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Abstract

We study the non-equilibrium statistical mechanics of a 2-level quantum system, S,
coupled to two independent free Fermi reservoirs Ry, Ro, which arein thermal equilibrium
at inverse temperatures 31 # (32. We prove that, at small coupling, the combined quantum
system S+R1+R9 hasaunigque non-equilibrium steady state (NESS) and that the approach
to this NESS is exponentiadly fast. We show that the entropy production of the coupled
system is strictly positive and relate this entropy production to the heat fluxes through the
system.

A part of our argument is general and deals with spectral theory of NESS. In the abstract
setting of algebraic quantum statistical mechanics we introduce the new concept of C-
Liouvillean, L, and relate the NESSto zero resonance eigenfunctions of I*. In the specific
model S+7R1+R -, we study the resonances of L* using the complex deformation technique
developed previously by the authorsin [JP1].

1 Introduction

1.1 Theframework

This paper deals with some thermodynamical aspects of a class of modelsin non-equilibrium
guantum statistical mechanics which are commonly used to describe interaction of a small
guantum system S with finitely many heat reservoirs R;. We will study the simplest non-
trivial model, namely in our work S is an 2-level atom (spin 1/2) and each reservoir R; isa
free Fermi gas in thermal equilibrium at inverse temperature /5. Various generalizations of
our results will be discussed in Section 1.3 and in the forthcoming paper [JP4].

We will work in the framework of algebraic quantum statistical mechanics [BR1, BR2,
Ha]. For the reader convenience and notational purposes, in this section we review some
basic notions of this framework.

In the algebraic formalism a physical system is described either by a C*- or W*-
dynamical system. The advantage of Fermi reservoirs is that we can deal with C*-systems
which are conceptually simpler. A C*-dynamical systemisapair (O, 1), where O isaC*-
algebrawith identity and 7 is a strongly continuous group of automorphisms of O (that is,
themap R > ¢ — 7¢(A) is norm continuous for each A € ). The elements of O describe
observables of the physical system under consideration and the group 7 specifies their time
evolution. A physical state is described by a mathematical state on O, that is, a positive
linear functional w such that w(1) = 1. The set E(O) of al states is a convex, weak-x
compact subset of the dual O*. A state w is called faithful if w(A*A) =0 = A =0 and
r-invariant if w o 7t = w for all .

The thermal equilibrium states of (O, 7) are characterized by the KMS condition. Let
B # 0 be the inverse temperature (although the physically relevant caseis 8 > 0, itis
mathematically convenient to define KM S-states for all non-zero 3). The state w is (7, 3)-
KMSif for any pair A, B € O there exists a complex function F g, analytic inside the
strip {z]0 < sign(8)Imz < |B|}, bounded and continuous on its closure, and satisfying



the KM S boundary conditions
Fap(t) = w(AT'(B)), Fap(t+iB) = w(r'(B)A).

A (1, 3)-KMS state is faithful and T-invariant.
Let (O, 7) be aC*-dynamica system and let § be the generator of 7 (7 = ). The
operator ¢ isax-derivation: Itsdomain D(¢) isax*-subalgebra of © and for A, B € D(J),

5(A)* = 3(A%),  S(AB) = 8(A)B + AJ(B).

Let V = V* € O be aperturbation (such perturbations are called local). The generator of
the perturbed dynamicsis dy (A) = §(A) + i[V, A]. The operator dy is also a x-derivation
and D(dy) = D(d). The perturbed dynamics is described by

ﬁt/(A) = v (A)
t tl tnfl
— t in “ e Ttn “ e Ttl Tt .
=+ 3 /0 at, /0 dts /0 At [ (V), [+~ [P (V), 7 (A)]

Until the end of this section we fix a C*-dynamical system (O, 7), astate w, and alocal
perturbation V.

The non-equilibrium steady states (NESS) of the locally perturbed system (O, #) as-
sociated to the initial state w are the weak-* limit points of the set of states

1 T
T/o w o Ti-dt, (1.3)

for T > 0. In other words, w“'} isa NESSIf there is a sequence T,, — oo such that for all
AeO

im - | " ot (A)ds = wit(4)

n—o0 T}, 0 v v )
The set X} (w) of NESS associated to w is a non-empty weak-* compact subset of E(O)
whose elements are ry-invariant.

One of the key concept of non-equilibrium thermodynamics is the notion of entropy
production. Within the framework of algebraic quantum statistical mechanics this notion
has been precisely defined in the recent works [Ru2, JP3], see also [Spl, O1, O2, OHI] .
We recall the definitions and the results we will need.

For positive linear functionals n, £ € O, let Ent(n | £) be the relative entropy of Araki
(we use the ordering and the sign convention of Bratelli-Robinson [BR2, Don]). For defini-
tion and properties of Araki’s relative entropy we refer the reader to [Arl, Ar2, BR2, Don,
OF].

We make the following assumption.

E(1) There exists a C*-dynamics o,, such that w isa (o,,, —1)-KMS state.



The choice of reference temperature 8 = —1 is made for mathematical convenience. If
(E1) holds, then for any 3 # 0 there is a C*-dynamics o, g such that w is (o, 3, 3)-KMS
state (set o, ; = 0,”").

Let 6, be the generator of o,,. Our second assumption concerns the local perturbation
V.

(E2) V € D(6.,).

Until the end of this section we assume that (E1) and (E2) hold. We set oy := 6, (V)
and cal Ep(n) = n(oy) the entropy production (w.r.t. the reference state w) of the per-
turbed system (O, /) inthe statep € E(O).

The following identity was proven in [JP3]:

t
Ent(wo 7 |w) = —/0 w(7y(ov))ds. 1.2

This identity motivates the definition of entropy production and is the starting point for
study of this notion [JP3, JP4]. In particular, since the relative entropy is non-positive,
Relation (1.2) yields that for any w; € &7’ (w), Ep(w;’) > 0.

The NESS w;’ is thermodynamically non-trivial if Ep(«i) > 0. One of the central
problems of mathematical theory of non-equilibrium quantum statistical mechanics is to
show that the NESS of concrete physically relevant models are thermodynamically non-
trivial. We describe below one simple criterion which ensures strict positivity of entropy
production and which will be used in this paper.

Let (Hy, 7, Q) be the GNS-representation of the algebra O associated to w. The
states in O* which are represented by density matrices on #H,, are called w-normal. The set
of all w-normal states is a norm closed subset of £(Q©) which we denote by A/,. One can
show that the entropy production of w-normal NESSis zero, see [JP4].

Theorem 1.1 Assumethat NESSw;- satisfies the following:
@ w‘J} Z No,.
(0) suprsg | [y (@t (01)) = wi (o)) dt| < oo.
Then Ep(wy,) > 0.
We will prove this theorem in Section 5.
One of the main results of this paper is that the class of systems we study has strictly
positive entropy production.

For additional information about NESS and entropy production we refer the reader to
[JP4].

1.2 Themode and theresults

We now describe the specific model we will study in this paper.



The C*-algebra of observables of the system S is O, = M (C?), the matrix algebra
on 9 = C?. Let 04,0y, 0, be the usual Pauli matrices. The dynamics is specified by the
automorphisms
TH(A) = eltHs Ae~1Hs (1.3)

S

where Hg = o, isthe Hamiltonian of the system S.

Let h be the Hilbert space of a single fermion and A its energy operator. Let §x =
I'_(h) bethe Fermi Fock spaceand a( f), o*(f) the corresponding annihilation and creation
operators on $. In the sequel o# stands either for a or a*. It follows from CAR (canonical
anti-commutation relations) that ||a# (f)|| = ||f||. The algebra of observables of the free
Fermi gas, Oy, is the C*-algebra of operators generated by {a# (f)|f € b}. The field
operators are defined by

W)= Z=alh) + ().
The Hamiltonian and the dynamics are specified by H; = dI'(h) and
i (a® (f)) = eta® (f)e
= a? (el f).

The pair (Of, 7¢) isa C*-dynamical system describing a free Fermi gas. For each 8 > 0
there exists a unique (7, 5)-KMS state wr g on Of. wy g is a quasi-free, gauge-invariant
state uniquely determined by the two point function

wrg(a*(fa(f) = (f, (™ +1)71f).

Notation. In the sequel, whenever the meaning is clear within the context, we denote by A
theoperators A® 1,1 ® A.

We consider now two identical reservoirs ((’)lfi),ff(i)), i = 1,2. The C*-agebra of
observables of the combined system S + R; + Ry is

0=0,00" ®0%, (1.4)

the tensor product algebra of operators on $ = £, ® Hr ® Hr. The free dynamicsis given
by the group of automorphisms 7 = 7, ® Tf(l) ® Tf(z). The pair (O, 7) isa C*-dynamica
system describing the combined system in absence of interaction. Note that

Tt(A) — eitHAe—itH

b

where
H=H,+H" +HY.



We now describe the interaction of S with the reservoirs. Choose form-factors ¢; € b,
1=1,2, and set

Vi = Oz @ (P(al) ® 13
V2 =0y X 1 ® (,0(0(2), (15)
V=Vi+W.

Obvioudly, V = V* € 0. The Hamiltonian and the dynamics of the interacting system are
specified by

Hy,=H+\V,
T)t\(A) — eitH)\Ae_itH/\,

where X isareal coupling constant. The pair (O, 1) isa C*-dynamical system.

In what follows we fix the inverse temperatures 5 > 0 of the reservoirs. Let wy be a
state on O, and wr s, bethe (Tf(’) , B;)-KMSstate on OS) describing the thermal equilibrium
state of the i-th reservoir. Consider first the initial states of the form

w=ws @ wg, ®wg,, ws € E(Os). (1.6)

We denote the set of all such states by A;. For w € N, let N C E(O) be the set of all
w-normal states (N does not depend on the choice of w € Af). Our god is to study NESS
of (O, 7)) associated to initia statesin A

For technical reasons related to use of the complex deformation technique of [JP1], we
impose some regularity assumptions on the reservoirs and form factors. Our first assump-
tionis:

A(1) h = L*(R*; ®) for some auxiliary Hilbert space &, and h is the operator of multipli-
cationby s € R*.

Let I(6) = {z € C: [Imz| < J}. We denote by H? () the Hardy class of al analytic
functions f : I(6) — & such that

1 li2s) = sup / 1£(s +i8)|3ds < oo.
|0|<0 /R

We fix a complex conjugation f + f on b which commutes with h. Toany f € h we
associate afunction f : R — & by

~ f(s) ifs>0,
fls)=19_
f(ls]) ifs<o.

(1.7)

Our second regularity assumption is:



(A2) For some§ > 0, e~ 5is/2q; € H?(6) fori =1, 2.

Our third assumption ensures that the small system S is effectively coupled to the reser-
VOIrs.

(A3) [|ai(2)]|¢ > 0fori=1,2.

Toillustrate the above assumptions with a concrete example, assumethat h = 17 (R%, dk)
and that h is operator of multiplication by k?/2m. Passing to polar coordinates and chang-
ing the variable one sees that (A1) holds with & = I7(S%~! do), where S%~! isthe unit
sphere in B¢ and do is the surface measure. If o;(k) = |k|“2"e~*", then (A2) and (A3)
hold (in this example (A2) holds for al ¢ and 3).

Our first result is:

Theorem 1.2 Assumethat (A1)-(A3) hold. Then, for some A > 0 and 0 < |A| < A, there
isa state wy on O so that the following hold:
(YForalne Nand A € O,

. ¢ _ .+

lim 7} (4)) = wi (4). (1.8)
(ii) The limit (1.8) is exponentially fast in the following sense: There exist v(\) > 0, a
norm dense set of states Ay C N, and a norm-dense *-subalgebra Oy C O such that for
n €Ny, A€ Oy, andt >0,

(' (A)) — wy (A)] < Cayae” "W (1.9)

Moreover, Ny C Ny and Os C Oy.
(iii) For A € Oy, thefunctions X — w} (A4) areanalytic for |A| < A.

Remark 1. Our proof givesthat A = O(min1/4;), and thus the above theorem is a high-
temperature result. It is an interesting question whether the techniques of [BFS] or [DJL,
DJ2] can be adopted to prove the above theorem for A independent of the temperatures /.
Remark 2. If B, # 32, thenw isnot a(ry, 3)-KMS state for any /3.

Remark 3. In the thermal equilibrium case 5, = B2 = [ Theorem 1.2 was proven in
[JPL, JP2] (wj\“ is then the unique (7, 5)-KMS state of (O, 75)). The method of this paper
is suited to non-equilibrium situations and, when restricted to thermal equilibrium case,
differs from the method of [JP1, JP2]. In particular, here we require a stronger regularity
condition than [JP1, JP2] (there it suffices that o; € H?(d)) but we aso obtain a slightly
stronger result (the method of [JP1, JP2] failsto show that A, € Ny and Os C Op).
Remark 4. Our proof gives that

Y(A) = 1A% + O(\Y),

where -
0 =5 (lex @13 + le2()113) -



Remark 5. Regarding (iii), it followsfrom our arguments that there existslinear functionals
wy 1 Oy —~ C, k > 0, such that for A € O,

wy (A) = i AewF(A). (1.10)
k=0

The first term wy is computed from a linear eigenvalue problem on §. This eigenvalue
problem is determined by the second order correction (Fermi’s Golden Rule) for the reso-
nances of a suitable non-self-adjoint operator (C-Liouvillean). Although formulas for the
higher order terms become quickly very complicated, in principle it is possible to compute
al termsin the expansion (1.10). We will discuss this point at the end of Section 4.

Theorem 1.2 establishes the basic thermodynamical property of the system S+7R; +Ro,
namely that the set of initial states V' belongs to the basin of attraction of a single NESS
wj\“. We now discuss the other thermodynamical properties of this system.

Thefirst question is whether w;” belongs to the set A of normal states.

Theorem 1.3 Assumethat (A1) — (A3) hold and that 5; # (>. Then thereis? > 0 such
that for 0 < |\| < / there are no my-invariant states in A/. In particular, if 0 < || <
min(A, £), then w ¢ N.

Remark 1. This result can be proven under more general condition then (A2), see [DJ1,
DJ2].

Remark 2. The constant ¢ differs from the constant A in Theorem 1.2. In contrast to A, ¢
can be chosen independently of the size of 5'sas 3; — oo (see [DJ2] for details). On the
other hand, £ dependsond = |51 — 2| and £ | 0 asd | 0. The constant A can be chosen
independently of d aslong as0 < d < const.

Recall that the entropy production depends on the choice of the initial state w. LetA;
be the set of states in A with the property that ws > 0 and is 7g-invariant. The assumption
(E1) of Section 1.1 hold for all w € /\7s If (A2) holds, then (E2) holds for the perturbation
V.

Theorem 1.4 Under the assumptions of Theorem 1.3, for any initial state w E/VS,
Ep(wy) = wy (6.(AV)) >0,

for 0 < |A| < min(A, ¢). Moreover, Ep(w ) does not depend on the choice of the initial
statew € N.

Remark. This theorem can be proven in two different ways. The short proof (the one we
will give in this paper) is based on Theorem 1.1. This proof gives no estimate on the size
of entropy production. The second proof is based on the perturbative expansion of the state
wj\“. Although computationally tedious, this proof has the advantage of showing that the
entropy production is strictly positive to the lowest non-trivial order (the first non-trivial
term can be also computed using the van Hove weak coupling limit, see [LS]). We will
discuss the perturbative proof of Theorem 1.4 in [JP4].



We finish this section with a brief discussion of the heat fluxes. Let ¢ be the generator
of 7). (A2) implies that V; € D(s;). The observable describing the heat flux (energy
transfer) from the rest of the system into the i-th reservoir is @; := 6;(AV;).

Theorem 1.5 Assume that (A1)-(A3) hold and that 5 # (2. Then, for 0 < |A| <
min(A, ), the following relations hold:

Wy (®1) + wy (B2) =0,
(1.11)
Biwy (1) + Powy (®2) = —Ep(wy) <0,

where in the second relation the entropy production is computed w.r.t. any initial state in
N.

Remark 1. Relations (1.11) are respectively thefirst and the second law of thermodynamics
for themode S + R + Ro.

Remark 2. If B; > f3, then wi (®1) > 0. Thus, in NESS w}" there is a constant non-
vanishing heat flow from the hotter to the colder reservoir across the system S.

Remark 3. Except for the strict positivity of entropy production, the relations (1.11) follow
only from a few structural properties of the model S + R; + R9, and can be proven in
considerable generality, see [JP4] for details.

1.3 Remarks

Although in this paper we have chosen to study the simplest non-trivial model, our results
can be easily extended to the case where S is an N-level atom, there are M -reservoirs
instead of two, and V; is afinite sum of terms of the form

Qi ® p(a1) - .. plan )" =D/2)

(one assumes that (v, o) = 0fork # jand Q; = Qf € M(CV)). Inthis case, the
assumption (A3) has to be replaced with a more complicated algebraic condition which
ensures that a suitable N x N matrix has zero as a simple eigenvalue. This condition is
studied in detail in [DJ2] and is closely related to the non-degeneracy condition discussed
in the context of master equation approach to the non-equilibrium thermodynamics [Da,
LS, Sp2, Fr]. We will discuss both the more general model and the relation of our results
with the master equation technique in the continuation of this paper [JP4].

If the Fermi reservoirs are replaced with Bose reservoirs, then the combined system has
to be described within the framework of W*-dynamical systems. In this case the perturba-
tion V' isan unbounded operator and this leads to some technical difficultiesin the study of
the L>°-Liouvillean (the analog of C-Liouvillean for W*-systems). It isan important open
problem to prove the analog of Theorem 1.2 for Bose reservoirs.

Among the works related to ours, we mention the one of Davies [Da], where the dy-
namics of the system S + >_. R; is studied in the van Hove weak-coupling limit# = ¢,
A 10,1t 1 oo. Inparticular, Davies proves the existence and uniqueness of NESSin the van



Hove limit (this state coincides with «y in the expansion (1.10)). Lebowitz and Spohn [LS]
have used Davies results to study the thermodynamics of the system S +3 . R; in the van
Hove limit steady state wy. There is a substantial literature on the use of van Hove limit
and Markovian master equations in statistical mechanics, see [GFV, Hak] for references
and additional information. The results beyond van Hove limit are scarce. In [JP1, JP2]
Theorem 1.2 was proven in thermal equilibrium case where 5, = S5. The method of the
proof was based on quantum Koopmanism and the spectral analysis of the quantum Koop-
man operator - the (standard) Liouvillean - of the system S + ), R;. Various extensions
and generalizations of these results are given in [BFS, DJ1, DJ2, M].

An aternative (abstract) approach to the study of non-equilibrium steady states of fi-
nite quantum systems coupled to thermal reservoirs was recently proposed in [Rul]. This
proposal is based on the scattering theory of C*-dynamical systems and an ergodicity hy-
pothesis called L'-asymptotic abelianness. This hypothesisis difficult to verify in concrete
models, and in particular it is not known whether it holds for the model studied in this
paper.

We would like to add the following general remark. It is known that the ergodic proper-
ties of C*-dynamical systemsin thermal equilibrium are encoded in the spectrum of a suit-
able self-adjoint operator, the quantum Koopman operator or Liouvillean, see e.g. [JP2].
In non-equilibrium situations, the quantum Koopmanism is not applicable, and it has been
generally believed that the understanding of NESS requires the development of scattering
theory. In the models of physical interest thisis a difficult task, and the progress has been
slow (see however [DG1, DG2, FGS]). A perhaps surprising aspect of our method is that
at least in some situations, the spectral approach to NESSis possible, and that the structure
of NESS is encoded in the spectral resonances of a suitable non-selfadjoint operator, the
C-Liouvillean.

The paper is organized as follows.

The method of the proof is described in the abstract setting in Section 2 where we
introduce the concept of C-Liouvillean, L, and show how the NESS of an abstract C*-
dynamical system are related to the resonances of L. The results of Section 2 are quite
general and, we believe, shed some light on the structure of non-equilibrium quantum sta-
tistical mechanics. In Sections 3 and 4 we apply the abstract formalism of Section 2 to the
specific model S + Ry + R —in Section 3 we explicitly compute the modular structure
and C-Liouvillean L, and in Section 4 we study the resonances of L* using the complex
deformation technique previously developed in [JP1].
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of this paper, for remarks on the manuscript, and for pointing to us an argument which
led to the proof of Theorem 1.3. The research of the first author was partly supported
by NSERC. Part of this work has been performed during the visit of the first author to
University of Toulon and during the visit of the second author to University of Ottawa
which was supported by NSERC. The main part of this work was done during the visit
of the first author to Johns Hopkins University. V.J. is grateful to Steve Zelditch for his
friendship and to the Mathematics Department of Johns Hopkins University for generous
support.
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2 Liouvilleansand NESS

The goal of this chapter is to introduce the basic new ingredient of our method, the C-
Liouvillean.

In Section 2.1 we recall the basic notions of Tomita-Takesaki modular theory and in
particular the notion of standard Liouvillean. In Section 2.2 we introduce C-Liouvilleans.
In Section 2.3 we describe the relation between the C-Liouvilleans and NESS.

Throughout this section we adopt the following framework.

Let (O, 7) be a C*-dynamical system and w a given faithful state. Let (H,w,Q2) be
the GNS-representation of the algebra O associated to w (for simplicity, we write # for
H.,, €tc). Since w is faithful, = is an injection and we can identify O and 7(QO) (with a
sight abuse of notation, wewrite A for w(A)). We set M = 7(O)’ and assumethat Q isa
separating vector for the von Neumann algebra 9t (A € M, AQ = 0= A = 0).

We denote by N C E(O) the set of al 7-normal states, that is, the states represented
by density matrices on . Every element of A/ extends uniquely to a state on 1.

In what follows we assume that w is T-invariant. Then 7 has a unique extension to a
weakly continuous group of automorphisms of 9t which we denote by the same letter. The
state w(A) = (2, AQ) isar-invariant state on 1.

Let V € O bealoca perturbation and n, the perturbed C*-dynamics. The group 7y
also extends to aweakly continuous group of automorphisms of 2t which we denote by the
same letter.

2.1 Thestandard Liouvillean
There exists a unique self-adjoint operator £ on H such that for A € I

Tt(A) — eit/JAe—itE,
LO=0.

We call the operator £ the standard Liouvillean. Note that the perturbed time evolution 7,
also has a unitary implementation
T"t/(A) _ eit(£+V)Aefit(£+V).
Let A, J and P be the modular operator, the modular conjugation and the natural cone
of the pair (901, Q). By definition of the modular structure, 92 C D(Aé) and for A € M,

JAZAQ = A*Q. (2.12)

By Tomita-Takesaki theorem, AYOMA~" = oM, JOMJ = M. For every norma state
n € N thereisaunique vector €, € P such that n(A) = (2, AQ,).
Let
Ly=L+V —-JVJ.



We will call £y the standard Liouvillean for the perturbation V. The operator 4y is the
unique self-adjoint operator satisfying

T‘t/(A) — eitCV Aefit[,\/,
e Ly p C P,

see [BR2, DJP]. An immediate consequence of these relationsiis:

Proposition 2.1 Thestaten € N isty-invariant iff £,,Q,, = 0.

By this proposition, the the study of normal, = -invariant states reduces to study of
Ker Ly .

If wis (7, )-KMS, then by the fundamental result of Araki there existsastate w,, € N’
whichis (7, 8)-KMS. Thus, in thermal equilibrium Ker Ly is never empty. On the other
hand, if w isnot aKMS-state, then typically Ker £, = () and to study NESS using spectral
techniques we need new concepts.

2.2 C-Liouvillean
The vector space O = {AQ| A € O} equipped with the norm

149200 = [IA]], (213)

is a Banach space which we denote by C(O, §2). Note that every A € O defines, by right
multiplication, a bounded linear map on C (O, Q). This map we again denote by A.
Obviously, the map
O3 A AQ € C(O,Q),

is a Banach space isomorphism. Under this isomorphism, the group 7, is mapped into a
continuous group 17, of isometries of C(O, (2). Clearly,

TV AQ = 11 (A)Q, (2.14)
and
TLQ =Q,
(2.15)
TLATS = i (A).

The generator of the group 77, we denote by Ly, and call it C-Liouvillean. It is convenient
to include the imaginary unit in the definition of L3, so that

T‘t/ = eithv,

By (2.14),
D(Ly) = {AQ|A € D(ov)},

12



and
iLy AQ = 6y (A)Q.

We proceed to compute the operator Ly in terms of the modular structure.
Let A € D(dy) = D(§) be given. Differentiating the relation

oltLv AQ) — eit(£+V)Aefit(£+V)Q’
and setting ¢ = 0 we derive
Ly AQ = (L + V)AQ — (VA*)*Q.
Applying (2.12) twice we obtain
(VAH)*Q = JATVJAZ AQ.
Since JA% = A‘%J on Of2, the operator Ly has the form
Ly =L+V - JA2VA 2.

Note that . X
JAVA2]:C(0,0) = C(O,Q),

is abounded operator with norm ||V]|.

(2.16)

We now identify conditions under which 77, extends to a strongly continuous group on

H.

The formula (2.16) implies that the operator ;- extends to a dense subspace ® :=
D(L) N ONN. Moreover, since ® C D(Ly, ), the linear operator Ly with domain © is
closable. We denote its closure by the same letter. It follows that 7, extends to a strongly
continuous group on # iff Ly satisfies the conditions of Hille-Yosida-Phillips theorem:

(R1) For somea > 0, 0(Ly) C {z||Imz| < a}.

(R2) Thereisa M > 0 such that for al z with |Imz| > a and &l integersn > 1,

|(z = Lyv)™"|| < M(|Imz| —a)™".

In the next proposition we summarize some elementary consequences of the assump-

tions (R1) and (R2). In the sequel Lﬁ stands either for Ly or Lj,.

Proposition 2.2 Assumethat (R1) and (R2) hold. Then the operators iLff are generators

of strongly continuous groups on #. Moreover:
(i) HeithfH < Mea‘”.
(ii) If Imz > a, then

oo
(z — Lff)_l = 1/ ei*te=itLY 4y
1 Jo

(2.17)

13



(iii) For all A € 0,
T‘Ii/(A) _ eitLV Ae—itLV _ eitL;‘/ Ae—itL;‘/.
(iv) Ly = 0.

Proof. Parts (i) and (ii) are well-known properties of strongly continuous groups. Parts
(iii) and (iv) follow from (2.15). O

It is convenient to introduce conditions on the perturbation V' which can be easily
checked in concrete models and which imply (R1) and (R2) above. We describe one such
condition below. For self-adjoint V € O andt € R we set

V= A'VATE

(R3) Thefunction R 3 ¢ — V; € M has an analytic continuation to the strip {z | |Imz| <
1/2} which is bounded and continuous on its closure.

Note that since V; is self-adjoint we must have V = V5. Clearly, (R3) implies (R1)
and (R2), and

Ly =L+V = JV ),
Ly =L+V = IVl

Moreover, if (R3) holds, then one cantake a = ||Vi 2 || = [|V_j 2| and M = 1in (R1)-(R2).
If wisa(r, 3)-KMS state, there is an important relation between standard Liouvillean
Ly and C-Liouvillean Ly . A simple computation shows that for ¢ € R,

L4V — JViJ = e~ BUETY) £ (BULFV),
If (R3) holds, then by analytic continuation the relation

Ly = PEV)/2p o BE+V)/2, (2.18)

holds in quadratic form sense on adomain D(e #(£+V)/2) 0 D(eP(£4V)/2), The identity
(2.18) leads to a simpler proof of some fundamental results of Araki’s theory of perturba
tions of W*-dynamical systems (see [DJP] for details). It can aso be used to relate the
method of the proof of Theorem 1.2, restricted to thermal equilibrium case 54 = By = /3,
to the method of [JP1, JP2]. For reasons of space we omit the details.

If wisnot aKMS-state, then there is no direct relation between Ly and Ly, .

14
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2.3 Spectral theory of NESS

Our goal is to study NESS using spectral theory of C-Liouvilleans. For this reason it is
more convenient to deal with NESS defined using Abelian limits. The weak-* limit points

of the set of states -
e/ e “wo i dt,
0

ase | 0 wedenote by X’ | (w). Theset X ,, (w) isanon-empty weak-* compact subset
of E(O) whose elements are 7y -invariant. Moreover:

Proposition 2.3 If either X , | (w) or 3’ (w) consists of a single state, then

E&Ab(w) = Y1 (w).

The proof of this proposition follows from standard Abelian and Tauberian theorems [Si].
With aslight abuse of terminology wewill also call the elements of E&Ab(w) the NESS
of (O, 1y ) associated to the initial state w.
In what follows we assume that the assumptions (R1) and (R2) hold.
Our goal isto characterize NESSin 2{;} Ap(w) interms of the corresponding C-Liouvillean.
To motivate this characterization, for Imz > a let Q, := (2 — L},) !9, and let w, € O*
be defined by w, (A4) = (2, AR, ). Then, since

oo = [ e ulri (At

1

the functionals w, have weak-+ analytic extension to the half-plane Tmz > 0 and %3/ , | (w)
is the weak-+ limit point set of the set of states {iew|e > 0} ase | 0. We wish to go
further along these lines and characterize X3, ,, (w) directly in terms of the vectors ;. Our
main tool is an axiomatic abstract version of the complex deformation technique.

Let D > 0 be abounded operator on ‘H such that RanD isdensein H and D2 = €.
Set

Rp(z) := D(z — L},) "' D.

Our first assumption is.

(DL1) The vector-valued function z +— Rp(z)S2, originaly defined for Imz > a, has an
analytic continuation to the half-plane Tmz > 0 such that

sup €[|Rp(ie)|| < oo. (2.19)
€>0

Note that since (2, Rp (i€)Q) = (ie) 1, infesg €| Rp (i€) Q]| > 1.
We define a vector subspace Op C O by

Op={Ac0|A*QeDD™)}.
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Let O be the norm closure of Op. Our next two assumptions are:
(DL2) 0% = 0.
(DL3) Theset {D 1A*Q| A € Op}isdenseinH.

Let 207 be the weak limit point set of ieRp(i€)Q2 ase | 0. Since the unit ball in a
Hilbert space is weakly compact, (2.19) implies that 25 is non-empty.

Proposition 2.4 Assumethat (DL1) and (DL2) hold. Then thereis an injection
W2 Qf = wi € E;Ab(w) (2.20)
such that for A € Op,
wir(A) = (D TA*Q, Q). (2.21)
If in addition (DL 3) holds, then the map (2.20) is a bijection.

Remark. The vectorsin ‘m‘t are naturally interpreted as the zero-resonance eigenvectors
associated to the triple (Lj,, D, ), and in this sense Theorem 2.4 identifies NESS with
zero resonance eigenvectors of L.

Proof. Proposition 2.2 yieldsthat for A € Op

€ / b e “w(rh (A))dt = ie(D LA*Q, R (i€)Q). (2.22)
0

Since 09 = O, from this relation it follows that each €%, € 207, determines aunique state
wir € B 5, (w) and that (2.21) holds for A € Op.

If in addition (DL3) holds, then Relation (2.22) and the uniform bound (2.19) imply
that each wy; € %7 |, (w) determines aunique Q; € 20}, O

An immediate consegquence of Proposition 2.4 is that under the assumptions (DL 1)-
(DL3), =} 41, (w) consists of asingle state wy’ iff

W — lif{)lieRD(ie)Q =Qf,

and inthiscasefor all A € O we have

1

T 00
. t _ —et, (.t _ .t
TlglgoT/o w(ry(A))dt 161\{616/0 e “w(r(A))dt = wi (A).

To refine the above result, we need additional assumptions. Let
p={Cem|c*caeD(D")},

and let (907,9)' be the closure of 907, in 2.



(DL4) (M, ) = 2.

Note that since 2 is a separating vector for M, (M Q)" = H. We denote by Np the set of
vector states
n(-) =(CQ,-CQ),

where C' € M, and ||CQ|| = 1. (DL4) implies that N» isnorm-densein \V.
We will replace assumption (DL 1) with

(DL5) The operator-valued function z — Rp(z), originally defined for Imz > a, has an
analytic continuation to the region Imz > 0 and there is a bounded operator R} such that

w — limieR p(ie) = P;f.
€l0

Proposition 2.5 Assume that the assumptions (DL2), (DL4) and (DL5) hold and that
dimRanP;} = 1. Then, for all n € N,

E\J;,Ab(ﬂ) = EJ\;’Ab(w) = {W\J;}
Proof. Notethat since P,/*Q = @ and dimRanP;f =1, Pif(-) = (2, - ). To prove
the proposition it suffices to show that for n € Np and A € Op,

o0
1%1 € / e~In(ri(A))dt = (D71 A*Q, Q). (2.23)
€ 0

Letn € Npand A € Op begiven. Let C € M, besuchthat n(-) = (CQ, - CQ). Since
[C, 7. (A)] = 0, we derive from Proposition 2.2 that

/ " el (L (A))dt = / e (00, 7 (A)CR)dt
0 0

=i(D'A*Q,Rp(ie) D" 'C*CQ).
Therefore -
16%1 € /0 e~In(r(A))dt = (D7'A*Q, P D~'C*CQ). (2.24)
Relations Pl (-) = (Q, -)Q;, D7'Q = Q, and [|CQ|| = 1 yield
pfD7'Ccro0 = Qf, (2.25)

and (2.23) follows from (2.24) and (2.25). O

17
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The last result we wish to discuss concerns conditions under which the approach to
NESS is exponentially fast. For i € R let B(p) be the half-plane {z |Imz > p}. We
replace (DL5) with:

(DL 6) The operator-valued function z — Rp(z), originally defined for z € B(a), has a
meromorphic continuation to a half-plane B (u) for some < 0.

Since (2, Rp(2)Q2) = 1/z, zero isaways apole of Rp(z). Itisnot difficult to show
that if in addition (DL3) holds, then zero isa simple pole of Rp(z) and all other poles are
in the half-plane ITmz < 0. In particular, (DL3) A (DL6) = (DL5). We will not make use
of assumption (DL 3) below.

Assume in addition to (DL6) that the function Rp(z) has only finitely many poles
{z0,21,---,2n} (z0 = 0) in the haf-plane B(x) and let my, be the order or the pole z.
Then we can decompose Rp(z) as

Rp(z) = Rp(2) + RH(2), (2.26)

where R, (z) is an analytic operator-valued function in the half-plane 9B () and

Rp(2) = Sk(2)
= 2.27)

Let P;f betheresidue of Rp(z) a z = 0. Then
P = Lf{RD(z)dz = So1
Voo ami f ’

where « is a small circle around zero such that inside «y zero is the only singularity of
Rp(z).

Theorem 2.6 Assume the following:

(8) Assumptions (DL2), (DL4) and (DL6) hold.

(b) Thefunction Rp (=) hasonly finitely many singularities {z, z1, . . ., zn } INP(1), where
2o =0andImz, < 0for k > 1.

(¢) dimRanP;f = 1.

(d)Forall W € Handj = 0,1, sup,s, [ |04(¥, R (z +iy) ¥)[* Ydz < cc.

Then,

(i) For all n € N, 537 5, (1) = 57 5, (w) = {wy’}. Moreover, for all A € O,

lim n(r{-(A)) = wi-(A). (2.28)

t—o00
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(ii) For all n € Np, A € Op, and ¢ > 0,
(74 (A)) = wi (A)] < Cpae™(t)" 7,

where y = minj <<y [Imz,| and r is the maximum order of dominant poles (the polesin
{z1, -+, zn} closest to the real axis).

Proof. Since (ii) = (i), we have to prove (ii) only.
Fixn € Np,n(-)=(CQ, -CQ),and A € Op. Then,
/ e?in(ri-(A))dt = i(D TA*Q, Rp(z)D 1C*CQ) = 4(2).
0

Fixd > 0and y' suchthat 4 < i/ < —. Let@ > 0 bealarge number and I',, the rectangle
with vertices {+« + i, =a + iy/'}. Then, for any € > 0,

i —itz _ _L “ —it(z+id) .
o o e "l(z)dz = o _ae Uz +id)dx + S(a) + B(w)

"L (—it)?

- |
=—wi(4) - > ) o1 (D1A*Q, Sp D LC*CN)e 13k,
k=1i=1 ’

(2.29)

where S(«) is the integral of ¢ over the vertical sides of the rectangle I}, and B(«) is
the integral over the bottom side. Integration by parts and (d) with j = 1 yield that for
t > 1 and uniformly in a, |B(a)| = O(e¥'t). Using (d) with j = 0, a standard argument
(see e.g. Theorem 19.2 in [Rud]) yields that for some sequence ¢, — oo, |S(ay,)| — 0.
Moreover, the sequence «;, can be chosen independently of § aslong asd§ < const. Pick a
subsequence «y,, such that

Qny, . .
lim — / © e @t g0 4 i8)da = n(rh (A)),

for Lebesgue ae. ¢t > 0 and set o = o, N (2.29). Taking £ — oo we derive that for a.e.
t>0,
(i (A)) — wiH(A)| < Cape " (t)" L. (2.30)

Since both sides in (2.30) are continuous functions of ¢, the estimate (2.30) holds for all
t>0.0

3 Modular structure of the model

In this section we return to the model S + Ry + Ro. We explicitly compute the modular
structure associated to (O, 7) and the states in A;. We then use these results to compute
the standard and the C'-Liouvillean of the locally perturbed system.



Since the results of this section are either well-known or follow from simple computa
tions we will omit the proofs.

Notation. If A isalinear operator on ), we denote by A the linear operator
Ay = A,
where on the right-hand side™ is the usual complex conjugation on §3; = C2.

We begin by computing the modular structure associated to the small system S. Set

/Hs =95 ®5§sa
ms(A) = A® 1,
1 (A)=1® A.

Let ws be astate on Og. Then thereis a density matrix ps such that ws(A) = Tr(psA). The
state wy is faithful iff ps > 0 and 7g-invariant iff [Hs, ps] = 0. If ps(-) = > pi(ei, - ),
let

1 —
Qg =Y 2oy @ ;.
Recall that the dynamics of S is specified by automorphisms (1.3). Let

L=Hi®1—1® H,.

Proposition 3.1 Thetriple (Hs, 75, 2s) is the GNS representation of O; associated to ws.
If wg is rs-invariant, then L is the corresponding standard Liouvillean. If w is faithful,
consider the pair (ms(Os), €2s).
(i) Its modular operator is

1

Ay =ps®@ps -
(ii) Its modular conjugation is J;(¢ ® 1) = ¢ ® ¢.
(iii) Joms(A)Js = nff (A).

We now discuss the modular structure associated to a free Fermi reservoir in thermal
equilibrium at inverse temperature 5. We fix a complex conjugation (an antAi-unitary invo-
lution) f — f which commutes with the single particle Hamiltonian /. Let(); be the Fock
vacuum on $¢, N the number operator,

9 =1(-1) = (-1)",

and .
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The complex conjugation = on § naturally extends to a complex conjugation on #: which
we denote by the same symbol, i.e. ¥ — U, Let

He = Hr ® 9,
Qf = Qf & Qf.
The Araki-Wyss representation mz of O on H; is defined by

@l

ms(a(f) = al(1 - 0)7f) ® L+ 9 ®a* (03 1),

D

=

wg(a*(f)) = a* (1 — 05)2 f) ® 1+ 9 ® a(o

The dual representation wﬁ is defined by

o=

Do,

5

RSN

i (a*(f)) = da(ed f) @9+ 1@ a*((1 — gp)°

1

i (a(f)) = a*(e3 )9 @9 + 1@ va((1 — o5)

f)-

The representations w3 and w# wereintroduced for thefirst timein [AW] (see also Example
5.2.20in[BR2]). Let

N

Lr=H®1-1Q H;.

Proposition 3.2 Thetriple (H¢, 73, ) is the GNSrepresentation of Or associated to the
KMSdtate wr g and Ly is the corresponding standard Liouvillean. The vector € is sepa-
rating for the enveloping von Neumann algebra

mf”g = Wﬁ(Of)”.

Consider the pair (91 5, Q).
(i) Its modular operator is Ay = e~ P4,
(if) Ilts modular conjugation is

J (@ @) =u¥ @ ud,
whereu = (-1)N(V-1/2,
(iii) Jrmg(A)Jr = 7} (A).
If (A1) holds, then the GNSrepresentation and modular structure of afree Fermi gascan
be described in a somewhat different form which is more suitable for the spectral analysis.

In what follows we assume that (A1) holds. Leth = L2(R, &). Toany f € h we associate
apair of functions f5, /¥ € by

fols) = (77 +1) 7 fls),

1
2

¥ (s) = ie7P2 f5(s) = if g(—s),
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( f is defined by (1.7)). For latter purposes we make the following remark. Assume that
f € H?(0) forsome0 < § < 7/S. Then

C,8) = sup |1+e 7 71? < 0.
Imz|<d

It then follows that s, fi € H?(5),
1fsll iy = 15 Nras) = €272 £ 5 2oy = lle 72 f5ll gy,
1f5 12y < CO,B)IF () (33D
™72 £ ¥l 25y < C(6,8) €™/ fll 25
We denote by s the operator of multiplication by s € R. LetQ) bethevacuumonT_(h).
Theorem 3.3 There exists a unitary map
U :He — dl_(b)
such that
UQ = Q
ULU ! =dI(s)
Ung(o(N)U™! = o(f3)

Unk (p(£)U~" = iD(=1)p(fF).

Proof. This result follows from the identification h @ h = I*(R, &) and the exponential
law for fermionic systems (see Theorem 3.2in [BSZ]). O

In what follows we will work exclusively in the representation given by Theorem 3.3
and we identify the quantities related by U (#H; now stands for I'_ (), Qs for Q¢, Ly for
dl'(s) etc.).

Consider now two identical reservoirs ((’)@, 7;) and let O be given by (1.4). Let wg, be
(7i, 8;)-KMSon (’)p for some 3; > 0. Set

H=H,@H" @ H?

Q=000 @0,

T=Ts ® T Q7p,,

7r#=ﬂf®7r§i®7r§i,

L=Co+ LM+
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Proposition 3.4 The GNSrepresentation of O associated t0 wy ® wg, ® wg, IS (H, 7, ).
If wg isTg-invariant, then £ isthe corresponding standard Liouvillean. If o isfaithful, then
2 isa separating vector for the enveloping von Neumann algebra

M = 7(0)" = m5(0s) @ My, @ My g,

For wg faithful, consider the pair (90, ©2).
(i) Its modular operator isA = Ay ® Agl) ® AIEZ).
(ii) Its modular conjugationisJ = J;, ® Jr ® J;.
(iii) J7(A)J = 7% (A).

Let now V' be the perturbation (1.5). The standard Liouvillean £ for the perturbed
dynamics is now easily computed in the representation 7. With a slight abuse of notation
we identify V' and 7(V'). Moreover, we denote the field and number operators on 7—4’) by

V=(0:01)®pV(ag) + (0,8 1) @ P (as,),
JVI=(100)e (i(-1)VeV(ef)) + 1o (i(-1Me? ().

Proposition 3.5 The standard Liouvillean of the perturbed system (O, 7,) in the represen-
tation 7 is
Lyx=L+NV-=XJVJ.

Assume now that (A2) holds. Then, the assumption (R3) of the Section 2.2 holds and

. — N 1 ; 1) (a—Bis )% iS
JV_ij2d = 12(1 ® pi/*o.ps %) @ E(—l)Nz (a( o /20‘?;) +al (e ﬂai#éi)) ’

)

. N — 1 ; i ;S )% (—Bis
J‘/I/ZJ — 12(1 ®,05 I/Zpr;/Q) ® E(_l)Nz (a( )(eﬂz /QQ{fgl) +a,() (e ﬁz /2a§1)> .

)

Proposition 3.6 If wy is faithful and Hypothesis (A2) holds, then the Hypothesis (R3) of
Section 2.2 holds for the perturbation V' and the C-Liouvillean is

Ly=LA+ XV = AV 5.

Theadjoint of Ly is
Ly =L+ AV = AVl

Although the standard Liouvillean does not depend on the choice of the initial state of the
small system, the C-Liouvillean does through the term JV_; 5 J. It is often convenient to
take a simple choice for theinitial state wy, namely

w(A) = Tr(4)/2, (3.32)
whose density matrix is p; = 1/2. In this case L) takes aslightly simpler form and

Vaijall <2 [le” ]
i
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4 Spectral analysis

The spectral analysis of the operators £, and L7 follows closely [JP1]. In this section we
will state the main results of this analysis and discuss some of their consequences. We will
only indicate the main steps of the proofs and the interested reader should consult [JP1] for
details. Throughout this section we assume that the assumptions (A1) and (A2) hold.

Recall that h = L*(R, &) and #; = I'_(h). Let p = ids be the generator of the
group of translations onh) and P = dI'(p) its second quantization. We adopt the shorthand
(P) = (1+ P2)2. Let§ > 0 beasin (A2). In what follows we fix x such that

0 < k < min(nw/By,7/B2,9).

Let
D:=1@e P gerP)

Obvioudly, RanD isdense in # and the vectors of the form ¢ ® Q§1) ® Q§2), 1 € Hg, ae
invariant under D. Recall that B(p) = {z | Imz > pu}.
We dedl first with the standard Liouvillean and Theorem 1.3.

Theorem 4.1 For any u > —« thereisa constant A > 0 such that for |A\| < A the
operator-valued function

2z~ D(z—Ly)"'D, (4.33)

originally defined for Imz > 0, has a meromorphic continuation to the half-plane 3(u).
The function (4.33) has at most four polesinB(—u). Ifinaddition (A3) holdsand 3 # fs,
then there is a constant £ > 0 such that for 0 < |A| < ¢ none of the poles is on the real
axis. In particular, for 0 < |\| < ¢ the spectrum of £, is purely absolutely continuous and
there are no my-invariant states in the set A/ of normal states.

The last part of Theorem 4.1, the absence of 7y-invariant states in , is the statement of
Theorem 1.3.

The proof of Theorem 4.1 follows the argument in [JP1, JP2]. Although in these works
the Bose reservoirs are studied, the same (in fact, dlightly simpler) argument applies to
Fermi reservoirs. For the reader convenience and for latter applications, we recall the main
steps of the argument in [JP1, JP2].

Sketch of the proof of Theorem 4.1. Let
u(f) = e 0P — F(e_iap),

be the second quantization of the group of trandationsand U (6) = 1 ® u(f) ® u(6). We
set

ﬁ,\(a) = U(e)ﬁ)\U(—H)
Let N = Ny + N,. Note that
U(0)LU(—6) = L + 6N,

U(O)NU(-6) = N,
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and
UO)WVU(=0) = > (02 @1) @ 9! (e Payp,),
U©)JVIU(-0) =1 (1@ 05) ® (—1)ipl) (e7Pal ).
If
Viot (0) = U(0)(V — JVJ)U(-0),
then

L(0) = L+ 0N + A\Vioi (6).

By (A2) and (3.31) the operator Vi, (0) is defined for all & € I(x) and the map I(x) >
0 — Viot (0) is an analytic operator-valued function satisfying

Ci= sup Vit () <2V2D C(r, Bi)l|ill 12wy
7

0el(k)

Obviously, the operator £, (6) isaso defined for 8 € I(x). For Imé # 0, £, () isaclosed
operator with domain D(L£) N D(N). Let I (k) = {z| — s < Imz < 0}. The function
I (k) x C > (6,\) — Lx(0), with values in the closed operators on #, is an analytic
family of type A in each variable separately. Note that the spectrum of £y(#) consists of
two simple eigenvalues +-2, a double degenerate eigenvalue 0, and of the sequence of lines
{inIlmf + R |n > 1}.

Let A besuch that AC' < (k — |u|)/4. Then, for [\| < Aand —k < Imf < —(k +
|1e|)/2, the essential spectrum of £, (#) is contained in the half-plane {z |Imz < pu}. The
location of the discrete spectrum inside B () can be computed using regular perturbation
theory. By possibly taking A smaller, one can show that this discrete spectrum consists
of four points (resonances) {e.z(A), eg* (M)}, where e4o()) are near +2 and ej*()\) are
near 0, see Figure 1 below. These resonances do not depend on 6. Moreover, the functions
A = eq9(N) areanalytic for |A| < A,

o
era(N) = £2+ Z )\Qjaécj,
j=1

and one can compute aéﬁ explicitly:

i =33 (-l ey [ 1900,

where PV stands for Cauchy’s principa value.

The resonances e;”*()) are the eigenvalues of a2 x 2 matrix ¥()\) which is analytic for
|A] <A,

o0

E(A) = Z >‘2j22j7

j=1
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and one can compute Y, explicitly:

£y =—in) @@ T,
)

1 efi 1
T, = ———— ).
" 2cosh f3; <—1 e—,&)

where

|
[N}
e+ o
[N}

—Im(6) min /B;

Figure 1: Resonances of the standard Liouvillean £

If (A3) holds, then Tma;* < 0 and for A non-zero and sufficiently small, Tm e45()) < 0.
Notice aso that the matrices T; are self-adjoint and non-negative with a simple eigenvalue

0 and corresponding eigenvector
e Bi/2
(i (eﬂi/Z > )

Thus, unless 8, = 3, %, > 0, and for A non-zero and sufficiently small, Im e;*(\) < 0.
To finish the proof, we have to relate D(z — £,) ' D and (z — L, (#))'. Todo so, we
fix z with Imz large enough. Then, one shows that

s — IB%(z — L£3(0))7t = (z — Lr(Red)) L. (4.34)
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Let
D(A)=1® e~ r(P)+0P ® e—n(P)—i—ﬂP’

and consider the function
I (k) 260 D(0)(z — Lx(0)) " D(-0).
By analyticity, this function is constant in 6. By (4.34) and continuity, the relation
D(z —Ly)"'D = D(0)(z — Lx(0)) "' D(-9), (4.35)

holds for —x < Tm@# < 0. If # in (4.35) satisfies —x < Imf < —(x + |p|)/2, then the
right-hand side in (4.35) provides the desired meromorphic continuation of the function
D(z — L))™'D.

Since RanD is dense in H and D(z — L)) ' D has no poles on the real axis, the
spectrum of £, is purely absolutely continuous for 0 < |A\| < £. In particular, Ker(, = 0,
and, by Proposition 2.1, there are no 7, -invariant states in the set A/ of normal states. O

In the proof of Theorem 4.1 we have not used the full strength of the assumption (A2)
and for this theorem it suffices that &; € H?(x). In fact, if the complex deformation
technigue is replaced with Mourre theory, then the main conclusion of the theorem can be
derived under much weaker regularity condition on &, see [DJ1, DJ2].

We now deal with the C-Liouvillean and Theorem 1.2. Aswe have remarked at the end
of the last section, it is convenient to take for the initia state of the small system the state g
defined by (3.32). Inwhat follows Ly isthe C-Liouvillean associated to w = w,@wg, ®wg, .
Let

Rp(z) = D(z — L})"'D.

Theorem 4.2 For any p > —« there isa constant A > 0 such that for |A\| < A the
operator-valued function Ry (z), originally defined for z € B(a), has a meromorphic
continuation to the half-plane B (x). The function Ry (z) has at most four polesin B(u),
and zero is one of its poles. Let P, be the residue of Rp(z) at 0. If in addition (A3) holds
and X # 0, then dim RanP;f = 1 and all singularities of Ry (z) except zero are contained
in the half-plane Imz < 0. Moreover, P isanalytic function of X for || < A.

The proof of this theorem is a slight elaboration of the arguments in [JP1, JP2] which we
have already sketched above. We give below an outline of the proof.

Sketch of the proof of Theorem 4.2. We use the notation introduced in the proof of
Theorem 4.1. For real 0 let

LX(0) = U(0)LYU(-0),
Viot (0) = U(O)VU(=6) — U(6)TVi /o JU ().

Clearly,
L3(0) = L+ 0N + AV, (0).



Assumption (A2) impliesthat I(k) > 6 — Vi (6) is an analytic operator-valued function
satisfying
~ - 1
C:= Vit @) < —= " C(k, Bi) (3|l g2y + e 25| 2y ) . (436
2 V@) < 753 (5, 51) (3Nall 2w + €™ il ) - (4.36)

The function C x I~ (k) > (A, 0) — L3(0), with values in the closed operators on #, is
an analytic family of type A in each variable separately.

-2 0 2

re

Figure 2: Resonances of L}

One now repeats the analysis outlined in the proof of Theorem 4.1. For AC' < (k —
|n|)/4and|A| < A theessential spectrum of L5 () iscontained inthe half-plane {z | Imz <
w}. Here, again, the location of the discrete spectrum inside 3(x) can be computed using
regular perturbation theory. This discrete spectrum consists of four points {é.2(A), éé’z (N},
where é..5()\) are near +2 and &,*()\) are near 0, see Figure 2 below. Since

(LA (0))*? =0,
we have &()\) = 0. Moreover, the functions A — é.5(\) are analytic for [\| < A,

o0
exa(N) = 2+ Y Xag,
j=1
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and one finds that

Jou +
ay =ay.

The resonances &,%(\) are the eigenvalues of a2 x 2 matrix $()\) which is analytic for

|A| < A,
S(A) =) AY %y,
j=1

and
= —im Z & (2)|15 T
where 5 5
~ ) 1 ePi —_e Pi
T = *ﬁzUZ/ZT. ﬁU'Z/Z .
1= © 2cosh B; \—efi  e7Fi
Notice that

- (1
(i)

and so zero is always an eigenvalue of 5. The second eigenvalue of 35 is equal to
= —MZ 6 (2) -

If (A3) holds, then this eigenvalue has negative imaginary part. Thus, for A non-zero and
sufficiently small, Tmé2()\) < 0.
Following the argument in the proof of Theorem 4.1, we see that

Rp(z) = D(0)(z — L3 (6)) "' D(~9),

provides the required meromorphic continuation of Ry. By this formula, the residue Pj
isrelated to the spectral projection Q(;) (#) corresponding to the zero eigenvalue of L3 ()
by

Pi = D(0)Q\"(6)D(-9). (4.37)
Thisimplies that diim RanP} = 1.

To prove the last statement of the theorem we must show that QE\I)(H) is analytic for
|A| < A. Weprovethis by relating this operator to the spectral projectionII()) correspond-
ing to the zero eigenvalue of the analytic matrix A(\) = X 22(\). Notice that since 0 isa
simple eigenvalue of A(0), II()) isanalytic for A small enough.

Let us recall the construction of the operator $(\) [JP1, HP]. By taking A possibly
smaller, one can find a contour y around 0 such that for 6 with Imé suffici entIy closeto —x
and for |A| < A, the spectral projection corresponding to the group {&()), €3()\)} is given
by

Qx(0) = i f(z — L}(0)) 'dz. (4.38)
v

2mi
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@ (0) isan analytic function of A and

1Qx(0) — Qo (0)]] < 1.

Notice that Qo (f#) = Qo does not depend on # and is the spectral projection of £ corre-
sponding to double degenerate eigenvalue 0. It follows that the maps

Qo : Ran@)y(#) — RanQy,

QA(0) : RanQy — Ran@,(6),
are isomorphisms. Setting
T(A) = QoQA(0)Qo,

one easily checks that the operator

S,\(g) = Q()Q,\(g) : RanQ)\(H) — RanQo,

has inverse
Sx(0)7" = QA(O)QoT (M)

Using the isomorphism S\ (), we transport the reduced operator Qy(0)L;(6)Qx(0) to
RanQo = C2. A simple calculation yields;

S(A) = Sx(0)QA(0)L3(0)QA(0)SA(0) 1 = M(NT(\) L, (4.39)

where
M(X) = QoQx(0) LA (0)Qx(0)Qo-
The operators T'(A) and M (\) are independent of 6 aslong as |A\| < A and Im# is suffi-

ciently close to —x. Moreover, they are analytic functions of .
Formula (4.39) yields that

() = 5,(0)Q\ (0)Sx(6) . (4.40)

Inverting this formula we derive that Q&l) (9) (and hence P;") is an analytic function for A
small enough.OI

Theorem 4.3 Assumethat (A3) holds. Then thereis A > 0 such that for 0 < |A| < A all
the assumptions of Theorem 2.6 hold.

Proof. Choose 0 > i > —« and A so that Theorem 4.2 holds. This theorem verifies
assumptions (DL6), (b) and (c) of Theorem 2.6. To verify (d) it suffices to show that for
somer > 0 large enough, all ¥ € Hand j = 0,1

sup/ |09(, Rp(z +iy) W) > dz < co.
y>p |z >r

Since
Ri(z) = D(0)(z — L3(0)) "' D(-90),
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it suffices to show that for Imé close enough to —«x, A small enough, al ¥ € H and
7=0,1,

sup/ (U, (z + iy — L3(0) " 7 0) > dz < oco. (4.41)
y>uJ|z|>r

Notethat Lj;(#) = £ + 0N isanormal operator, and that the bounds

Sup/ |(z + iy — L§(0) 1 ¥||2dz < oo,
y>p J|z|>r
(4.42)
sup [|(z + iy — L§(6) 71| < oo,
y>p,|z|>r
follow from the spectral theorem. The second relation in (4.42) and the resolvent identity
yield that for A small enough,

(v +iy = L3(0)) ™' = G(z +iy — L§(9)) ™
] (4.43)
= (z +iy — Ly(0) ' G,

where the operators G and G (which depend on 6, \, z, y) have uniformly bounded norms.
Thefirst relations in (4.42) and (4.43) yield (4.41) for j = 0. The case j = 1 follows from
the estimate

(P, (z + iy — L3(0)) 2 0)| < [GIIGNI(x + iy — Li(6) ™|,

It remains to verify (DL2) and (DL4). Let

brest = {f € b1 € D)}, (4.4)

and let Or ;s be the vector subspace of Or generated by 1 and

{a#(f1)"'a#(fn) |n €N, f; € f)test}-

Set
Otest — Os ® O(l) ® 0(2)

f,test f,test"
Note that Oyt 1S a*-subalgebra of O. Obvioudy, Oiest C Op. Sincethe set bye; 1S dense
inh, Ol = O and (DL2) follows.
To establish (DL4), note that Jm(Orest)J C M, Since Ol = O and 71(Okest)"” =
M, 7(Orest ) isdensein H. Thus, M, Q isaso densein H.
Following the above argument one can aso easily verify Hypothesis (DL3) in our
model. We will not make use of this hypothesis below. O

We are now ready to finish:
Proof of Theorem 1.2. Parts (i) and (ii) follow from Theorems 2.6 and 4.3 with Aj = Np

and Oy = Op. From the construction of Np and Op it isimmediate that N; C Np and
O C Op.
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Sincefor A € Op,
wy (A) = (DTTA*Q, Q) = (D7TA*Q, P Q),
Part (iii) follows from the last statement of Theorem 4.2. O

Aswe have pointed in the Remark 3 after Theorem 1.2, Part (iii) of Theorem 1.2 yields
that for A € Op we have an expansion

wy (A) = i AewF(A). (4.45)
k=0

It is an important question whether the functionals w,j can be (at least in principle) com-
puted. If

oo
Qf =) Maf,
k=0

then w;i (A) = (D7'A*,Q)), so w;" is determined 2 ((DL3) implies that the opposite
is also true). To compute the expansion of €2}, one uses that P, = Q) and the iden-
tity (4.37). First, using (4.38), one expands @, (#) in powers of A\. Using this result, one
expands T'()), S\(0), M()\) and £(\). The expansion of 3()\) and regular perturbation
theory yield the expansion of II()). The formulas (4.40) and (4.37) then yield the expan-
sions of QE\I)(O) and P, (). Although clearly the resulting formulas are complicated, at
least in principle it is possible to compute any term in the expansion (4.45). In particular,
the first term wy is determined by the vector

OF = P = (11(0)0) @ oY @ 0.
5 Entropy production

Proof of Theorem 1.1. We assume that the reader is familiar with basic properties of
relative entropy (a particularly clear review is given in [Don]). Let M = 7,(0)" and let
M. be the predual of M.

Assume that (a) and (b) hold, and that Ep(wj’) = wi(ov) = 0. Then, by the formula
(1.2) and (b),

Ent(wo i |w) = —/0 (w(ﬁ"}(av)) — w"'}(av))) ds > —-C,

foral ¢t > 0 and some C > 0. Set

1 T
wTET/O w o Ti-dt.
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The convexity and the upper semicontinuity of the relative entropy yield that
1 T
Ent(wr |w) > ?/ Ent(w o 7{, |w)dt > —C.
0

Since the set of all states € A, such that Ent(n |w) > —C is (M, MM)-compact, the
set of weak-* limit points of {wr |7 > 0} is contained in A,. It follows that w;> € A,
and this contradicts (a). O

Proof of Theorem 1.4. Theorem 1.3 yields that the assumption (a) of Theorem 1.1 holds.
Let us verify (b) for theinitial state w = ws ® wg, ® wg,, Where ws is given by (3.32). By
Takesaki’'s theorem [BR1],

0w = — 101 — Pado, (5.46)
and
0w(V) = =B1o, @ p(isa1) @ 1 — B0, @ 1 ® p(isan).

Sinceis; € biest, (Dtest 1S iVEN by (4.44)), 6,(V) € Oy. Hence, by Part (ii) of Theorem
1.2, the assumption (b) of Theorem 1.1 holds, and Ep(wy ) > 0.

It remains to show that the entropy production does not depend on the choice of the
initial state in NV;. Letn = 75 ® wg, @ wg, € N. Then, by Theorem 1.1in [JP3],

t
But(wo 1 |n) = But(w| ) — [ (s (6,0W)ds.
0
By the proof of Proposition 1.3 in [JP3],
Ent(w o 7ir |w) = Ent(w o i, | ) + O(1),
uniformly for ¢ > 0. Thisimplies that

w} (6, (AV)) = wf (6,(AV)). (5.47)

Relation (5.47) has one important consequence. Let w and n be as in the above proof
and
1s(A) = Tr(Ae'™)/Tr(e™).

Then,
677() = I[Hsa ] +6w()a

and (5.47) yield that
wy ([Hs, V]) = 0. (5.48)

Proof of Theorem 1.5. The second relation in (1.11) follows from the definition of entropy
production and Relation (5.46). To prove the first, note that



and
are the generators of the free and the perturbed dynamics. Since wj is Ty-invariant and
Ve D(d) = 'D((S)\),
0 = wi (BA(AV)) = wi (5(AV))
= Dwy ([Hs, V]) + wi (21) + wyf (2)
= wy (1) + wy (P2),

where we used (5.48). O

References

[Arl] Araki H.: Relative entropy of states of von Neumann algebras, Pub. R.I.M.S,,
Kyoto Univ. 11, 809 (1976).

[Ar2] Araki H.: Relative entropy of states of von Neumann algebras I, Pub. R.I.M.S,,
Kyoto Univ. 13, 173 (1977).

[AW]  Araki H., Wyss W.: Representations of canonical anticommutation relations, Helv.
Phys. Acta 37, 136 (1964).

[BSZ] Baez J.C., Segd I.E., Zhou Z.: Introduction to Algebraic and Constructive Quan-
tum Field Theory, Princeton University Press, Princeton (1991).

[BFS] Bach V., Frohlich J.,, Sigal I.. Return to equilibrium, J. Math. Phys. 41, 3985
(2000).

[BR1] Brattelli O., Robinson D. W.: Operator Algebras and Quantum Statistical Me-
chanics 1, Springer-Verlag, Berlin, second edition (1987).

[BR2] Brattelli O., Robinson D. W.: Operator Algebras and Quantum Statistical Me-
chanics 2, Springer-Verlag, Berlin, second edition (1996).

[Da) DaviesE.B.: Markovian master equations, Commun. Math. Phys. 39, 91 (1974).

[Don] Donald M.J.: Relative Hamiltonians which are not bounded from above, J. Func.
Anal. 91, 143 (1990).

[DG1] Derezinski J., Gerard C.: Asymptotic completeness in quantum field theory. Mas-
sive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11, 383 (2000).

[DG2] Derezinski J., Gerard C.: Spectral and scattering theory of spatially cut-off P(p),
Hamiltonians, Commun. Math. Phys. 213, 39 (2000).

[DJ1] Derezinski J., Jaksic V.: Spectral theory of Pauli-Fierz operators, J. Func. Anal.
180, 243 (2001).

[DJ2] Derezinski J., Jaksic V.: Return to equilibrium for Pauli-Fierz systems, preprint.



[DJP]
[Fr]

[FGS]

[GFV]

[Ha]
[Hak]

[HP]

[JP1]

[IP2]

[IP3]

[JP4]

[LS]

[01]

[02]

[OHI]

[OP]

[M]

[Si]

[Rul]

Derezinski J., Jaksi€ V., Pillet C.-A.: Perturbation theory of KM S-states, preprint.

Frigerio A.: Quantum dynamical semigroups and approach to equilibrium, Lett.
Math. Phys. 2, 79 (1977).

Frohlich J., Griesmer M., Schlein B.: Asymptotic completeness for Rayleigh scat-
tering, preprint.

Gorini V., Frigerio A., Verri M., Kossakowski A., Sudarshan E.C.G.: Properties of
guantum Markovian master equations, Rep. Math. Phys. 13, 149 (1978).

Haag R.: Local Quantum Physics. Springer-Verlag, Berlin (1993).

Haake F.: Satistical treatment of open systems by generalized master equations,
Springer tracts in modern physics 66, Springer-Verlag, Berlin (1973).

Hunziker W., Pillet C-A.: Degenerate asymptotic perturbation theory, Commun.
Math. Phys. 90, 219 (1983).

Jaksic V., Pillet C.-A.: Onamodel for quantum friction 1. Fermi’s golden rule and
dynamics at positive temperature, Commun. Math. Phys. 176, 619 (1996).

Jaksic V., Pillet C.-A.: On amodel for quantum friction I11. Ergodic properties of
the spin-boson system, Commun. Math. Phys. 178, 627 (1996).

Jaksic V., Pillet C.-A.: On entropy production in quantum statistical mechanics,
Commun. Math. Phys. 217, 285 (2001).

Jaksic V., Pillet C.-A.: In preparation.
Lebowitz J., Spohn S.: Irreversible thermodynamics for quantum systems weakly

coupled to thermal reservoirs, Adv. Chem. Phys., 38, 109, John Willey and Sons,
New-York (1978).

Ojimal.: Entropy production and non-equilibrium stationarity in quantum dynam-
ical systems. physical meaning of van Hove limit, J. Stat. Phys. 56, 203 (1989).

Ojimal.: Entropy production and non-equilibrium stationarity in quantum dynam-
ical systems, in Proceedings of international workshop on quantum aspects of op-
tical communications, Lecture Notes in Physics 378, 164, Springer-Verlag, Berlin
(1991).

Ojima I., Hasegawa H., Ichiyanagi,M.: Entropy production and its positivity in
nonlinear response theory of quantum dynamical systems, J. Stat. Phys. 50, 633
(1988).

OhyaM., Petz D.: Quantum Entropy and its Use, Springer-Verlag, Berlin (1993).
Merkli M.: Positive commutators in non-equilibrium quantum statistical mechan-
ics, preprint.

Simon B.: Functional Integration and Quantum Physics, Academic Press, New
York (1979).

Ruelle D.: Natural nonequilibrium states in quantum statistical mechanics, J. Stat.
Phys. 98, 57 (2000).

35



[Ru2]
[Rud]

[Sp1]

[Sp2]

36

Ruelle D.: Entropy production in quantum spin systems, preprint.
Rudin W.: Real and Complex Analysis, McGraw Hill, Inc, New York (1974).

Spohn H.: Entropy production for quantum dynamical semigroups, J. Math. Phys.
19, 227 (1978).

Spohn H.: An agebraic condition for the approach to equilibrium of an open N-
level system, Lett. Math. Phys. 2, 33 (1977).



