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Abstract

We study the non-equilibrium statistical mechanics of a �-level quantum system, � ,
coupled to two independent free Fermi reservoirs ��, ��, which are in thermal equilibrium
at inverse temperatures �� �� ��. We prove that, at small coupling, the combined quantum
system ������� has a unique non-equilibrium steady state (NESS) and that the approach
to this NESS is exponentially fast. We show that the entropy production of the coupled
system is strictly positive and relate this entropy production to the heat fluxes through the
system.

A part of our argument is general and deals with spectral theory of NESS. In the abstract
setting of algebraic quantum statistical mechanics we introduce the new concept of �-
Liouvillean, �, and relate the NESS to zero resonance eigenfunctions of ��. In the specific
model ������� we study the resonances of �� using the complex deformation technique
developed previously by the authors in [JP1].

1 Introduction

1.1 The framework

This paper deals with some thermodynamical aspects of a class of models in non-equilibrium
quantum statistical mechanics which are commonly used to describe interaction of a small
quantum system � with finitely many heat reservoirs ��. We will study the simplest non-
trivial model, namely in our work � is an �-level atom (spin 1/2) and each reservoir �� is a
free Fermi gas in thermal equilibrium at inverse temperature ��. Various generalizations of
our results will be discussed in Section 1.3 and in the forthcoming paper [JP4].

We will work in the framework of algebraic quantum statistical mechanics [BR1, BR2,
Ha]. For the reader convenience and notational purposes, in this section we review some
basic notions of this framework.

In the algebraic formalism a physical system is described either by a ��- or � �-
dynamical system. The advantage of Fermi reservoirs is that we can deal with ��-systems
which are conceptually simpler. A ��-dynamical system is a pair ��� ��, where � is a ��-
algebra with identity and � is a strongly continuous group of automorphisms of � (that is,
the map � � � �� � ���� is norm continuous for each � � �). The elements of � describe
observables of the physical system under consideration and the group � specifies their time
evolution. A physical state is described by a mathematical state on �, that is, a positive
linear functional 	 such that 	��� � �. The set 
��� of all states is a convex, weak-	
compact subset of the dual ��. A state 	 is called faithful if 	����� � � 
 � � � and
� -invariant if 	 Æ �� � 	 for all �.

The thermal equilibrium states of ��� �� are characterized by the KMS condition. Let
� �� � be the inverse temperature (although the physically relevant case is � � �, it is
mathematically convenient to define KMS-states for all non-zero �). The state 	 is ��� ��-
KMS if for any pair ��� � � there exists a complex function 
��� , analytic inside the
strip �� � � � �	
�����
� � ���
, bounded and continuous on its closure, and satisfying
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the KMS boundary conditions


������ � 	��� ������ 
������ 	�� � 	�� �������

A ��� ��-KMS state is faithful and � -invariant.
Let ��� �� be a ��-dynamical system and let Æ be the generator of � (�� � ��Æ). The

operator Æ is a 	-derivation: Its domain ��Æ� is a 	-subalgebra of � and for ��� � ��Æ�,

Æ���� � Æ����� Æ���� � Æ���� ��Æ����

Let � � � � � � be a perturbation (such perturbations are called local). The generator of
the perturbed dynamics is Æ� ��� � Æ��� � 	�����. The operator Æ� is also a 	-derivation
and ��Æ� � � ��Æ�. The perturbed dynamics is described by

� �� ��� �� ��Æ� ���

� � ���� �
�
���

	�
� �

�
���

� ��

�
��� � � �

� ����

�
�����

���� �� �� � � �� ���� �� � ��������

Until the end of this section we fix a ��-dynamical system ��� ��, a state 	, and a local
perturbation � .

The non-equilibrium steady states (NESS) of the locally perturbed system ��� �� � as-
sociated to the initial state 	 are the weak-* limit points of the set of states

�

�

� �

�
	 Æ � �� ��� (1.1)

for � � �. In other words, 	�� is a NESS if there is a sequence �� � � such that for all
� � �

�	

���

�

��

� ��

�
	 Æ � �� ����� � 	�

� ����

The set ��
� �	� of NESS associated to 	 is a non-empty weak-* compact subset of 
���

whose elements are �� -invariant.
One of the key concept of non-equilibrium thermodynamics is the notion of entropy

production. Within the framework of algebraic quantum statistical mechanics this notion
has been precisely defined in the recent works [Ru2, JP3], see also [Sp1, O1, O2, OHI] .
We recall the definitions and the results we will need.

For positive linear functionals �� � � ��, let ����� � �� be the relative entropy of Araki
(we use the ordering and the sign convention of Bratelli-Robinson [BR2, Don]). For defini-
tion and properties of Araki’s relative entropy we refer the reader to [Ar1, Ar2, BR2, Don,
OP].

We make the following assumption.

E(1) There exists a ��-dynamics �	 such that 	 is a ��	����-KMS state.
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The choice of reference temperature � � �� is made for mathematical convenience. If
(E1) holds, then for any � �� � there is a ��-dynamics �	�
 such that 	 is ��	�
� ��-KMS
state (set ��	�
 � ��
�	 �.

Let Æ	 be the generator of �	. Our second assumption concerns the local perturbation
� .

(E2) � � ��Æ	�.

Until the end of this section we assume that (E1) and (E2) hold. We set �� �� Æ	�� �
and call ����� � ���� � the entropy production (w.r.t. the reference state 	) of the per-
turbed system ��� �� � in the state � � 
���.

The following identity was proven in [JP3]:

����	 Æ � �� �	� � �
� �

�
	�� �� ��� ����� (1.2)

This identity motivates the definition of entropy production and is the starting point for
study of this notion [JP3, JP4]. In particular, since the relative entropy is non-positive,
Relation (1.2) yields that for any 	�� � ��

� �	�, ���	�
� � � �.

The NESS 	�
� is thermodynamically non-trivial if ���	�� � � �. One of the central

problems of mathematical theory of non-equilibrium quantum statistical mechanics is to
show that the NESS of concrete physically relevant models are thermodynamically non-
trivial. We describe below one simple criterion which ensures strict positivity of entropy
production and which will be used in this paper.

Let ��	� �	��	� be the GNS-representation of the algebra � associated to 	. The
states in �� which are represented by density matrices on �	 are called 	-normal. The set
of all 	-normal states is a norm closed subset of 
��� which we denote by �	. One can
show that the entropy production of 	-normal NESS is zero, see [JP4].

Theorem 1.1 Assume that NESS 	�� satisfies the following:
(a) 	�

� �� �	.

(b) ������
���� �� �	�� �� ��� ��� 	�

� ��� ����
��� � �.

Then ���	�
� � � �.

We will prove this theorem in Section 5.
One of the main results of this paper is that the class of systems we study has strictly

positive entropy production.
For additional information about NESS and entropy production we refer the reader to

[JP4].

1.2 The model and the results

We now describe the specific model we will study in this paper.
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The ��-algebra of observables of the system � is �� � ��� � �, the matrix algebra
on �� � �

� . Let �
� ��� �� be the usual Pauli matrices. The dynamics is specified by the
automorphisms

� �� ��� � ������������ � (1.3)

where �� � �� is the Hamiltonian of the system � .
Let � be the Hilbert space of a single fermion and � its energy operator. Let �� �

����� be the Fermi Fock space and ����, ����� the corresponding annihilation and creation
operators on �� . In the sequel �� stands either for � or ��. It follows from CAR (canonical
anti-commutation relations) that ������� � ���. The algebra of observables of the free
Fermi gas, �� , is the ��-algebra of operators generated by ������ � � � �
. The field
operators are defined by

���� � ��
�
����� � �������

The Hamiltonian and the dynamics are specified by �� � ����� and

� �� ��
����� � ����������������

� ����������

The pair ��� � ��� is a ��-dynamical system describing a free Fermi gas. For each � � �
there exists a unique ��� � ��-KMS state 	��
 on �� . 	��
 is a quasi-free, gauge-invariant
state uniquely determined by the two point function

	��
��
��������� � ��� ��
� � �������

Notation. In the sequel, whenever the meaning is clear within the context, we denote by �
the operators �� �, ���.

We consider now two identical reservoirs ��	�

� � �

	�

� �, � � �� �. The ��-algebra of

observables of the combined system � ��� ��� is

� � �� ��	�

� ��	�


� � (1.4)

the tensor product algebra of operators on � � �� � �� � �� . The free dynamics is given
by the group of automorphisms � � �� � �

	�

� � �

	�

� . The pair ��� �� is a ��-dynamical

system describing the combined system in absence of interaction. Note that

� ���� � ���������� �

where
� � �� ��

	�

� ��

	�

� �
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We now describe the interaction of � with the reservoirs. Choose form-factors �� � �,
� � �� �, and set

�� � �
 � ������ ��

�� � �
 � �� ������

� � �� � ���

(1.5)

Obviously, � � � � � �. The Hamiltonian and the dynamics of the interacting system are
specified by

�� � � �  ��

� ����� � ������������ �

where  is a real coupling constant. The pair ��� ��� is a ��-dynamical system.
In what follows we fix the inverse temperatures �� � � of the reservoirs. Let 	� be a

state on �� and 	��
� be the ��
	�

� � ���-KMS state on �	�


� describing the thermal equilibrium
state of the �-th reservoir. Consider first the initial states of the form

	 � 	� � 	
� � 	
� � 	� � 
����� (1.6)

We denote the set of all such states by ��. For 	 � ��, let � � 
��� be the set of all
	-normal states (� does not depend on the choice of 	 � ��). Our goal is to study NESS
of ��� ��� associated to initial states in � .

For technical reasons related to use of the complex deformation technique of [JP1], we
impose some regularity assumptions on the reservoirs and form factors. Our first assump-
tion is:

A(1) � � �������� for some auxiliary Hilbert space �, and � is the operator of multipli-
cation by � � ��.

Let !�Æ� � �� � � � ��
�� � Æ
. We denote by ���Æ� the Hardy class of all analytic
functions � � !�Æ� �� � such that

�����	Æ
 � ���
����Æ

�
�

����� 	"������ � ��

We fix a complex conjugation � �� � on � which commutes with �. To any � � � we
associate a function �� � � �� � by

����� �

��
�
���� if � � ��

������ if � � ��
(1.7)

Our second regularity assumption is:
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(A2) For some Æ � �, ��
������� � ���Æ� for � � �� �.

Our third assumption ensures that the small system � is effectively coupled to the reser-
voirs.

(A3) �������� � � for � � �� �.

To illustrate the above assumptions with a concrete example, assume that � � ����� ��#�
and that � is operator of multiplication by #�$�%. Passing to polar coordinates and chang-
ing the variable one sees that (A1) holds with � � ���&�������, where &��� is the unit

sphere in �
� and �� is the surface measure. If ���#� � �#� ���

� ���
�
, then (A2) and (A3)

hold (in this example (A2) holds for all Æ and ��).
Our first result is:

Theorem 1.2 Assume that (A1)-(A3) hold. Then, for some � � � and � � � � � �, there
is a state 	�� on � so that the following hold:
(i) For all � � � and � � �,

�	

���

��� ������ � 	�
� ���� (1.8)

(ii) The limit (1.8) is exponentially fast in the following sense: There exist '� � � �, a
norm dense set of states �� � � , and a norm-dense 	-subalgebra �� � � such that for
� � ��, � � ��, and � � �,

���� ������ 	�
� ���� � �������

��	�
�� (1.9)

Moreover, �� � �� and �� � ��.
(iii) For � � ��, the functions  �� 	�� ��� are analytic for � � � �.

Remark 1. Our proof gives that � � (�
	��$���, and thus the above theorem is a high-
temperature result. It is an interesting question whether the techniques of [BFS] or [DJ1,
DJ2] can be adopted to prove the above theorem for � independent of the temperatures ��.
Remark 2. If �� �� ��, then 	�

� is not a ���� ��-KMS state for any �.
Remark 3. In the thermal equilibrium case �� � �� � � Theorem 1.2 was proven in
[JP1, JP2] (	�

� is then the unique ���� ��-KMS state of ��� ���). The method of this paper
is suited to non-equilibrium situations and, when restricted to thermal equilibrium case,
differs from the method of [JP1, JP2]. In particular, here we require a stronger regularity
condition than [JP1, JP2] (there it suffices that �� � ���Æ�) but we also obtain a slightly
stronger result (the method of [JP1, JP2] fails to show that �� � �� and �� � ��).
Remark 4. Our proof gives that

'� � � '� 
� �(� ���

where
'� �

�

�

���������� � ���������
	
�
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Remark 5. Regarding (iii), it follows from our arguments that there exists linear functionals
	�
� � �� �� � , # � �, such that for � � ��,

	�
� ��� �

��
���

 �	�
� ���� (1.10)

The first term 	� is computed from a linear eigenvalue problem on ��. This eigenvalue
problem is determined by the second order correction (Fermi’s Golden Rule) for the reso-
nances of a suitable non-self-adjoint operator (�-Liouvillean). Although formulas for the
higher order terms become quickly very complicated, in principle it is possible to compute
all terms in the expansion (1.10). We will discuss this point at the end of Section 4.

Theorem 1.2 establishes the basic thermodynamical property of the system �������,
namely that the set of initial states � belongs to the basin of attraction of a single NESS
	�
� . We now discuss the other thermodynamical properties of this system.

The first question is whether 	�� belongs to the set � of normal states.

Theorem 1.3 Assume that ���� � ���� hold and that �� �� ��. Then there is ) � � such
that for � � � � � ) there are no ��-invariant states in � . In particular, if � � � � �

	���� )�, then 	�

� �� � .

Remark 1. This result can be proven under more general condition then (A2), see [DJ1,
DJ2].
Remark 2. The constant ) differs from the constant � in Theorem 1.2. In contrast to �, )
can be chosen independently of the size of ��’s as �� � � (see [DJ2] for details). On the
other hand, ) depends on * � ��� � ��� and ) � � as * � �. The constant � can be chosen
independently of * as long as � � * �  !����

Recall that the entropy production depends on the choice of the initial state 	. Let 
��

be the set of states in �� with the property that 	� � � and is ��-invariant. The assumption
(E1) of Section 1.1 hold for all 	 � 
��. If (A2) holds, then (E2) holds for the perturbation
� .

Theorem 1.4 Under the assumptions of Theorem 1.3, for any initial state 	 � 
��,

���	�
� � � 	�

� �Æ	� � �� � ��

for � � � � � 
	���� )�. Moreover, ���	�� � does not depend on the choice of the initial

state 	 � 
��.

Remark. This theorem can be proven in two different ways. The short proof (the one we
will give in this paper) is based on Theorem 1.1. This proof gives no estimate on the size
of entropy production. The second proof is based on the perturbative expansion of the state
	�
� . Although computationally tedious, this proof has the advantage of showing that the

entropy production is strictly positive to the lowest non-trivial order (the first non-trivial
term can be also computed using the van Hove weak coupling limit, see [LS]). We will
discuss the perturbative proof of Theorem 1.4 in [JP4].
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We finish this section with a brief discussion of the heat fluxes. Let Æ� be the generator
of � 	�
� . (A2) implies that �� � ��Æ��. The observable describing the heat flux (energy
transfer) from the rest of the system into the �-th reservoir is "� �� Æ�� ���.

Theorem 1.5 Assume that (A1)-(A3) hold and that �� �� ��. Then, for � � � � �

	���� )�, the following relations hold:

	�
� �"�� � 	�

� �"�� � ��

��	
�
� �"�� � ��	

�
� �"�� � ����	�

� � � ��
(1.11)

where in the second relation the entropy production is computed w.r.t. any initial state in
��.

Remark 1. Relations (1.11) are respectively the first and the second law of thermodynamics
for the model � ��� ���.
Remark 2. If �� � ��, then 	�

� �"�� � �. Thus, in NESS 	�
� there is a constant non-

vanishing heat flow from the hotter to the colder reservoir across the system � .
Remark 3. Except for the strict positivity of entropy production, the relations (1.11) follow
only from a few structural properties of the model � � �� � ��, and can be proven in
considerable generality, see [JP4] for details.

1.3 Remarks

Although in this paper we have chosen to study the simplest non-trivial model, our results
can be easily extended to the case where � is an + -level atom, there are � -reservoirs
instead of two, and �� is a finite sum of terms of the form

,� � ������ � � � ������	
�	���
���

(one assumes that ����� ���� � � for # �� - and ,� � ,�
� � ��� � �). In this case, the

assumption (A3) has to be replaced with a more complicated algebraic condition which
ensures that a suitable + � + matrix has zero as a simple eigenvalue. This condition is
studied in detail in [DJ2] and is closely related to the non-degeneracy condition discussed
in the context of master equation approach to the non-equilibrium thermodynamics [Da,
LS, Sp2, Fr]. We will discuss both the more general model and the relation of our results
with the master equation technique in the continuation of this paper [JP4].

If the Fermi reservoirs are replaced with Bose reservoirs, then the combined system has
to be described within the framework of ��-dynamical systems. In this case the perturba-
tion � is an unbounded operator and this leads to some technical difficulties in the study of
the ��-Liouvillean (the analog of �-Liouvillean for ��-systems). It is an important open
problem to prove the analog of Theorem 1.2 for Bose reservoirs.

Among the works related to ours, we mention the one of Davies [Da], where the dy-
namics of the system � �

�
��� is studied in the van Hove weak-coupling limit � �  ��,

 � �, � � �. In particular, Davies proves the existence and uniqueness of NESS in the van
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Hove limit (this state coincides with 	� in the expansion (1.10)). Lebowitz and Spohn [LS]
have used Davies results to study the thermodynamics of the system � �

�
��� in the van

Hove limit steady state 	�. There is a substantial literature on the use of van Hove limit
and Markovian master equations in statistical mechanics, see [GFV, Hak] for references
and additional information. The results beyond van Hove limit are scarce. In [JP1, JP2]
Theorem 1.2 was proven in thermal equilibrium case where �� � ��. The method of the
proof was based on quantum Koopmanism and the spectral analysis of the quantum Koop-
man operator - the (standard) Liouvillean - of the system � �

�
���. Various extensions

and generalizations of these results are given in [BFS, DJ1, DJ2, M].
An alternative (abstract) approach to the study of non-equilibrium steady states of fi-

nite quantum systems coupled to thermal reservoirs was recently proposed in [Ru1]. This
proposal is based on the scattering theory of ��-dynamical systems and an ergodicity hy-
pothesis called ��-asymptotic abelianness. This hypothesis is difficult to verify in concrete
models, and in particular it is not known whether it holds for the model studied in this
paper.

We would like to add the following general remark. It is known that the ergodic proper-
ties of ��-dynamical systems in thermal equilibrium are encoded in the spectrum of a suit-
able self-adjoint operator, the quantum Koopman operator or Liouvillean, see e.g. [JP2].
In non-equilibrium situations, the quantum Koopmanism is not applicable, and it has been
generally believed that the understanding of NESS requires the development of scattering
theory. In the models of physical interest this is a difficult task, and the progress has been
slow (see however [DG1, DG2, FGS]). A perhaps surprising aspect of our method is that
at least in some situations, the spectral approach to NESS is possible, and that the structure
of NESS is encoded in the spectral resonances of a suitable non-selfadjoint operator, the
�-Liouvillean.

The paper is organized as follows.
The method of the proof is described in the abstract setting in Section 2 where we

introduce the concept of �-Liouvillean, �, and show how the NESS of an abstract ��-
dynamical system are related to the resonances of ��. The results of Section 2 are quite
general and, we believe, shed some light on the structure of non-equilibrium quantum sta-
tistical mechanics. In Sections 3 and 4 we apply the abstract formalism of Section 2 to the
specific model � � �� � �� – in Section 3 we explicitly compute the modular structure
and �-Liouvillean �, and in Section 4 we study the resonances of �� using the complex
deformation technique previously developed in [JP1].

Acknowledgments. We are grateful to Jan Dereziński for many discussions on the subject
of this paper, for remarks on the manuscript, and for pointing to us an argument which
led to the proof of Theorem 1.3. The research of the first author was partly supported
by NSERC. Part of this work has been performed during the visit of the first author to
University of Toulon and during the visit of the second author to University of Ottawa
which was supported by NSERC. The main part of this work was done during the visit
of the first author to Johns Hopkins University. V.J. is grateful to Steve Zelditch for his
friendship and to the Mathematics Department of Johns Hopkins University for generous
support.
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2 Liouvilleans and NESS

The goal of this chapter is to introduce the basic new ingredient of our method, the �-
Liouvillean.

In Section 2.1 we recall the basic notions of Tomita-Takesaki modular theory and in
particular the notion of standard Liouvillean. In Section 2.2 we introduce �-Liouvilleans.
In Section 2.3 we describe the relation between the �-Liouvilleans and NESS.

Throughout this section we adopt the following framework.
Let ��� �� be a ��-dynamical system and 	 a given faithful state. Let ��� ���� be

the GNS-representation of the algebra � associated to 	 (for simplicity, we write � for
�	, etc). Since 	 is faithful, � is an injection and we can identify � and ���� (with a
slight abuse of notation, we write � for ����). We set� � ������ and assume that � is a
separating vector for the von Neumann algebra� (� ��� �� � � 
 � � �).

We denote by � � 
��� the set of all �-normal states, that is, the states represented
by density matrices on �. Every element of � extends uniquely to a state on�.

In what follows we assume that 	 is � -invariant. Then � has a unique extension to a
weakly continuous group of automorphisms of� which we denote by the same letter. The
state 	��� � ��� ��� is a � -invariant state on�.

Let � � � be a local perturbation and �� the perturbed ��-dynamics. The group ��
also extends to a weakly continuous group of automorphisms of� which we denote by the
same letter.

2.1 The standard Liouvillean

There exists a unique self-adjoint operator � on � such that for � ��

� ���� � �����������

�� � ��

We call the operator � the standard Liouvillean. Note that the perturbed time evolution ��
also has a unitary implementation

� �� ��� � ���	��� 
�����	��� 
�

Let #, . and � be the modular operator, the modular conjugation and the natural cone
of the pair �����. By definition of the modular structure,�� � ��#

�
� � and for � ��,

.#
�
��� � ���� (2.12)

By Tomita-Takesaki theorem, #���#��� � �, .�. � ��. For every normal state
� � � there is a unique vector �� � � such that ���� � ���� ����.

Let
�� � �� � � .� .�
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We will call �� the standard Liouvillean for the perturbation � . The operator �� is the
unique self-adjoint operator satisfying

� �� ��� � ����� ������� �

������ � � ��
see [BR2, DJP]. An immediate consequence of these relations is:

Proposition 2.1 The state � � � is �� -invariant iff �� �� � �.

By this proposition, the the study of normal, �� -invariant states reduces to study of
$�%�� .

If 	 is ��� ��-KMS, then by the fundamental result of Araki there exists a state 	� � �
which is ��� � ��-KMS. Thus, in thermal equilibrium $�%�� is never empty. On the other
hand, if 	 is not a KMS-state, then typically $�%�� �  and to study NESS using spectral
techniques we need new concepts.

2.2 �-Liouvillean

The vector space �� � ��� �� � �
 equipped with the norm

����� � ���� (2.13)

is a Banach space which we denote by ������. Note that every � � � defines, by right
multiplication, a bounded linear map on ������. This map we again denote by �.

Obviously, the map
� � � �� �� � �������

is a Banach space isomorphism. Under this isomorphism, the group ��� is mapped into a
continuous group ��� of isometries of ������. Clearly,

� ���� � � �� ����� (2.14)

and

� �� � � ��

� �� ��
��
� � � �� ����

(2.15)

The generator of the group ��� we denote by �� and call it �-Liouvillean. It is convenient
to include the imaginary unit in the definition of �� so that

� �� � ����� �

By (2.14),
���� � � ��� �� � ��Æ� �
 �
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and
	���� � Æ� �����

We proceed to compute the operator �� in terms of the modular structure.
Let � � ��Æ� � � ��Æ� be given. Differentiating the relation

����� �� � ���	��� 
�����	��� 
��

and setting � � � we derive

���� � ��� � ���� �� ������

Applying (2.12) twice we obtain

�� ����� � .#
�
�� .#

�
����

Since .#
�
� � #� �

�. on ��, the operator �� has the form

�� � �� � � .#
�
��#� �

�.� (2.16)

Note that
.#

�
��#� �

�. � ������ � �������

is a bounded operator with norm �� �.
We now identify conditions under which ��� extends to a strongly continuous group on

�.
The formula (2.16) implies that the operator �� extends to a dense subspace � ��

���� ! ��. Moreover, since � � ����� �, the linear operator �� with domain � is
closable. We denote its closure by the same letter. It follows that ��� extends to a strongly
continuous group on � iff �� satisfies the conditions of Hille-Yosida-Phillips theorem:

(R1) For some � � �, ���� � � �� � ��
�� � �
.

(R2) There is a � � � such that for all � with ��
�� � � and all integers / � �,

��� � �� �
��� � ����
�� � �����

In the next proposition we summarize some elementary consequences of the assump-
tions (R1) and (R2). In the sequel ��� stands either for �� or ��� .

Proposition 2.2 Assume that �&�� and �&�� hold. Then the operators 	��� are generators
of strongly continuous groups on �. Moreover:

(i) ������� � � ������.
(ii) If �
� � �, then

�� � ��
� �

�� �
�

	

� �

�
���������

�
� ��� (2.17)
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(iii) For all � ��,

� �� ��� � ����� ������� � ����
�

� ������
�

�
�

(iv) ��� � �.

Proof. Parts (i) and (ii) are well-known properties of strongly continuous groups. Parts
(iii) and (iv) follow from (2.15). �

It is convenient to introduce conditions on the perturbation � which can be easily
checked in concrete models and which imply (R1) and (R2) above. We describe one such
condition below. For self-adjoint � � � and � � � we set

�� � #���#����

(R3) The function � � � �� �� �� has an analytic continuation to the strip �� � ��
�� �
�$�
 which is bounded and continuous on its closure.

Note that since �� is self-adjoint we must have � �� � ��. Clearly, (R3) implies (R1)
and (R2), and

�� � �� � � .�����.�

��� � �� � � .����.�

Moreover, if (R3) holds, then one can take � � ������ � ������� and � � � in (R1)-(R2).
If 	 is a ��� ��-KMS state, there is an important relation between standard Liouvillean

�� and �-Liouvillean �� . A simple computation shows that for � � �,

�� � � .��. � ���
�	��� 
�� ��
�	��� 
�

If (R3) holds, then by analytic continuation the relation

�� � �
	��� 
���� ��
	��� 
��� (2.18)

holds in quadratic form sense on a domain ����
	��� 
��� ! ���
	��� 
���. The identity
(2.18) leads to a simpler proof of some fundamental results of Araki’s theory of perturba-
tions of ��-dynamical systems (see [DJP] for details). It can also be used to relate the
method of the proof of Theorem 1.2, restricted to thermal equilibrium case �� � �� � �,
to the method of [JP1, JP2]. For reasons of space we omit the details.

If 	 is not a KMS-state, then there is no direct relation between �� and �� .
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2.3 Spectral theory of NESS

Our goal is to study NESS using spectral theory of �-Liouvilleans. For this reason it is
more convenient to deal with NESS defined using Abelian limits. The weak-* limit points
of the set of states

0

� �

�
����	 Æ � �� ���

as 0 � � we denote by ��
��
��	�. The set ��

��
��	� is a non-empty weak-* compact subset
of 
��� whose elements are �� -invariant. Moreover:

Proposition 2.3 If either ��
��
��	� or ��

� �	� consists of a single state, then

��
��
��	� � ��

� �	��

The proof of this proposition follows from standard Abelian and Tauberian theorems [Si].
With a slight abuse of terminology we will also call the elements of ����
��	� the NESS

of ��� �� � associated to the initial state 	.
In what follows we assume that the assumptions (R1) and (R2) hold.
Our goal is to characterize NESS in ��

��
��	� in terms of the corresponding C-Liouvillean.
To motivate this characterization, for �
� � � let �� �� �� � ��� �

���, and let 	� � ��

be defined by 	���� � ��� ����. Then, since

	���� �
�

	

� �

�
����	�� �� �������

the functionals 	� have weak-	 analytic extension to the half-plane �
� � � and ����
��	�
is the weak-	 limit point set of the set of states �	0	�� � 0 � �
 as 0 � �. We wish to go
further along these lines and characterize ����
��	� directly in terms of the vectors ��. Our
main tool is an axiomatic abstract version of the complex deformation technique.

Let 1 � � be a bounded operator on � such that &'�1 is dense in � and 1� � �.
Set

� ��� �� 1�� � ��� �
��1�

Our first assumption is:

(DL1) The vector-valued function � �� � ����, originally defined for �
� � �, has an
analytic continuation to the half-plane �
� � � such that

���
���

0�� �	0��� � �� (2.19)

Note that since ���� �	0��� � �	0���, 	�(��� 0�� �	0��� � �.
We define a vector subspace � � � by

� �
�
� � � ���� � ��1���



�
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Let ���
 be the norm closure of � . Our next two assumptions are:

(DL2) ���
 � �.

(DL3) The set �1����� �� � � 
 is dense in �.

Let ��
� be the weak limit point set of 	0� �	0�� as 0 � �. Since the unit ball in a

Hilbert space is weakly compact, (2.19) implies that��
� is non-empty.

Proposition 2.4 Assume that �)*�� and �)*�� hold. Then there is an injection

��
� � ��

� �� 	�
� � ��

��
��	� (2.20)

such that for � � � ,
	�
� ��� � �1��������

� �� (2.21)

If in addition (DL3) holds, then the map (2.20) is a bijection.

Remark. The vectors in ��
� are naturally interpreted as the zero-resonance eigenvectors

associated to the triple ���� �1���, and in this sense Theorem 2.4 identifies NESS with
zero resonance eigenvectors of ��� .
Proof. Proposition 2.2 yields that for � � � 

0

� �

�
����	�� �� ������ � 	0�1������� �	0���� (2.22)

Since ���
 � �, from this relation it follows that each ��

� ���
� determines a unique state

	�
� � ��

��
��	� and that (2.21) holds for � � � .
If in addition (DL3) holds, then Relation (2.22) and the uniform bound (2.19) imply

that each 	�� � ��
��
��	� determines a unique ��

� ���
� . �

An immediate consequence of Proposition 2.4 is that under the assumptions (DL1)-
(DL3), ��

��
��	� consists of a single state 	�� iff

+� �	

�	�

	0� �	0�� � ��
� �

and in this case for all � � � we have

�	

���

�

�

� �

�
	�� �� ������ � �	


�	�
0

� �

�
����	�� �� ������ � 	�

� ����

To refine the above result, we need additional assumptions. Let

��
 �

�
� ���

������ � ��1���


�

and let ���
 ���� be the closure of��

 � in �.
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(DL4) ���
 ���� � �.

Note that since � is a separating vector for�, ������� � �. We denote by � the set of
vector states

�� � � � ���� �����

where � ���
 and ���� � �. (DL4) implies that � is norm-dense in � .

We will replace assumption (DL1) with

(DL5) The operator-valued function � �� � ���, originally defined for �
� � �, has an
analytic continuation to the region �
� � � and there is a bounded operator 2�� such that

+� �	

�	�

	0� �	0� � 2�
� �

Proposition 2.5 Assume that the assumptions �)*��� �)*,� and �)*-� hold and that
�	
&'�2�

� � �. Then, for all � � � ,

��
��
���� � ��

��
��	� � �	�
� 
�

Proof. Note that since 2��
� � � � and �	
&'�2�

� � �, 2�
� � � � � ��� � ���

� . To prove
the proposition it suffices to show that for � � � and � � � ,

�	

�	�

0

� �

�
������� �� ������ � �1��������

� �� (2.23)

Let � � � and � � � be given. Let � ���
 be such that �� � � � ���� ����. Since

��� � �� ���� � �, we derive from Proposition 2.2 that� �

�
������� �� ������ �

� �

�
�������� � �� ��������

� 	�1������� �	0�1��������

Therefore

�	

�	�

0

� �

�
������� �� ������ � �1������ 2�

� 1
�������� (2.24)

Relations 2�
� � � � � ��� � ���

� , 1��� � �, and ���� � � yield

2�
� 1

������ � ��
� � (2.25)

and (2.23) follows from (2.24) and (2.25). �
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The last result we wish to discuss concerns conditions under which the approach to
NESS is exponentially fast. For 3 � � let ��3� be the half-plane �� � �
� � 3
. We
replace (DL5) with:

(DL6) The operator-valued function � �� � ���, originally defined for � � ����, has a
meromorphic continuation to a half-plane ��3� for some 3 � �.

Since ���� ����� � �$�, zero is always a pole of � ���. It is not difficult to show
that if in addition (DL3) holds, then zero is a simple pole of � ��� and all other poles are
in the half-plane �
� � �. In particular, (DL3) " (DL6) 
 (DL5). We will not make use
of assumption (DL3) below.

Assume in addition to (DL6) that the function � ��� has only finitely many poles
���� ��� � � � � ��
 (�� � �) in the half-plane ��3� and let %� be the order or the pole ��.
Then we can decompose � ��� as

� ��� � ��
 ��� ���

 ���� (2.26)

where ��
 ��� is an analytic operator-valued function in the half-plane ��3� and

��
 ��� �

��
���

&����

&���� �

!��
���

&��
�� � ����

�

(2.27)

Let 2�
� be the residue of � ��� at � � �. Then

2�
� �

�

��	

�
�
� ����� � &���

where ' is a small circle around zero such that inside ' zero is the only singularity of
� ���.

Theorem 2.6 Assume the following:
(a) Assumptions �)*��� �)*,� and �)*.� hold.
(b) The function � ��� has only finitely many singularities ���� ��� � � � � ��
 in��3�, where
�� � � and �
�� � � for # � �.
(c) �	
&'�2�

� � �.
(d) For all / � � and - � �� �, �����"

�
�
�4�
�/���

 �5� 	6�/������5 � �.
Then,
(i) For all � � � , ��

��
���� � ��
��
��	� � �	�

� 
. Moreover, for all � � �,

�	

���

��� �� ���� � 	�
� ���� (2.28)
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(ii) For all � � � , � � � , and � � �,����� �� ���� � 	�
� ���

�� � �����
���#�$#���

where ' � 
	��
�
� ��
��� and 7 is the maximum order of dominant poles (the poles in
���� � � � � ��
 closest to the real axis).

Proof. Since (ii) 
 (i), we have to prove (ii) only.
Fix � � � , �� � � � ���� ����, and � � � . Then,� �

�
������� �� ������ � 	�1������� ���1������� � )����

Fix Æ � � and 3� such that 3 � 3� � �'. Let � � � be a large number and �$ the rectangle
with vertices �%�� 	Æ�%�� 	3�
. Then, for any 0 � �,

�

��

�
��

�����)����� � � �

��

� $

�$
����	
��Æ
)�5� �Æ��5� &��� �����

� �	�
� ����

��
���

!��
���

��	�����

��� ��0
�1������ &��1

������������� �

(2.29)

where &��� is the integral of ) over the vertical sides of the rectangle �$ and ���� is
the integral over the bottom side. Integration by parts and (d) with - � � yield that for
� � � and uniformly in �, ������ � (��"

���. Using (d) with - � �, a standard argument
(see e.g. Theorem 19.2 in [Rud]) yields that for some sequence �� � �, �&����� � �.
Moreover, the sequence �� can be chosen independently of Æ as long as Æ �  !���. Pick a
subsequence ���such that

�	

���

�

��

� $��

�$��

����	
��Æ
)�5� �Æ��5 � ��� �� �����

for Lebesgue a.e. � � � and set � � ��� in (2.29). Taking # � � we derive that for a.e.
� � �, ����� �� ���� � 	�

� ���
�� � �����

���#�$#��� (2.30)

Since both sides in (2.30) are continuous functions of �, the estimate (2.30) holds for all
� � �. �

3 Modular structure of the model

In this section we return to the model � � �� � ��. We explicitly compute the modular
structure associated to ��� �� and the states in ��. We then use these results to compute
the standard and the �-Liouvillean of the locally perturbed system.
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Since the results of this section are either well-known or follow from simple computa-
tions we will omit the proofs.

Notation. If � is a linear operator on ��, we denote by � the linear operator

�8 � �8�

where on the right-hand side � is the usual complex conjugation on �� � �
� .

We begin by computing the modular structure associated to the small system � . Set

�� � �� � ���

����� � �� ��

��� ��� � ����

Let 	� be a state on ��. Then there is a density matrix 9� such that 	���� � 1%�9���. The
state 	� is faithful iff 9� � � and ��-invariant iff ���� 9�� � �. If 9�� � � �

�
:��8�� � �8�,

let
�� ��

�
:
�
�

� 8� � 8��

Recall that the dynamics of � is specified by automorphisms (1.3). Let

�� � �� � �� �����

Proposition 3.1 The triple ���� ������ is the GNS representation of �� associated to 	�.
If 	� is ��-invariant, then �� is the corresponding standard Liouvillean. If 	� is faithful,
consider the pair �����������.
(i) Its modular operator is

#� � 9� � 9�
���

(ii) Its modular conjugation is .��;� 8� � 8 � ;.
(iii) .������.� � ��� ���.

We now discuss the modular structure associated to a free Fermi reservoir in thermal
equilibrium at inverse temperature �. We fix a complex conjugation (an anti-unitary invo-
lution) � �� � which commutes with the single particle Hamiltonian �. Let 2�� be the Fock
vacuum on �� , + the number operator,

< � ����� � ����� �

and

=
 �
�
�
� � �

���
�
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The complex conjugation � on � naturally extends to a complex conjugation on �� which
we denote by the same symbol, i.e. / �� /. Let

�� � �� � �� �

�� � 2�� � 2�� �

The Araki-Wyss representation �
 of �� on �� is defined by

�
������ � ����� =
�
�
� ��� �� <� ���=

�
�


 ���

�
��
����� � ������ =
�

�
� ��� �� <� ��=

�
�


 ���

The dual representation ��
 is defined by

��
 ������� � <��=
�
�


 ��� <� �� ������ =
�
�
� ��<�

��
 ������ � ���=
�
�


 ��<� <� �� <����� =
�
�
� ���

The representations �
 and ��
 were introduced for the first time in [AW] (see also Example
5.2.20 in [BR2]). Let

�� � �� � �� ���� �

Proposition 3.2 The triple ��� � �
 ���� is the GNS representation of �� associated to the
KMS-state 	��
 and �� is the corresponding standard Liouvillean. The vector �� is sepa-
rating for the enveloping von Neumann algebra

���
 � �
����
���

Consider the pair ����
����.
(i) Its modular operator is #� � ��
�� .
(ii) Its modular conjugation is

.��"�/� � >/� >"�

where > � �����	���
��.
(iii) .��
���.� � ��
 ���.

If (A1) holds, then the GNS representation and modular structure of a free Fermi gas can
be described in a somewhat different form which is more suitable for the spectral analysis.
In what follows we assume that (A1) holds. Let �� � �������. To any � � � we associate
a pair of functions �
� �

�

 � �� by

�
��� �
�
��
� � �

�� �
� ������

��
 ��� � 	��
����
��� � 	�
�����
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( �� is defined by (1.7)). For latter purposes we make the following remark. Assume that
�� � ���Æ� for some � � Æ � �$�. Then

��Æ� �� � ���
������Æ

�� � ��
������ � ��

It then follows that �
� �
�

 � ���Æ�,

��
���	Æ
 � ���
 ���	Æ
 � ��
�����
 ���	Æ
 � ���
����
���	Æ
�

��
���	Æ
 � ��Æ� ��� �����	Æ
� (3.31)

���
�����
 ���	Æ
 � ��Æ� �����
��� �����	Æ
�

We denote by � the operator of multiplication by � � �. Let �� be the vacuum on ������.

Theorem 3.3 There exists a unitary map

? � �� �� �������

such that

?�� � ���

?��?
�� � �����

?�
������?
�� � ���
�

?��
 ������?�� � 	���������
 ��

Proof. This result follows from the identification � & � � ������� and the exponential
law for fermionic systems (see Theorem 3.2 in [BSZ]). �

In what follows we will work exclusively in the representation given by Theorem 3.3
and we identify the quantities related by ? (�� now stands for ������, �� for ��� , �� for
����� etc.).

Consider now two identical reservoirs ��	�

� � ��� and let � be given by (1.4). Let 	
� be

���� ���-KMS on �	�

� for some �� � �. Set

� � �� ��	�

� ��	�


�

� � �� � �
	�

� � �

	�

� �

� � �� � �
� � �
� �

�� � ��� � ��
� � ��
� �

� � �� � �	�

� � �	�


� �
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Proposition 3.4 The GNS representation of � associated to 	� � 	
� � 	
� is ��� ����.
If 	� is ��-invariant, then � is the corresponding standard Liouvillean. If 	� is faithful, then
� is a separating vector for the enveloping von Neumann algebra

� � ������ � ����������
� ����
� �

For 	� faithful, consider the pair �����.

(i) Its modular operator is # � #� �#
	�

� �#

	�

� .

(ii) Its modular conjugation is . � .� � .� � .� .
(iii) .����. � �����.

Let now � be the perturbation (1.5). The standard Liouvillean �� for the perturbed
dynamics is now easily computed in the representation �. With a slight abuse of notation
we identify � and ��� �. Moreover, we denote the field and number operators on �	�


� by
�	�
 and +�. Then,

� � ��
 � ��� �	�
���
�� � ��
 � ��� �	�
���
���

.� . � ��� �
��
�
	�������	�
����
��

�
� ��� �
��

�
	�������	�
����
��

�
�

Proposition 3.5 The standard Liouvillean of the perturbed system ��� ��� in the represen-
tation � is

�� � ��  � �  .� .�

Assume now that (A2) holds. Then, the assumption (R3) of the Section 2.2 holds and

.�����. � 	
�
�

��� 9���� �
9�
������ ��

�
������

�
�	�
���
�������
�� � �	�
���
�������
��

�
�

.����. � 	
�
�

��� 9�
�����
9

���
� �� ��

�
������

�
�	�
��
�������
�� � �	�
����
�������
��

�
�

Proposition 3.6 If 	� is faithful and Hypothesis (A2) holds, then the Hypothesis (R3) of
Section 2.2 holds for the perturbation � and the �-Liouvillean is

�� � ��  � �  .�����.�

The adjoint of �� is
��� � ��  � �  .����.�

Although the standard Liouvillean does not depend on the choice of the initial state of the
small system, the �-Liouvillean does through the term .�����. . It is often convenient to
take a simple choice for the initial state 	�, namely

	���� � 1%���$�� (3.32)

whose density matrix is 9� � �$�. In this case �� takes a slightly simpler form and

������� � �
�
�

��
��������
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4 Spectral analysis

The spectral analysis of the operators �� and ��� follows closely [JP1]. In this section we
will state the main results of this analysis and discuss some of their consequences. We will
only indicate the main steps of the proofs and the interested reader should consult [JP1] for
details. Throughout this section we assume that the assumptions (A1) and (A2) hold.

Recall that �� � ������� and �� � ������. Let : � 	4� be the generator of the
group of translations on �� and 2 � ���:� its second quantization. We adopt the shorthand
#2 $ � �� � 2 ��

�
� . Let Æ � � be as in (A2). In what follows we fix @ such that

� � @ � 
	���$��� �$��� Æ��

Let
1 �� �� ��%�& 
 � ��%�& 
�

Obviously, &'�1 is dense in � and the vectors of the form 8 � �
	�

� � �

	�

� , 8 � ��, are

invariant under 1. Recall that ��3� � �� � �
� � 3
.
We deal first with the standard Liouvillean and Theorem 1.3.

Theorem 4.1 For any 3 � �@ there is a constant � � � such that for � � � � the
operator-valued function

� �� 1�� ������1� (4.33)

originally defined for �
� � �, has a meromorphic continuation to the half-plane ��3�.
The function (4.33) has at most four poles in���3�. If in addition (A3) holds and �� �� ��,
then there is a constant ) � � such that for � � � � � ) none of the poles is on the real
axis. In particular, for � � � � � ) the spectrum of �� is purely absolutely continuous and
there are no ��-invariant states in the set � of normal states.

The last part of Theorem 4.1, the absence of ��-invariant states in � , is the statement of
Theorem 1.3.

The proof of Theorem 4.1 follows the argument in [JP1, JP2]. Although in these works
the Bose reservoirs are studied, the same (in fact, slightly simpler) argument applies to
Fermi reservoirs. For the reader convenience and for latter applications, we recall the main
steps of the argument in [JP1, JP2].

Sketch of the proof of Theorem 4.1. Let

>�"� � ����& � ������'��

be the second quantization of the group of translations and ?�"� � � � >�"� � >�"�. We
set

���"� � ?�"���?��"��
Let + � +� �+�. Note that

?�"��?��"� � �� "+�

?�"�+?��"� � +�
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and

?�"�� ?��"� �
�
�

��
 � ��� �	�
�����'��
���

?�"�.� .?��"� � 	
�
�

��� �
�� �������	�
�����'���
���

If
�����"� � ?�"��� � .� .�?��"��

then
���"� � �� "+ �  �����"��

By (A2) and (3.31) the operator �����"� is defined for all " � !�@� and the map !�@� �
" �� �����"� is an analytic operator-valued function satisfying

� �� ���
��(	%


������"�� � �
�
�
�
�

��@� ����������	%
�

Obviously, the operator ���"� is also defined for " � !�@�. For �
" �� �, ���"� is a closed
operator with domain ���� ! ��+�. Let !��@� � �� � � @ � �
� � �
. The function
!��@� � � � �"�  � �� ���"�, with values in the closed operators on �, is an analytic
family of type A in each variable separately. Note that the spectrum of ���"� consists of
two simple eigenvalues %�, a double degenerate eigenvalue �, and of the sequence of lines
�	/�
" � � �/ � �
.

Let � be such that �� � �@ � �3��$,. Then, for � � � � and �@ � �
" � ��@ �
�3��$�, the essential spectrum of ���"� is contained in the half-plane �� � �
� � 3
. The
location of the discrete spectrum inside ��3� can be computed using regular perturbation
theory. By possibly taking � smaller, one can show that this discrete spectrum consists
of four points (resonances) �A��� �� A���� � �
, where ���� � are near %� and A���� � � are
near �, see Figure 1 below. These resonances do not depend on ". Moreover, the functions
 �� A��� � are analytic for � � � �,

A��� � � %� �

��
���

 ������ �

and one can compute ��� explicitly:

��� �
�

�

�
�

�
�	����������� % 34

�
�

����������
�� �

��

�
�

where PV stands for Cauchy’s principal value.
The resonances A���� � � are the eigenvalues of a �� � matrix �� � which is analytic for

� � � �,

�� � �

��
���

 ����� �
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and one can compute �� explicitly:

�� � �	�
�
�

���������� ���

where

�� �
�

�  !�5 ��

�
�
� ��
�� ��
�

�
�

�� ��

������

����

�	
����

Figure 1: Resonances of the standard Liouvillean ��

If (A3) holds, then �
��� � � and for  non-zero and sufficiently small, �
 A��� � � �.
Notice also that the matrices �� are self-adjoint and non-negative with a simple eigenvalue
� and corresponding eigenvector

8
� �

�
��
���

�
���

�
�

Thus, unless �� � ��, 	�� � �, and for  non-zero and sufficiently small, �
 A���� � � � �.
To finish the proof, we have to relate 1�� ������1 and ������"����. To do so, we

fix � with �
� large enough. Then, one shows that

�� �	

�����

�� ����"���� � �� ����&�"����� (4.34)
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Let
1�"� � �� ��%�& 
��& � ��%�& 
��& �

and consider the function

!��@� � " �� 1�"��� ����"����1��"��

By analyticity, this function is constant in ". By (4.34) and continuity, the relation

1�� ������1 � 1�"��� ����"����1��"�� (4.35)

holds for �@ � �
" � �. If " in (4.35) satisfies �@ � �
" � ��@ � �3��$�, then the
right-hand side in (4.35) provides the desired meromorphic continuation of the function
1�� ������1.

Since &'�1 is dense in � and 1�� � �����1 has no poles on the real axis, the
spectrum of �� is purely absolutely continuous for � � � � � ). In particular, $�%�� � �,
and, by Proposition 2.1, there are no ��-invariant states in the set � of normal states. �

In the proof of Theorem 4.1 we have not used the full strength of the assumption (A2)
and for this theorem it suffices that ��� � ���@�. In fact, if the complex deformation
technique is replaced with Mourre theory, then the main conclusion of the theorem can be
derived under much weaker regularity condition on ���, see [DJ1, DJ2].

We now deal with the �-Liouvillean and Theorem 1.2. As we have remarked at the end
of the last section, it is convenient to take for the initial state of the small system the state 	�
defined by (3.32). In what follows �� is the�-Liouvillean associated to 	 � 	��	
��	
� .
Let

� ��� � 1�� � ����
��1�

Theorem 4.2 For any 3 � �@ there is a constant � � � such that for � � � � the
operator-valued function � ���, originally defined for � � ����, has a meromorphic
continuation to the half-plane ��3�. The function � ��� has at most four poles in ��3�,
and zero is one of its poles. Let 2�

� be the residue of � ��� at �. If in addition ���� holds
and  �� �, then �	
&'�2�

� � � and all singularities of � ��� except zero are contained
in the half-plane �
� � �. Moreover, 2�

� is analytic function of  for � � � �.

The proof of this theorem is a slight elaboration of the arguments in [JP1, JP2] which we
have already sketched above. We give below an outline of the proof.

Sketch of the proof of Theorem 4.2. We use the notation introduced in the proof of
Theorem 4.1. For real " let

����"� � ?�"����?��"��

������"� � ?�"�� ?��"�� ?�"�.����.?��"��
Clearly,

����"� � �� "+ �  ������"��
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Assumption (A2) implies that !�@� � " �� ������"� is an analytic operator-valued function
satisfying

�� �� ���
��(	%


� ������"�� � ��
�

�
�

��@� ���
�
��������	%
 � ���
����������	%


�
� (4.36)

The function � � !��@� � � � "� �� ����"�, with values in the closed operators on �, is
an analytic family of type � in each variable separately.

�� � �

Figure 2: Resonances of ���

One now repeats the analysis outlined in the proof of Theorem 4.1. For ��� � �@ �
�3��$, and � � � � the essential spectrum of����"� is contained in the half-plane �� � �
� �
3
. Here, again, the location of the discrete spectrum inside ��3� can be computed using
regular perturbation theory. This discrete spectrum consists of four points ��A��� �� �A���� � �
,
where �A��� � are near %� and �A���� � � are near �, see Figure 2 below. Since

�����"��
�� � ��

we have �A��� � � �. Moreover, the functions  �� �A��� � are analytic for � � � �,

�A��� � � %� �

��
���

 ������� �



29

and one finds that
���� � ��� �

The resonances �A���� � � are the eigenvalues of a � � � matrix ��� � which is analytic for
� � � �,

��� � �
��
���

 �� ���� �

and
��� � �	�

�
�

���������� ����

where
��� � ��
�)������


)��� �
�

�  !�5 ��

�
�
� ���
�

��
� ��
�

�
�

Notice that
�� ��

�
�
�

�
� ��

and so zero is always an eigenvalue of ���. The second eigenvalue of ��� is equal to

1%����� � �	�
�
�

�����������

If (A3) holds, then this eigenvalue has negative imaginary part. Thus, for  non-zero and
sufficiently small, �
�A��� � � �.

Following the argument in the proof of Theorem 4.1, we see that

� ��� � 1�"��� � ����"��
��1��"��

provides the required meromorphic continuation of � . By this formula, the residue 2�
�

is related to the spectral projection ,
	�

� �"� corresponding to the zero eigenvalue of ����"�

by
2�
� � 1�"�,

	�

� �"�1��"�� (4.37)

This implies that �	
&'�2�
� � �.

To prove the last statement of the theorem we must show that ,	�

� �"� is analytic for

� � � �. We prove this by relating this operator to the spectral projection �6� � correspond-
ing to the zero eigenvalue of the analytic matrix �� � �  �� ��� �. Notice that since � is a
simple eigenvalue of ����, �6� � is analytic for  small enough.

Let us recall the construction of the operator ��� � [JP1, HP]. By taking � possibly
smaller, one can find a contour ' around � such that for " with �
" sufficiently close to �@
and for � � � �, the spectral projection corresponding to the group ��A��� �� �A��� �
 is given
by

,��"� �
�

��	

�
�
�� � ����"��

����� (4.38)
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,��"� is an analytic function of  and

�,��"��,��"�� � ��

Notice that ,��"� � ,� does not depend on " and is the spectral projection of � corre-
sponding to double degenerate eigenvalue �. It follows that the maps

,� � &'�,��"� � &'�,��

,��"� � &'�,� � &'�,��"��

are isomorphisms. Setting
� � � � ,�,��"�,��

one easily checks that the operator

&��"� � ,�,��"� � &'�,��"� � &'�,��

has inverse
&��"�

�� � ,��"�,�� � ����

Using the isomorphism &��"�, we transport the reduced operator ,��"�����"�,��"� to
&'�,� � � � . A simple calculation yields:

��� � � &��"�,��"��
�
��"�,��"�&��"�

�� � �� �� � ���� (4.39)

where
�� � � ,�,��"��

�
��"�,��"�,��

The operators � � � and �� � are independent of " as long as � � � � and �
" is suffi-
ciently close to �@. Moreover, they are analytic functions of  .

Formula (4.39) yields that

�6� � � &��"�,
	�

� �"�&��"�

��� (4.40)

Inverting this formula we derive that ,	�

� �"� (and hence 2�

� ) is an analytic function for  
small enough.�

Theorem 4.3 Assume that ���� holds. Then there is � � � such that for � � � � � � all
the assumptions of Theorem 2.6 hold.

Proof. Choose � � 3 � �@ and � so that Theorem 4.2 holds. This theorem verifies
assumptions (DL6), (b) and (c) of Theorem 2.6. To verify (d) it suffices to show that for
some 7 � � large enough, all / � � and - � �� �

���
��"

�
�
��#

�4�
�/�� �5� 	6�/������5 � ��

Since
� ��� � 1�"��� � ����"��

��1��"��
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it suffices to show that for �
" close enough to �@,  small enough, all / � � and
- � �� �,

���
��"

�
�
��#

��/� �5 � 	6 � ����"��
����/������5 � �� (4.41)

Note that ����"� � �� "+ is a normal operator, and that the bounds

���
��"

�
�
��#

��5� 	6 � ����"��
��/���5 � ��

���
��"��
��#

��5� 	6 � ����"��
��� � ��

(4.42)

follow from the spectral theorem. The second relation in (4.42) and the resolvent identity
yield that for  small enough,

�5� 	6 � ����"��
�� � B�5� 	6 � ����"��

��

� �5� 	6 � ����"��
�� �B�

(4.43)

where the operators B and �B (which depend on "�  � 5� 6) have uniformly bounded norms.
The first relations in (4.42) and (4.43) yield (4.41) for - � �. The case - � � follows from
the estimate

��/� �5� 	6 � ����"��
��/�� � �B�� �B���5� 	6 � ����"��

��/���
It remains to verify (DL2) and (DL4). Let

����� �
�
� � � � �� � ���%�'
�

�
� (4.44)

and let ������� be the vector subspace of �� generated by � and�
������ � � � ������ �/ � �� �� � �����

�
�

Set
����� � �� ��	�


������ ��	�

�������

Note that ����� is a 	-subalgebra of �. Obviously, ����� � � . Since the set ����� is dense
in �, ���

���� � � and (DL2) follows.
To establish (DL4), note that .��������. � ��

 . Since ���
���� � � and ��������

�� �
�, ��������� is dense in �. Thus,��

 � is also dense in �.
Following the above argument one can also easily verify Hypothesis (DL3) in our

model. We will not make use of this hypothesis below. �

We are now ready to finish:

Proof of Theorem 1.2. Parts (i) and (ii) follow from Theorems 2.6 and 4.3 with �� � � 
and �� � � . From the construction of � and � it is immediate that �� � � and
�� � � .
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Since for � � � ,

	�
� ��� � �1��������

� � � �1������ 2�
� ���

Part (iii) follows from the last statement of Theorem 4.2. �

As we have pointed in the Remark 3 after Theorem 1.2, Part (iii) of Theorem 1.2 yields
that for � � � we have an expansion

	�
� ��� �

��
���

 �	�
� ���� (4.45)

It is an important question whether the functionals 	�� can be (at least in principle) com-
puted. If

��
� �

��
���

 ���
� �

then 	�� ��� � �1�������
� �, so 	�

� is determined ��
� ((DL3) implies that the opposite

is also true). To compute the expansion of ��� , one uses that 2�
� � � ��

� and the iden-
tity (4.37). First, using (4.38), one expands ,��"� in powers of  . Using this result, one
expands � � �, &��"�, �� � and ��� �. The expansion of ��� � and regular perturbation
theory yield the expansion of �6� �. The formulas (4.40) and (4.37) then yield the expan-

sions of ,	�

� �"� and 2�

� �"�. Although clearly the resulting formulas are complicated, at
least in principle it is possible to compute any term in the expansion (4.45). In particular,
the first term 	� is determined by the vector

��
� � 2�

� � � ��6������� �
	�

� � �

	�

� �

5 Entropy production

Proof of Theorem 1.1. We assume that the reader is familiar with basic properties of
relative entropy (a particularly clear review is given in [Don]). Let � � �	����� and let
�� be the predual of�.

Assume that (a) and (b) hold, and that ���	�� � � 	�
� ��� � � �. Then, by the formula

(1.2) and (b),

����	 Æ � �� �	� � �
� �

�

�
	�� �� ��� ��� 	�

� ��� ��
	
�� � ���

for all � � � and some � � �. Set

	� � �

�

� �

�
	 Æ � �� ���



33

The convexity and the upper semicontinuity of the relative entropy yield that

����	� �	� � �

�

� �

�
����	 Æ � �� �	��� � ���

Since the set of all states � � �	 such that ����� �	� � �� is �������-compact, the
set of weak-* limit points of �	� �� � �
 is contained in �	. It follows that 	�� � �	,
and this contradicts (a). �

Proof of Theorem 1.4. Theorem 1.3 yields that the assumption (a) of Theorem 1.1 holds.
Let us verify (b) for the initial state 	 � 	� � 	
� � 	
� , where 	� is given by (3.32). By
Takesaki’s theorem [BR1],

Æ	 � ���Æ� � ��Æ�� (5.46)

and
Æ	�� � � ����
 � ��	����� �� ���
 � �� ��	�����

Since 	��� � �����, (����� is given by (4.44)), Æ	�� � � ��. Hence, by Part (ii) of Theorem
1.2, the assumption (b) of Theorem 1.1 holds, and ���	�� � � �.

It remains to show that the entropy production does not depend on the choice of the
initial state in 
��. Let � � �� � 	
� � 	
� � 
��. Then, by Theorem 1.1 in [JP3],

����	 Æ � �� � �� � ����	 � �� �
� �

�
��� �� �Æ�� � �����

By the proof of Proposition 1.3 in [JP3],

����	 Æ � �� �	� � ����	 Æ � �� � �� �(����

uniformly for � � �. This implies that

	�
� �Æ	� � �� � 	�

� �Æ�� � ��� (5.47)

�

Relation (5.47) has one important consequence. Let 	 and � be as in the above proof
and

����� � 1%������$1%������

Then,
Æ�� � � � 	���� � � � Æ	� � ��

and (5.47) yield that
	�
� ����� � �� � �� (5.48)

Proof of Theorem 1.5. The second relation in (1.11) follows from the definition of entropy
production and Relation (5.46). To prove the first, note that

Æ� � � � 	���� � � � Æ�� � � � Æ�� � ��
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and
Æ�� � � � Æ� � � � 	 ��� � ��

are the generators of the free and the perturbed dynamics. Since 	�� is ��-invariant and
� � ��Æ� � ��Æ��,

� � 	�
� �Æ�� � �� � 	�

� �Æ� � ��

� 	 	�
� ����� � �� � 	�

� �"�� � 	�
� �"��

� 	�
� �"�� � 	�

� �"���

where we used (5.48). �
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