Let

�
�F � P � be the probability space associated to the model ����� �see� e�g�� �CFKS� or �CL��� Let

� � � and �
 � �� � �� Note that

P
��
jv��n�j � �
 � j� �

�




��
� �
 � ��

Let a be an integer such that a��
 � �� Let us consider the sub�intervals of �an� an���� ��an����an�

of the following form�

I�k�n � �an � 
�k � ��n � �� an � 
�k � �

�n � ��� I
�k�
�n � �I�k�n � ������

where � � k � �a�an � ��

n�� � �� � � is the greatest integer part�� Clearly� these are mutually

disjoint intervals of length n� Let

An�k �
�
� � jv��i�j � �
 � j� �

�



for all i � In

k � Ik�n

�
�

The probability of this event is P �An�k� � ��n
 � Let Bn be the event that no An�k take place� i�e�

Bn � 
 n ��kAn�k��

Clearly�

P �Bn� � ��� ��n
 ��a�a
n�����n����

A simple analysis leads to a �rough� bound

P �Bn� � O�
�a�

�
�a�

�n��n��

��



Since a��
 � �� X
n

P �Bn� ���

and the Borel�Cantelli lemma yields that for typical � only �nitely many events Bn take place�

This result� combined with Proposition 
�� yields that for typical � there is N��� such that all

the conditions of Theorem ��� are satis�ed with I � ���
� �
�� We conclude that for a�e� � � 


and a�e� E � ���
� �
�
lim
���

X
m

������� �h� � E � i�����m�
���� ��� ����!�

It now follows from the Simon�Wol	 theorem �SW� that �c � ���
� �
� � �� Since � � � is

arbitrary� the statement follows�

We now show that �c � �Rn��h� �a��� � � if a� � int�V�� Without loss of generality we can

assume that a� � �� Let � � � be such that ���� �� � V� Let E� � R n ��h�� be a �xed point�

Choose a and b such that E� � �a� b� � R n ��h��� We will use Proposition ��� with v 
 � and

p � �� For any � � � and � � � we can �nd L��
 such that

��hL� � � �a � �� b� �� � �k��	
l���rl � �� rl � ���

Since sup
	� k��
 � k� ��� we can choose �� �� and x� � ���

� �

� so that

x� � E� � �a � �� b� �� and x� � E� �� �k��	
l���rl � �� rl � ��� ������

Clearly� one can take a small open set I around E� such that for E � I Relations ������ hold

and that

� � distfx� � I��k��	
l���rl � �� rl � ��g � ��

Let � � minf�

� �

g� If L � L��
 then

dist���hL� � x��� Ig 	 
�� ������

Note also that

P �fjv��n� � x�j � �g� � �
 � ��

We now repeat the probabilistic argument form the begining of this section� Pick an integer

a such that a��
 � �� Then for a�e� � there exist N � N��� such that� �n � �� the intervals

��aN�n��� aN�n����� contain sub�intervals I�n��� of the length l�n � n so that for k � I�n����

jv��k� �x�j � �� By increasing N���� we can assume that l�n � L��
� It then follows from ������

and the translation invariance that ��h��I�n���� � I � �� Therefore� for a�e� �� the conditions of

Theorem ��� are satis�ed� and we conclude that for a�e� � and a�e� E � I Relation ����!� holds�

Thus� �c � I � �� Since E� � R n ��h�� was arbitrary� the statement follows�

�




It should be now obvious how to modify the above argument to show that for if � � � then

�ac � �� For example� let us show that �ac � �R n ��h��� � �� Choose a sequence �k 
 � and

note that

P �fjv��n�j � �kg� � �
k � ��

It follows from the above probabilistic argument that for a�e� � there exists a sequence of intervals

I�k��� which satisfy the condition of Simon�Spencer theorem �Theorem ��� of Introduction� and

that maxn�I�k��� jv��n�j � �k� Thus �ac � ��h���

We now turn to the Theorem ���� part 
� We again assume that � � int�V�� Clearly� we have

only to show that �c � ��h�� � �� since it follows from Theorem ��
 that �c � �R n ��h��� � ��
Let � � � be such that ���� �� is contained in V� Let E� � ���� ��� � �min�j����max �j���� be a

given point� We will again show that there exists an interval I � E� such that for a�e� � the

conditions of Theorem ��� are satis�ed� Choose �� and p� such that Theorem ��� holds� Then�

since the set points f�j�k�
p� � p � p�� � � k � pg is dense in ��h��� we can �nd p � p� and k such

that j�j�k�
p�� E�j � �
� and that k�
p � ���� ���� Choose now � such that � � minf��� �
�g�
and let v
�p be the periodic potential ������� We now use Proposition ���� For any � � � and

� � � we can �nd L��
 such that for L � L��
 the spectrum of the operator h� � v
�p restricted to

��
pL� 
pL� with Dirichlet boundary condition satis�es

SL � �a � �� b� �� � �k��	
l���rl � �� rl � ���

where a � �j�k�
p�� b � �j�k�
p� � ���k�p� Choose now �� � and x� � ���
�� �
�� so that ������

holds� Clearly� one can take a small open set I around E� such that for all E � I ������ holds

and that

distf��hL
�p � x��� Ig � � � ��

Since x�� x� � � � ���

� �

�� for each n�

P
��
jv��n� � x� � v
�p�n�j � �




��
� �� � ��

where �� does not depend on n� We now repeat the previous probabilistic arguments to show

that the conditions of Theorem ��� are satis�ed for a�e� �� and that �c � I � �� We remark

that now the integer n in ������ should be replaced by �np� Since E� � �min �j����max �j���� is

an arbitrary point� the statement follows�

We leave it as an exercise to the reader to combine the above arguments with Theorem ���

of the Introduction to �nish the proof of Theorem ���� part ��

��
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