
Mathematical Theory of the Wigner-Weisskopf

Atom
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1 Introduction

In these lectures we shall study an ”atom”, S, described by finitely many
energy levels, coupled to a ”radiation field”, R, described by another set
(typically continuum) of energy levels. More precisely, assume that S and R
are described, respectively, by the Hilbert spaces hS , hR and the Hamiltonians
hS , hR. Let h = hS ⊕ hR and h0 = hS ⊕ hR. If v is a self-adjoint operator on
h describing the coupling between S and R, then the Hamiltonian we shall
study is hλ ≡ h0 + λv, where λ ∈ R is a coupling constant.

For reasons of space we shall restrict ourselves here to the case where S
is a single energy level, i.e., we shall assume that hS ≡ C and that hS ≡ ω
is the operator of multiplication by a real number ω. The multilevel case will
be considered in the continuation of these lecture notes [JP3]. We will keep
hR and hR general and we will assume that the interaction has the form
v = w + w∗, where w : C → hR is a linear map.

With a slight abuse of notation, in the sequel we will drop ⊕ whenever the
meaning is clear within the context. Hence, we will write α for α ⊕ 0, g for
0 ⊕ g, etc. If w(1) = f , then w = (1| · )f and v = (1| · )f + (f | · )1.

In physics literature, a Hamiltonian of the form

hλ = h0 + λ((1| · )f + (f | · )1), (1)

with λ ∈ R is sometimes called the Wigner-Weisskopf atom (abbreviated
WWA) and we will adopt that name. Operators of the type (1) are also often
called Friedrichs Hamiltonians [Fr]. The WWA is a toy model invented to
illuminate various aspects of quantum physics; see [AJPP1, AM, Ar, BR2,
CDG, Da1, Da4, DK, Fr, FGP, He, Maa, Mes, PSS].

Our study of the WWA naturally splits into several parts. Non-perturbative
and perturbative spectral analysis are discussed respectively in Sections 2 and
3. The fermionic second quantization of the WWA is discussed in Sections 4
and 5.

In Section 2 we place no restrictions on hR and we obtain qualitative infor-
mation on the spectrum of hλ which is valid either for all or for Lebesgue a.e.
λ ∈ R. Our analysis is based on the spectral theory of rank one perturbations
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[Ja, Si1]. The theory discussed in this section naturally applies to the cases
where R describes a quasi-periodic or a random structure, or the coupling
constant λ is large.

Quantitative information about the WWA can be obtained only in the
perturbative regime and under suitable regularity assumptions. In Section 3.2
we assume that the spectrum of hR is purely absolutely continuous, and we
study spectral properties of hλ for small, non-zero λ. The main subject of
Section 3.2 is the perturbation theory of embedded eigenvalues and related
topics (complex resonances, radiative life-time, spectral deformations, weak
coupling limit). Although the material covered in this section is very well
known, our exposition is not traditional and we hope that the reader will learn
something new. The reader may benefit by reading this section in parallel with
Complement CIII in [CDG].

The second quantizations of the WWA lead to the simplest non-trivial
examples of open systems in quantum statistical mechanics. We shall call
the fermionic second quantization of the WWA the Simple Electronic Black
Box (SEBB) model. The SEBB model in the perturbative regime has been
studied in the recent lecture notes [AJPP1]. In Sections 4 and 5 we extend the
analysis and results of [AJPP1] to the non-perturbative regime. For additional
information about the Electronic Black Box models we refer the reader to
[AJPP2].

Assume that hR is a real Hilbert space and consider the WWA (1) over the
real Hilbert space R⊕hR. The bosonic second quantization of the wave equa-
tion ∂2

t ψt+hλψt = 0 (see Section 6.3 in [BSZ] and the lectures [DeB, Der1] in
this volume) leads to the so called FC (fully coupled) quantum oscillator model.
This model has been extensively discussed in the literature. The well-known
references in the mathematics literature are [Ar, Da1, FKM]. For references
in the physics literature the reader may consult [Br, LW]. One may use the
results of these lecture notes to completely describe spectral theory, scatter-
ing theory, and statistical mechanics of the FC quantum oscillator model. For
reasons of space we shall not discuss this topic here (see [JP3]).

These lecture notes are on a somewhat higher technical level than the
recent lecture notes of the first and the third author [AJPP1, Ja, Pi]. The
first two sections can be read as a continuation (i.e. the final section) of the
lecture notes [Ja]. In these two sections we have assumed that the reader
is familiar with elementary aspects of spectral theory and harmonic analysis
discussed in [Ja]. Alternatively, all the prerequisites can be found in [Ka, Koo,
RS1, RS2, RS3, RS4, Ru]. In Section 2 we have assumed that the reader is
familiar with basic results of the rank one perturbation theory [Ja, Si1]. In
Sections 4 and 5 we have assumed that the reader is familiar with basic notions
of quantum statistical mechanics [BR1, BR2, BSZ, Ha]. The reader with no
previous exposure to open quantum systems would benefit by reading the last
two sections in parallel with [AJPP1].

The notation used in these notes is standard except that we denote the
spectrum of a self-adjoint operator A by sp(A). The set of eigenvalues, the
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absolutely continuous, the pure point and the singular continuous spectrum
of A are denoted respectively by spp(A), spac(A), sppp(A), and spsc(A). The
singular spectrum of A is spsing(A) = sppp(A) ∪ spsc(A). The spectral sub-
spaces associated to the absolutely continuous, the pure point, and the sin-
gular continuous spectrum of A are denoted by hac(A), hpp(A), and hsc(A).
The projections on these spectral subspaces are denoted by 1ac(A), 1pp(A),
and 1sc(A).

Acknowledgment. These notes are based on the lectures the first author
gave in the Summer School ”Large Coulomb Systems—QED”, held in Nord-
fjordeid, August 11—18 2003. V.J. is grateful to Jan Dereziński and Heinz
Siedentop for the invitation to speak and for their hospitality. The research
of V.J. was partly supported by NSERC. The research of E.K. was supported
by an FCAR scholarship. We are grateful to S. De Bièvre and J. Dereziński
for enlightening remarks on an earlier version of these lecture notes.

2 Non-perturbative theory

Let ν be a positive Borel measure on R. We denote by νac, νpp, and νsc the
absolutely continuous, the pure point and the singular continuous part of
ν w.r.t. the Lebesgue measure. The singular part of ν is νsing = νpp + νsc.
We adopt the definition of a complex Borel measure given in [Ja, Ru]. In
particular, any complex Borel measure on R is finite.

Let ν be a complex Borel measure or a positive measure such that
∫

R

dν(t)

1 + |t| <∞.

The Borel transform of ν is the analytic function

Fν(z) ≡
∫

R

dν(t)

t− z
, z ∈ C \ R.

Let ν be a complex Borel measure or a positive measure such that
∫

R

dν(t)

1 + t2
<∞. (2)

The Poisson transform of ν is the harmonic function

Pν(x, y) ≡ y

∫

R

dν(t)

(x− t)2 + y2
, x+ iy ∈ C+,

where C± ≡ {z ∈ C | ± Im z > 0}.
The Borel transform of a positive Borel measure is a Herglotz function,

i.e., an analytic function on C+ with positive imaginary part. In this case

Pν(x, y) = ImFν(x+ iy),
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is a positive harmonic function. The G-function of ν is defined by

Gν(x) ≡
∫

R

dν(t)

(x− t)2
= lim

y↓0

Pν(x, y)

y
, x ∈ R.

We remark that Gν is an everywhere defined function on R with values in
[0,∞]. Note also that if Gν(x) <∞, then limy↓0 ImFν(x + iy) = 0.

If h(z) is analytic in the half-plane C±, we set

h(x± i0) ≡ lim
y↓0

h(x± iy),

whenever the limit exist. In these lecture notes we will use a number of stan-
dard results concerning the boundary values Fν(x ± i0). The proofs of these
results can be found in [Ja] or in any book on harmonic analysis. We note in
particular that Fν(x±i0) exist and is finite for Lebesgue a.e. x ∈ R. If ν is real-
valued and non-vanishing, then for any a ∈ C the sets {x ∈ R |Fν(x± i0) = a}
have zero Lebesgue measure.

Let ν be a positive Borel measure. For later reference, we describe some
elementary properties of its Borel transform. First, the Cauchy-Schwartz in-
equality yields that for y > 0

ν(R) ImFν(x+ iy) ≥ y |Fν(x+ iy)|2. (3)

The dominated convergence theorem yields

lim
y→∞

y ImFν(iy) = lim
y→∞

y |Fν(iy)| = ν(R). (4)

Assume in addition that ν(R) = 1. The monotone convergence theorem
yields

lim
y→∞

y2
(
y ImFν(iy) − y2 |Fν(iy)|2

)

= lim
y→∞

y4

2

∫

R×R

(
1

t2 + y2
+

1

s2 + y2
− 2

(t− iy)(s+ iy)

)

dν(t) dν(s)

= lim
y→∞

1

2

∫

R×R

y2

t2 + y2

y2

s2 + y2
(t− s)2dν(t) dν(s)

=
1

2

∫

R×R

(t− s)2dν(t) dν(s).

If ν has finite second moment,
∫

R
t2dν(t) <∞, then

1

2

∫

R×R

(t− s)2dν(t) dν(s) =

∫

R

t2dν(t) −
(∫

R

tdν(t)

)2

. (5)

If
∫

R
t2dν(t) = ∞, then it is easy to see that the both sides in (5) are also

infinite. Combining this with Equ. (4) we obtain
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lim
y→∞

y ImFν(iy) − y2 |Fν(iy)|2
|Fν(iy)|2

=

∫

R

t2dν(t) −
(∫

R

tdν(t)

)2

, (6)

where the right hand side is defined to be ∞ whenever
∫

R
t2dν(t) = ∞.

In the sequel |B| denotes the Lebesgue measure of a Borel set B and δy
the delta-measure at y ∈ R.

2.1 Basic facts

Let hR,f ⊂ hR be the cyclic space generated by hR and f . We recall that hR,f
is the closure of the linear span of the set of vectors {(hR−z)−1f | z ∈ C\R}.
Since (C ⊕ hR,f )

⊥ is invariant under hλ for all λ and

hλ|(C⊕hR,f )⊥ = hR|(C⊕hR,f )⊥ ,

in this section without loss of generality we may assume that hR,f = hR,
namely that f is a cyclic vector for hR. By the spectral theorem, w.l.o.g. we
may assume that

hR = L2(R, dµR),

and that hR ≡ x is the operator of multiplication by the variable x. We will
write

FR(z) ≡ (f |(hR − z)−1f).

Note that FR = Ff2µR
. Similarly, we denote PR(x, y) = ImFR(x+ iy), etc.

As we shall see, in the non-perturbative theory of the WWA it is very
natural to consider the Hamiltonian (1) as an operator-valued function of two
real parameters λ and ω. Hence, in this section we will write

hλ,ω ≡ h0 + λv = ω ⊕ x+ λ ((f | · )1 + (1| · )f) .

We start with some basic formulas. The relation

A−1 −B−1 = A−1(B −A)B−1,

yields that

(hλ,ω − z)−11 = (ω − z)−11 − λ(ω − z)−1(hλ,ω − z)−1f,

(hλ,ω − z)−1f = (hR − z)−1f − λ(f |(hR − z)−1f)(hλ,ω − z)−11.
(7)

It follows that the cyclic subspace generated by hλ,ω and the vectors 1, f , is
independent of λ and equal to h, and that for λ 6= 0, 1 is a cyclic vector for
hλ,ω. We denote by µλ,ω the spectral measure for hλ,ω and 1. The measure
µλ,ω contains full spectral information about hλ,ω for λ 6= 0. We also denote by
Fλ,ω and Gλ,ω the Borel transform and the G-function of µλ,ω. The formulas
(7) yield

Fλ,ω(z) =
1

ω − z − λ2FR(z)
. (8)
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Since Fλ,ω = F−λ,ω, the operators hλ,ω and h−λ,ω are unitarily equivalent.
According to the decomposition h = hS ⊕ hR we can write the resolvent

rλ,ω(z) ≡ (hλ,ω − z)−1 in matrix form

rλ,ω(z) =





rSS
λ,ω(z) rSR

λ,ω(z)

rRS
λ,ω(z) rRR

λ,ω (z)



 .

A simple calculation leads to the following formulas for its matrix elements

rSS
λ,ω(z) = Fλ,ω(z),

rSR
λ,ω(z) = −λFλ,ω(z)1(f |(hR − z)−1 · ),
rRS
λ,ω(z) = −λFλ,ω(z)(hR − z)−1f(1| · ),
rRR
λ,ω (z) = (hR − z)−1 + λ2Fλ,ω(z)(hR − z)−1f(f |(hR − z)−1 · ).

(9)

Note that for λ 6= 0,

Fλ,ω(z) =
Fλ,0(z)

1 + ωFλ,0(z)
.

This formula should not come as a surprise. For fixed λ 6= 0,

hλ,ω = hλ,0 + ω(1| · )1,

and since 1 is a cyclic vector for hλ,ω, we are in the usual framework of the
rank one perturbation theory with ω as the perturbation parameter! This
observation will allow us to naturally embed the spectral theory of hλ,ω into
the spectral theory of rank one perturbations.

By taking the imaginary part of Relation (8) we can relate the G-functions
of µR and µλ,ω as

Gλ,ω(x) =
1 + λ2GR(x)

|ω − x− λ2FR(x+ i0)|2 , (10)

whenever the boundary value FR(x + i0) exists and the numerator and de-
nominator of the right hand side are not both infinite.

It is important to note that, subject to a natural restriction, every rank
one spectral problem can be put into the form hλ,ω for a fixed λ 6= 0.

Proposition 1. Let ν be a Borel probability measure on R, f(x) = 1 for all
x ∈ R, and λ 6= 0. Then the following statements are equivalent:

1. There exists a Borel probability measure µR on R such that the corre-
sponding µλ,0 is equal to ν.

2.
∫

R
tdν(t) = 0 and

∫

R
t2dν(t) = λ2.

Proof. (1) ⇒ (2) Assume that µR exists. Then hλ,01 = λf and hence
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∫

R

tdν(t) = (1|hλ,01) = 0,

and ∫

R

t2dν(t) = ‖hλ,01‖2 = λ2.

(2) ⇒ (1) We need to find a probability measure µR such that

FR(z) = λ−2

(

−z − 1

Fν(z)

)

, (11)

for all z ∈ C+. Set

Hν(z) ≡ −z − 1

Fν(z)
.

Equ. (3) yields that C+ ∋ z 7→ λ−2 ImHν(z) is a non-negative harmonic
function. Hence, by a well-known result in harmonic analysis (see e.g. [Ja,
Koo]), there exists a Borel measure µR which satisfies (2) and a constant
C ≥ 0 such that

λ−2 ImHν(x + iy) = PR(x, y) + Cy, (12)

for all x+ iy ∈ C+. The dominated convergence theorem and (2) yield that

lim
y→∞

PR(0, y)

y
= lim

y→∞

∫

R

dµR(t)

t2 + y2
= 0.

Note that

y ImHν(iy) =
y ImFν(iy) − y2 |Fν(iy)|2

|Fν(iy)|2
, (13)

and so Equ. (6) yields

lim
y→∞

ImHν(iy)

y
= 0.

This fact and Equ. (12) yield that C = 0 and that

FR(z) = λ−2Hν(z) + C1, (14)

where C1 is a real constant. From Equ. (4), (13) and (6) we get

µR(R) = lim
y→∞

y ImFR(iy)

= λ−2 lim
y→∞

y ImHν(iy)

= λ−2

(
∫

R

t2dν(t) −
(∫

R

tdν(t)

)2
)

= 1,

and so µR is probability measure. Since
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ReHν(iy) = −ReFν(iy)

|Fν(iy)|2
,

Equ. (14), (4) and the dominated convergence theorem yield that

λ2C1 = − lim
y→∞

ReHν(iy)

= lim
y→∞

y2ReFν(iy)

= lim
y→∞

∫

R

ty2

t2 + y2
dν(t)

=

∫

R

tdν(t) = 0.

Hence, C1 = 0 and Equ. (11) holds. �

2.2 Aronszajn-Donoghue theorem

For λ 6= 0 define

Tλ,ω ≡ {x ∈ R |GR(x) <∞, x− ω + λ2FR(x+ i0) = 0},

Sλ,ω ≡ {x ∈ R |GR(x) = ∞, x− ω + λ2FR(x+ i0) = 0},

L ≡ {x ∈ R | ImFR(x+ i0) > 0}.

(15)

Since the analytic function C+ ∋ z 7→ z − ω + λ2FR(z) is non-constant and
has a positive imaginary part, by a well known result in harmonic analysis
|Tλ,ω| = |Sλ,ω| = 0. Equ. (8) implies that, for ω 6= 0, x−ω+λ2FR(x+i0) = 0
is equivalent to Fλ,0(x + i0) = −ω−1. Moreover, if one of these conditions is
satisfied, then Equ. (10) yields

ω2Gλ,0(x) = 1 + λ2GR(x).

Therefore, if ω 6= 0, then

Tλ,ω = {x ∈ R |Gλ,0(x) <∞, Fλ,0(x+ i0) = −ω−1},

Sλ,ω = {x ∈ R |Gλ,0(x) = ∞, Fλ,0(x+ i0) = −ω−1}.

The well-known Aronszajn-Donoghue theorem in spectral theory of rank
one perturbations (see [Ja, Si1]) translates to the following result concerning
the WWA.

Theorem 1. 1. Tλ,ω is the set of eigenvalues of hλ,ω. Moreover,

µλ,ωpp =
∑

x∈Tλ,ω

1

1 + λ2GR(x)
δx. (16)
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If ω 6= 0, then also

µλ,ωpp =
∑

x∈Tλ,ω

1

ω2Gλ,0(x)
δx.

2. ω is not an eigenvalue of hλ,ω for all λ 6= 0.
3. µλ,ωsc is concentrated on Sλ,ω.
4. For all λ, ω, the set L is an essential support of the absolutely continuous

spectrum of hλ,ω. Moreover spac(hλ,ω) = spac(hR) and

dµλ,ωac (x) =
1

π
ImFλ,ω(x+ i0) dx.

5. For a given ω, {µλ,ωsing |λ > 0} is a family of mutually singular measures.

6. For a given λ 6= 0, {µλ,ωsing |ω 6= 0} is a family of mutually singular mea-
sures.

2.3 The spectral theorem

In this subsection λ 6= 0 and ω are given real numbers. By the spectral theo-
rem, there exists a unique unitary operator

Uλ,ω : h → L2(R, dµλ,ω), (17)

such that Uλ,ωhλ,ω(Uλ,ω)−1 is the operator of multiplication by x on the
Hilbert space L2(R, dµλ,ω) and Uλ,ω1 = 1l, where 1l(x) = 1 for all x ∈ R.
Moreover,

Uλ,ω = Uλ,ωac ⊕ Uλ,ωpp ⊕ Uλ,ωsc ,

where
Uλ,ωac : hac(hλ,ω) → L2(R, dµλ,ωac ),

Uλ,ωpp : hpp(hλ,ω) → L2(R, dµλ,ωpp ),

Uλ,ωsc : hsc(hλ,ω) → L2(R, dµλ,ωsc ),

are unitary. In this subsection we will describe these unitary operators. We
shall make repeated use of the following fact. Let µ be a positive Borel measure
on R. For any complex Borel measure ν on R denote by ν = νac + νsing the
Lebesgue decomposition of ν into absolutely continuous and singular parts
w.r.t. µ. The Radon-Nikodym derivative of νac w.r.t. µ is given by

lim
y↓0

Pν(x, y)

Pµ(x, y)
=

dνac
dµ

(x),

for µ-almost every x (see [Ja]). In particular, if µ is Lebesgue measure, then

lim
y↓0

Pν(x, y) = π
dνac
dx

(x), (18)



Mathematical Theory of the Wigner-Weisskopf Atom 11

for Lebesgue a.e. x. By Equ. (8),

ImFλ,ω(x+ i0) = λ2 |Fλ,ω(x+ i0)|2 ImFR(x+ i0), (19)

and so (18) yields that

dµλ,ωac

dx
= λ2|Fλ,ω(x+ i0)|2|f(x)|2 dµR,ac

dx
. (20)

In particular, since Fλ,ω(x + i0) 6= 0 for Lebesgue a.e. x and f(x) 6= 0 for
µR-a.e. x, µλ,ωac and µR,ac are equivalent measures.

Let φ = α⊕ ϕ ∈ h and

M(z) ≡ 1

2i

[

(1|(hλ,ω − z)−1φ) − (1|(hλ,ω − z)−1φ)

]

, z ∈ C+.

The formulas (7) and (9) yield that

(1|(hλ,ω − z)−1φ) = Fλ,ω(z)

(

α− λ(f |(hR − z)−1ϕ)

)

, (21)

and so

M(z) = ImFλ,ω(z)

(

α− λ(f |(hR − z)−1ϕ)

)

− λFλ,ω(z)

(

y (f |((hR − x)2 + y2)−1ϕ)

)

= ImFλ,ω(z)

(

α− λ(f |(hR − z)−1ϕ)

)

− λFλ,ω(z) y

∫

R

f(t)ϕ(t)

(t− x)2 + y2
dµR(t).

This relation and (18) yield that for µR,ac-a.e. x,

M(x+ i0) = ImFλ,ω(x+ i0)

(

α− λ(f |(hR − x− i0)−1ϕ)

)

− λFλ,ω(x − i0)f(x)ϕ(x)π
dµR ac

dx
(x).

(22)

On the other hand, computing M(z) in the spectral representation (17)
we get

M(z) = y

∫

R

(Uλ,ωφ)(t)

(t− x)2 + y2
dµλ,ω(t).

This relation and (18) yield that for Lebesgue a.e. x,

M(x+ i0) = (Uλ,ωac φ)(x)π
dµλ,ωac

dx
(x).

Since µR,ac and µλ,ωac are equivalent measures, comparison with the expression
(22) and use of Equ. (8) yield
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Proposition 2. Let φ = α⊕ ϕ ∈ h. Then

(Uλ,ωac φ)(x) = α− λ(f |(hR − x− i0)−1ϕ) − ϕ(x)

λFλ,ω(x+ i0)f(x)
.

We now turn to the pure point part Uλ,ωpp . Recall that Tλ,ω is the set of
eigenvalues of hλ,ω. Using the spectral representation (17), it is easy to prove
that for x ∈ Tλ,ω

lim
y↓0

(1|(hλ,ω − x− iy)−1φ)

(1|(hλ,ω − x− iy)−11)
= lim

y↓0

F(Uλ,ωφ)µλ,ω (x+ iy)

Fλ,ω(x + iy)
= (Uλ,ωφ)(x). (23)

The relations (21) and (23) yield that for x ∈ Tλ,ω the limit

Hϕ(x+ i0) ≡ lim
y↓0

(f |(hR − x− iy)−1ϕ), (24)

exists and that (Uλ,ωφ)(x) = α− λHϕ(x + i0). Hence, we have:

Proposition 3. Let φ = α⊕ ϕ ∈ h. Then for x ∈ Tλ,ω,

(Uλ,ωpp φ)(x) = α− λHϕ(x+ i0).

The assumption x ∈ Tλ,ω makes the proof of (23) easy. However, this
formula holds in a much stronger form. It is a deep result of Poltoratskii [Po]
(see also [Ja, JL]) that

lim
y↓0

(1|(hλ,ω − x− iy)−1φ)

(1|(hλ,ω − x− iy)−11)
= (Uλ,ωφ)(x) for µλ,ωsing − a.e. x. (25)

Hence, the limit (24) exists and is finite for µλ,ωsing-a.e. x. Thus, we have:

Proposition 4. Let φ = α⊕ ϕ ∈ h. Then,

(Uλ,ωsingφ)(x) = α− λHϕ(x+ i0),

where Uλ,ωsing = Uλ,ωpp ⊕ Uλ,ωsc .

We finish this subsection with the following remark. There are many uni-
taries

W : h → L2(R, dµλ,ω),

such that Whλ,ωW
−1 is the operator of multiplication by x on the Hilbert

space L2(R, dµλ,ω). Such unitaries are completely determined by their action
on the vector 1 and can be classified as follows. The operator

Uλ,ωW−1 : L2(R, dµλ,ω) → L2(R, dµλ,ω),

is a unitary which commutes with the operator of multiplication by x. Hence,
there exists θ ∈ L∞(R, dµλ,ω) such that |θ| = 1 and

W = θUλ,ω.

We summarize:
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Proposition 5. Let W : h → L2(R, dµλ,ω) be a unitary operator. Then the
following statements are equivalent:

1. Whλ,ωW
−1 is the operator of multiplication by x on the Hilbert space

L2(R, dµλ,ω).
2. There exists θ ∈ L∞(R, dµλ,ω) satisfying |θ| = 1 such that

(Wφ)(x) = θ(x)(Uλ,ωφ)(x).

2.4 Scattering theory

Recall that hR is the operator of multiplication by the variable x on the space
L2(R, dµR). Uλ,ωhλ,ω(Uλ,ω)−1 is the operator of multiplication by x on the
space L2(R, dµλ,ω). Set

hR,ac ≡ hR|hac(hR), hλ,ω,ac ≡ hλ,ω|hac(hλ,ω).

Since hac(hR) = L2(R, dµR,ac),

hac(hλ,ω) = (Uλ,ωac )−1L2(R, dµλ,ωac ),

and the measures µR,ac and µλ,ωac are equivalent, the operators hR,ac and
hλ,ω,ac are unitarily equivalent. Using (20) and the chain rule one easily checks
that the operator

(Wλ,ωφ)(x) =

√

dµλ,ωac

dµR,ac
(x) (Uλ,ωac φ)(x) = |λFλ,ω(x + i0)f(x)|(Uλ,ωac φ)(x),

is an explicit unitary which takes hac(hλ,ω) onto hac(hR) and satisfies

Wλ,ωhλ,ω,ac = hR,acW
λ,ω.

Moreover, we have:

Proposition 6. Let W : hac(hλ,ω) → hac(hR) be a unitary operator. Then
the following statements are equivalent:

1. W intertwines hλ,ω,ac and hR,ac, i.e.,

Whλ,ω,ac = hR,acW. (26)

2. There exists θ ∈ L∞(R, dµR,ac) satisfying |θ| = 1 such that

(Wφ)(x) = θ(x)(Wλ,ωφ)(x).

In this subsection we describe a particular pair of unitaries, called wave oper-
ators, which satisfy (26).
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Theorem 2. 1. The strong limits

U±
λ,ω ≡ s − lim

t→±∞
eithλ,ωe−ith01ac(h0), (27)

exist and RanU±
λ,ω = hac(hλ,ω).

2. The strong limits

Ω±
λ,ω ≡ s − lim

t→±∞
eith0e−ithλ,ω1ac(hλ,ω), (28)

exist and RanΩ±
λ,ω = hac(h0).

3. The maps U±
λ,ω : hac(h0) → hac(hλ,ω) and Ω±

λ,ω : hac(hλ,ω) → hac(h0) are

unitary. U±
λ,ωΩ

±
λ,ω = 1ac(hλ,ω) and Ω±

λ,ωU
±
λ,ω = 1ac(h0). Moreover, Ω±

λ,ω

satisfies the intertwining relation (26).
4. The S-matrix S ≡ Ω+

λ,ωU
−
λ,ω is unitary on hac(h0) and commutes with

h0,ac.

This theorem is a basic result in scattering theory. The detailed proof can
be found in [Ka, RS3].

The wave operators and the S-matrix can be described as follows.

Proposition 7. Let φ = α⊕ ϕ ∈ h. Then

(Ω±
λ,ωφ)(x) = ϕ(x) − λf(x)Fλ,ω(x± i0)(α− λ(f |(hR − x∓ i0)−1ϕ)). (29)

Moreover, for any ψ ∈ hac(h0) one has (Sψ)(x) = S(x)ψ(x) with

S(x) = 1 + 2πiλ2Fλ,ω(x+ i0)|f(x)|2 dµR,ac

dx
(x). (30)

Remark. The assumption that f is a cyclic vector for hR is not needed in
Theorem 2 and Proposition 7.
Proof. We will compute Ω+

λ,ω. The case of Ω−
λ,ω is completely similar. Let

ψ ∈ hac(h0) = hac(hR). We start with the identity

(ψ|eith0e−ithλ,ωφ) = (ψ|φ) − iλ

∫ t

0

(ψ|eish0f)(1|e−ishλ,ωφ) ds. (31)

Note that (ψ|φ) = (ψ|ϕ), (ψ|eish0f) = (ψ|eishRf), and that

lim
t→∞

(ψ|eith0e−ithλ,ωφ) = lim
t→∞

(eithλ,ωe−ith0ψ|φ)

= (U+
λ,ωψ|φ)

= (ψ|Ω+
λ,ωφ).

Hence, by the Abel theorem,
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(ψ|Ω+
λ,ωφ) = (ψ|ϕ) − lim

y↓0
iλL(y), (32)

where

L(y) =

∫ ∞

0

e−ys(ψ|eish0f)(1|e−ishλ,ωφ) ds.

Now,

L(y) =

∫ ∞

0

e−ys(ψ|eish0f)(1|e−ishλ,ωφ) ds

=

∫

R

ψ(x)f(x)

[∫ ∞

0

(1|eis(x+iy−hλ,ω)φ)ds

]

dµR,ac(x)

= −i

∫

R

ψ(x)f(x)(1|(hλ,ω − x− iy)−1φ) dµR,ac(x)

= −i

∫

R

ψ(x)f(x)gy(x) dµR,ac(x),

(33)

where
gy(x) ≡ (1|(hλ,ω − x− iy)−1φ).

Recall that for Lebesgue a.e. x,

gy(x) → g(x) ≡ (1|(hλ,ω − x− i0)−1φ), (34)

as y ↓ 0. By the Egoroff theorem (see e.g. Problem 16 in Chapter 3 of [Ru],
or any book on measure theory), for any n > 0 there exists a measurable set
Rn ⊂ R such that |R \Rn| < 1/n and gy → g uniformly on Rn. The set

⋃

n>0

{ψ ∈ L2(R, dµR,ac) | suppψ ⊂ Rn},

is clearly dense in hac(hR). For any ψ in this set the uniform convergence
gy → g on suppψ implies that there exists a constant Cψ such that

|ψf(gy − g)| ≤ Cψ|ψf | ∈ L1(R, dµR,ac).

This estimate and the dominated convergence theorem yield that

lim
y↓0

∫

R

ψ f(gy − g)dµR,ac = 0.

On the other hand, Equ. (32) and (33) yield that the limit

lim
y↓0

∫

R

ψ fgydµR,

exists, and so the relation

(ψ|Ω+
λ,ωφ) = (ψ|ϕ) − λ

∫

R

ψ(x)f(x)(1|(hλ,ω − x− i0)−1φ)dµR,ac(x),
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holds for a dense set of vectors ψ. Hence,

(Ω+
λ,ωφ)(x) = ϕ(x) − λf(x)(1|(hλ,ω − x− i0)−1φ),

and the formula (21) completes the proof.
To compute the S-matrix, note that by Proposition 6, Ω±

λ,ω = θ±W
λ,ω ,

where

θ±(x) =
(Ω±

λ,ω1)(x)

(Wλ,ω1)(x)
= − λFλ,ω(x± i0)f(x)

|λFλ,ω(x+ i0)f(x)| .

Since

S = Ω+
λ,ωU

−
λ,ω = Ω+

λ,ω(Ω−
λ,ω)∗ = θ+W

λ,ω(Wλ,ω)∗θ− = θ+θ−,

we see that (Sψ)(x) = S(x)ψ(x), where

S(x) = θ+(x)θ−(x) =
Fλ,ω(x+ i0)

Fλ,ω(x− i0)
=
ω − x− λ2FR(x− i0)

ω − x− λ2FR(x+ i0)
.

Hence,
S(x) = 1 + 2iλ2Fλ,ω(x+ i0)ImFR(x + i0)

= 1 + 2πiλ2Fλ,ω(x+ i0)|f(x)|2 dµR,ac

dx
(x).

�

2.5 Spectral averaging

We will freely use the standard measurability results concerning the measure-
valued function (λ, ω) 7→ µλ,ω . The reader not familiar with these facts may
consult [CFKS, CL, Ja].

Let λ 6= 0 and

µλ(B) =

∫

R

µλ,ω(B) dω,

where B ⊂ R is a Borel set. Obviously, µλ is a Borel measure on R. The
following (somewhat surprising) result is often called spectral averaging.

Proposition 8. The measure µλ is equal to the Lebesgue measure and for all
g ∈ L1(R, dx),

∫

R

g(x)dx =

∫

R

[∫

R

g(x)dµλ,ω(x)

]

dω.

The proof of this proposition is elementary and can be found in [Ja, Si1].
One can also average with respect to both parameters. It follows from

Proposition 8 that the averaged measure

µ(B) =
1

π

∫

R2

µλ,ω(B)

1 + λ2
dλdω,

is also equal to the Lebesgue measure.
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2.6 Simon-Wolff theorems

Recall that x+λ2FR(x+ i0) and Fλ,0(x+ i0) are finite and non-vanishing for
Lebesgue a.e. x. For λ 6= 0, Equ. (10) gives that for Lebesgue a.e x,

Gλ,0(x) =
1 + λ2GR(x)

|x+ λ2FR(x+ i0)|2 = |Fλ,0(x + i0)|2(1 + λ2GR(x)).

These observations yield:

Lemma 1. Let B ⊂ R be a Borel set and λ 6= 0. Then GR(x) < ∞ for
Lebesgue a.e. x ∈ B iff Gλ,0(x) <∞ for Lebesgue a.e. x ∈ B.

This lemma and the Simon-Wolff theorems in rank one perturbation theory
(see [Ja, Si1, SW]) yield:

Theorem 3. Let B ⊂ R be a Borel set. Then the following statements are
equivalent:

1. GR(x) <∞ for Lebesgue a.e. x ∈ B.

2. For all λ 6= 0, µλ,ωcont(B) = 0 for Lebesgue a.e. ω ∈ R. In particular,

µλ,ωcont(B) = 0 for Lebesgue a.e. (λ, ω) ∈ R2.

Theorem 4. Let B ⊂ R be a Borel set. Then the following statements are
equivalent:

1. ImFR(x+ i0) = 0 and GR(x) = ∞ for Lebesgue a.e. x ∈ B.
2. For all λ 6= 0, µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e. ω ∈ R. In partic-

ular, µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e. (λ, ω) ∈ R
2.

Theorem 5. Let B ⊂ R be a Borel set. Then the following statements are
equivalent:

1. ImFR(x+ i0) > 0 for Lebesgue a.e. x ∈ B.

2. For all λ 6= 0, µλ,ωsing(B) = 0 for Lebesgue a.e. ω ∈ R. In particular,

µλ,ωsing(B) = 0 for Lebesgue a.e. (λ, ω) ∈ R2.

Note that while the Simon-Wolff theorems hold for a fixed λ and for a.e.
ω, we cannot claim that they hold for a fixed ω and for a.e. λ—from Fubini’s
theorem we can deduce only that for a.e. ω the results hold for a.e. λ. This
is somewhat annoying since in many applications for physical reasons it is
natural to fix ω and vary λ. The next subsection deals with this issue.

2.7 Fixing ω

The results discussed in this subsection are not an immediate consequence of
the standard results of rank one perturbation theory and for this reason we
will provide complete proofs.
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In this subsection ω is a fixed real number. Let

µω(B) =

∫

R

µλ,ω(B)dλ,

where B ⊂ R is a Borel set. Obviously, µω is a positive Borel measure on R

and for all Borel measurable g ≥ 0,

∫

R

g(t)dµω(t) =

∫

R

[∫

R

g(t)dµλ,ω(t)

]

dλ,

where both sides are allowed to be infinite.
We will study the measure µω by examining the boundary behavior of its

Poisson transform Pω(x, y) as y ↓ 0. In this subsection we set

l(z) ≡ (ω − z)FR(z).

Lemma 2. For z ∈ C+,

Pω(z) =
π√
2

√

|l(z)|+ Re l(z)

|l(z)| .

Proof. We start with

Pω(x, y) =

∫

R

[∫

R

y

(t− x)2 + y2
dµλ,ω(t)

]

dλ

= Im

∫

R

Fλ,ω(x+ iy) dλ.

Equ. (8) and a simple residue calculation yield

∫

R

Fλ,ω(x+ iy)dλ =
−πi

FR(z)
√

ω−z
FR(z)

,

where the branch of the square root is chosen to be in C+. An elementary
calculation shows that

Pω(x, y) = Im
iπ

√

l(x+ iy)
,

where the branch of the square root is chosen to have positive real part,
explicitly

√
w ≡ 1√

2

(√

|w| + Rew + i sign(Imw)
√

|w| − Rew
)

. (35)

This yields the statement. �
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Theorem 6. The measure µω is absolutely continuous with respect to Le-
besgue measure and

dµω

dx
(x) =

√

|l(x+ i0)| + Re l(x+ i0)√
2 |l(x+ i0)|

. (36)

The set

E ≡ {x | ImFR(x+ i0) > 0} ∪ {x | (ω − x)FR(x+ i0) > 0},

is an essential support for µω and µλ,ω is concentrated on E for all λ 6= 0.

Proof. By Theorem 1, ω is not an eigenvalue of hλ,ω for λ 6= 0. This implies
that µω({ω}) = 0. By the theorem of de la Vallée Poussin (for detailed proof
see e.g. [Ja]), µωsing is concentrated on the set

{x |x 6= ω and lim
y↓0

Pω(x+ iy) = ∞}.

By Lemma 2, this set is contained in

S ≡ {x | lim
y↓0

FR(x+ iy) = 0}.

Since S∩Sλ,ω ⊂ {ω}, Theorem 1 implies that µλ,ωsing(S) = 0 for all λ 6= 0. Since

|S| = 0, µλ,ωac (S) = 0 for all λ. We conclude that µλ,ω(S) = 0 for all λ 6= 0,
and so

µω(S) =

∫

R

µλ,ω(S) dλ = 0.

Hence, µωsing = 0. From Theorem 1 we now get

dµω(x) = dµωac(x) =
1

π
ImFω(x+ i0) dx,

and (36) follows from Lemma 2. The remaining statements are obvious. �

We are now ready to state and prove the Simon-Wolff theorems for fixed
ω.

Theorem 7. Let B ⊂ R be a Borel set. Consider the following statements:

1. GR(x) <∞ for Lebesgue a.e. x ∈ B.

2. µλ,ωcont(B) = 0 for Lebesgue a.e. λ ∈ R.

Then (1) ⇒ (2). If B ⊂ E, then also (2) ⇒ (1).

Proof. Let A ≡ {x ∈ B |GR(x) = ∞} ∩ E .
(1)⇒(2) By assumption, A has zero Lebesgue measure. Theorem 6 yields that
µω(A) = 0. Since GR(x) <∞ for Lebesgue a.e. x ∈ B, ImFR(x+ i0) = 0 for
Lebesgue a.e. x ∈ B. Hence, for all λ, ImFλ,ω(x + i0) = 0 for Lebesgue a.e.
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x ∈ B. By Theorem 1, µλ,ωac (B) = 0 and the measure µλ,ωsc |B is concentrated
on the set A for all λ 6= 0. Then,

∫

R

µλ,ωsc (B) dλ =

∫

R

µλ,ωsc (A) dλ ≤
∫

R

µλ,ω(A) dλ = µω(A) = 0.

Hence, µλ,ωsc (B) = 0 for Lebesgue a.e λ.
(2)⇒(1) Assume that the set A has positive Lebesgue measure. By Theorem
1, µλ,ωpp (A) = 0 for all λ 6= 0, and

∫

R

µλ,ωcont(A) dλ =

∫

R

µλ,ω(A) dλ = µω(A) > 0.

Hence, for a set of λ’s of positive Lebesgue measure, µλ,ωcont(B) > 0. �

Theorem 8. Let B ⊂ R be a Borel set. Consider the following statements:

1. ImFR(x+ i0) = 0 and GR(x) = ∞ for Lebesgue a.e. x ∈ B.
2. µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e. λ ∈ R.

Then (1) ⇒ (2). If B ⊂ E, then also (2) ⇒ (1).

Proof. Let A ≡ {x ∈ B |GR(x) <∞} ∩ E .
(1)⇒(2) Since ImFR(x+ i0) = 0 for Lebesgue a.e. x ∈ B, Theorem 1 implies
that µλ,ωac (B) = 0 for all λ. By Theorems 1 and 6, for λ 6= 0, µλ,ωpp |B is
concentrated on the set A. Since A has Lebesgue measure zero,

∫

R

µλ,ωpp (A) dλ ≤ µω(A) = 0,

and so µλ,ωpp (B) = 0 for Lebesgue a.e. λ.
(2)⇒(1) If ImFR(x+i0) > 0 for a set of x ∈ B of positive Lebesgue measure,
then, by Theorem 1, µλ,ωac (B) > 0 for all λ. Assume that ImFR(x+i0) = 0 for
Lebesgue a.e. x ∈ B and that A has positive Lebesgue measure. By Theorem
1, µλ,ωcont(A) = 0 for all λ 6= 0 and since A ⊂ E , Theorem 6 implies

∫

R

µλ,ωpp (A) dλ =

∫

R

µλ,ω(A) dλ = µω(A) > 0.

Thus, we must have that µλ,ωpp (B) > 0 for a set of λ’s of positive Lebesgue
measure. �

Theorem 9. Let B ⊂ R be a Borel set. Consider the following statements:

1. ImFR(x+ i0) > 0 for Lebesgue a.e. x ∈ B.

2. µλ,ωsing(B) = 0 for Lebesgue a.e. λ ∈ R.

Then (1) ⇒ (2). If B ⊂ E, then also (2) ⇒ (1).
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Proof. (1)⇒(2) By Theorem 1, for λ 6= 0 the measure µλ,ωsing|B is concentrated
on the set A ≡ {x ∈ B | ImFR(x+i0) = 0}∩E . By assumption, A has Lebesgue
measure zero and

∫

R

µλ,ωsing(A) dλ ≤
∫

R

µλ,ω(A) dλ = µω(A) = 0.

Hence, for Lebesgue a.e. λ ∈ R, µλsing(B) = 0.
(2)⇒(1) Assume that B ⊂ E and that the set

A ≡ {x ∈ B | ImFR(x+ i0) = 0},

has positive Lebesgue measure. By Theorem 1, µλ,ωac (A) = 0 for all λ, and

∫

R

µλ,ωsing(A) dλ =

∫

R

µλ,ω(A) dλ = µω(A) > 0.

Hence, for a set of λ’s of positive Lebesgue measure, µλ,ωsing(B) > 0. �

2.8 Examples

In all examples in this subsection hR = L2([a, b], dµR) and hR is the operator
of multiplication by x. In Examples 1-9 [a, b] = [0, 1]. In Examples 1 and 2 we
do not assume that f is a cyclic vector for hR.

Example 1. In this example we deal with the spectrum outside ]0, 1[. Let

Λ0 =

∫ 1

0

|f(x)|2
x

dµR(x), Λ1 =

∫ 1

0

|f(x)|2
x− 1

dµR(x).

Obviously, Λ0 ∈ ]0,∞] and Λ1 ∈ [−∞, 0[. If λ2 > ω/Λ0, then hλ,ω has a unique
eigenvalue e < 0 which satisfies

ω − e− λ2

∫ 1

0

|f(x)|2
x− e

dµR(x) = 0. (37)

If λ2 < ω/Λ0, then hλ,ω has no eigenvalue in ] −∞, 0[. 0 is an eigenvalue of

hλ,ω iff λ2 = ω/Λ0 and
∫ 1

0
|f(x)|2x−2dµR(x) <∞. Similarly, if

(ω − 1)/Λ1 < λ2,

then hλ,ω has a unique eigenvalue e > 1 which satisfies (37), and if

(ω − 1)/Λ1 > λ2,

then hλ,ω has no eigenvalue in ]1,∞[. 1 is an eigenvalue of hλ,ω iff
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(ω − 1)/Λ1 = λ2,

and
∫ 1

0
|f(x)|2(x− 1)−2dµR(x) <∞.

Example 2. Let dµR(x) ≡ dx|[0,1], let f be a continuous function on ]0, 1[, and
let

S = {x ∈ ]0, 1[ | f(x) 6= 0}.
The set S is open in ]0, 1[, and the cyclic space generated by hR and f is
L2(S, dx). The spectrum of

hλ,ω|(C⊕L2(S,dx))⊥ ,

is purely absolutely continuous and equal to [0, 1] \ S. Since for x ∈ S,
limy↓0 ImFR(x + iy) = π|f(x)|2 > 0, the spectrum of hλ,ω in S is purely
absolutely continuous for all λ 6= 0. Hence, if

S =
⋃

n

]an, bn[,

is the decomposition of S into connected components, then the singular spec-
trum of hλ,ω inside [0, 1] is concentrated on the set ∪n{an, bn}. In particular,
hλ,ω has no singular continuous spectrum. A point e ∈ ∪n{an, bn} is an eigen-
value of hλ,ω iff

∫ 1

0

|f(x)|2
(x− e)2

dx <∞ and ω − e− λ2

∫ 1

0

|f(x)|2
x− e

dx = 0. (38)

Given ω, for each e for which the first condition holds there are precisely two
λ’s such that e is an eigenvalue of hλ,ω. Hence, given ω, the set of λ’s for
which hλ,ω has eigenvalues in ]0, 1[ is countable. Similarly, given λ, the set of
ω’s for which hλ,ω has eigenvalues in ]0, 1[ is countable.

Let
Z ≡ {x ∈ [0, 1] | f(x) = 0},

and g ≡ supx∈Z GR(x). By (16), the number of eigenvalues of hλ,ω is bounded
by 1 + λ2g. Hence, if g < ∞, then hλ,ω can have at most finitely many
eigenvalues. If, for example,

|f(x) − f(y)| ≤ C|x− y|δ,

for all x, y ∈ [0, 1] and some δ > 1/2, then

g = sup
x∈Z

∫ 1

0

|f(t)|2
(t− x)2

dt = sup
x∈Z

∫ 1

0

|f(t) − f(x)|2
(t− x)2

dt

≤ sup
x∈Z

∫ 1

0

C

(t− x)2(1−δ)
dt <∞,
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and hλ,ω has at most finitely many eigenvalues. On the other hand, given
λ 6= 0, ω, and a finite sequence E ≡ {e1, . . . , en} ∈]0, 1[, one can construct a
C∞ function f with bounded derivatives such that E is precisely the set of
eigenvalues of hλ,ω in ]0, 1[.

More generally, let E ≡ {en} ⊂]0, 1[ be a discrete set. (By discrete we
mean that for all n, infj 6=n |en − ej | > 0 — the accumulation points of E are
not in E). Let λ 6= 0 and ω be given and assume that ω is not an accumulation
point of E. Then there is a C∞ function f such that E is precisely the set of
eigenvalues of hλ,ω in ]0, 1[. Of course, in this case f ′(x) cannot be bounded.
The construction of a such f is somewhat lengthy and can be found in [Kr].

In the remaining examples we assume f = 1l. The next two examples are
based on [How].

Example 3. Let µR be a pure point measure with atoms µR(xn) = an. Then

GR(x) =

∞∑

n=1

an
(x− xn)2

.

If
∑

n

√
an < ∞, then GR(x) < ∞ for Lebesgue a.e. x ∈ [0, 1] (see Theorem

3.1 in [How]). Hence, by Simon-Wolff theorems 3 and 7, for a fixed λ 6= 0 and
Lebesgue a.e. ω, and for a fixed ω and Lebesgue a.e. λ, hλ,ω has only a pure
point spectrum. On the other hand, for a fixed λ 6= 0, there is a dense Gδ set
of ω ∈ R such that the spectrum of hλ,ω on ]0, 1[ is purely singular continuous
[Gor, DMS].

Example 4 (continuation). Assume that xn = xn(w) are independent random
variables uniformly distributed on [0, 1]. We keep the an’s deterministic and
assume that

∑√
an = ∞. Then, for a.e. w, GR,w(x) = ∞ for Lebesgue a.e.

x ∈ [0, 1] (see Theorem 3.2 in [How]). Hence, by Simon-Wolff theorems 4 and
8, for a fixed λ 6= 0 and Lebesgue a.e. ω, and for a fixed ω and Lebesgue a.e.
λ, the spectrum of hλ,ω(w) on [0, 1] is singular continuous with probability 1.

Example 5. Let ν be a probability measure on [0, 1] and

dµR(x) =
1

2

(
dx|[0,1] + dν(x)

)
.

Since for all x ∈]0, 1[,

lim inf
y↓0

ImFR(x + iy) ≥ π

2
,

the operator hλ,ω has purely absolutely continuous spectrum on [0, 1] for all
λ 6= 0. In particular, the singular spectrum of h0 associated to νsing disappears
under the influence of the perturbation for all λ 6= 0.



24 V. Jakšić, E. Kritchevski, and C.-A. Pillet

Example 6. This example is due to Simon-Wolff [SW]. Let

µn = 2−n
2n

∑

j=1

δj2−n ,

and µR =
∑

n anµn, where an > 0,
∑

n an = 1 and
∑

n 2nan = ∞. The
spectrum of h0,ω is pure point and equal to [0, 1] ∪ {ω}. For any x ∈ [0, 1]
there is jx such that |jx/2n − x| ≤ 2−n. Hence, for all n,

∫

R

dµn(t)

(t− x)2
≥ 2n,

and GR(x) = ∞ for all x ∈ [0, 1]. We conclude that for all λ 6= 0 and all ω
the spectrum of hλ,ω on [0, 1] is purely singular continuous.

Example 7. Let µC be the standard Cantor measure (see [RS1]). Set

νj,n(A) ≡ µC(A+ j2−n),

and

µR ≡ c χ[0,1]

∞∑

n=1

n−2
2n

∑

j=1

νj,n,

where c is the normalization constant. Then GR(x) = ∞ for all x ∈ [0, 1] (see
Example 5 in Section II.5 of [Si2]), and the spectrum of hλ,ω on [0, 1] is purely
singular continuous for all λ, ω.

Example 8. The following example is due to del Rio and Simon (Example
7 in Section II.5 of [Si2]). Let {rn} be the set of rationals in ]0, 1/2[, an =
min(3−n−1, rn, 1/2 − rn),

In =]rn − an, rn + an[ ∪ ]1 − rn − an, 1 − rn + an[,

and S = ∪nIn. The set S is dense in [0, 1] and |S| ≤ 2/3. Let dµR =
|S|−1χSdx. The spectrum of hR is purely absolutely continuous and equal
to [0, 1]. The set S is the essential support of this absolutely continuous spec-
trum. Clearly, for all λ, ω, spac(hλ,ω) = [0, 1]. By Theorem 5, for any fixed
λ 6= 0, hλ,ω will have some singular spectrum in [0, 1] \ S for a set of ω’s of
positive Lebesgue measure. It is not difficult to show that GR(x) < ∞ for
Lebesgue a.e. x ∈ [0, 1] \ S (see [Si2]). Hence, for a fixed λ, hλ,ω will have
no singular continuous spectrum for Lebesgue a.e. ω but it has some point
spectrum in [0, 1] \ S for a set of ω’s of positive Lebesgue measure.
For a given ω, hλ,ω has no singular continuous spectrum for Lebesgue a.e. λ.
Note that for Lebesque a.e. x ∈ R \ S, FR(x+ i0) = ReFR(x+ i0) 6= 0. Since
the set S is symmetric with respect to the point 1/2, we have that for all
z ∈ C±, ReFR(z) = −ReFR(−z + 1/2). Hence,
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ReFR(x) = −ReFR(−x+ 1/2), (39)

and if |ω| ≥ 1, then the set

{x ∈ [0, 1] \ S | (ω − x)FR(x) > 0}, (40)

has positive Lebesgue measure. Theorem 9 yields that for a given ω 6∈]0, 1[,
hλ,ω will have some point spectrum in [0, 1] \ S for a set of λ’s of positive
Lebesgue measure. If ω ∈]0, 1[, the situation is more complex and depends on
the choice of enumeration of the rationals. The enumeration can be always
chosen in such a way that for all 0 < ǫ < 1, |S ∩ [0, ǫ]| < ǫ. In this case for any
given ω the set (40) has positive Lebesgue measure and hλ,ω will have some
singular continuous spectrum in [0, 1] \ S for a set of λ’s of positive Lebesgue
measure.

Example 9. This example is also due to del Rio and Simon (Example 8 in
Section II.5 of [Si2]). Let

Sn =

2n−1⋃

j=1

]
j

2n
− 1

4n22n
,
j

2n
+

1

4n22n

[

,

and S = ∪nSn. The set S is dense in [0, 1] and |S| < 1. Let dµR = |S|−1χS dx.
Then the absolutely continuous spectrum of hλ,ω is equal to [0, 1] for all λ, ω.
One easily shows that GR(x) = ∞ on [0, 1] (see [Si2]). Hence, for a fixed λ,
hλ,ω will have no point spectrum on [0, 1] for Lebesgue a.e. ω but it has some
singular continuous spectrum in [0, 1] \ S for a set of ω’s of positive Lebesgue
measure.

For a given ω, hλ,ω will have no point spectrum inside [0, 1] for Lebesgue
a.e. λ. The set S is symmetric with respect to 1/2 and (39) holds. Since for
any 0 < ǫ < 1, |S ∩ [0, ǫ]| < ǫ, for any given ω the set

{x ∈ [0, 1] \ S | (ω − x)FR(x) > 0},

has positive Lebesgue measure. Hence, Theorem 9 yields that for a given ω,
hλ,ω will have some singular continuous spectrum in [0, 1] \ S for a set of λ’s
of positive Lebesgue measure.

Example 10. Proposition 1 and a theorem of del Rio and Simon [DS] yield
that there exist a bounded interval [a, b], a Borel probability measure µR on
[a, b] and λ0 > 0 such that:

1. spac(hλ,ω) = [a, b] for all λ, ω.
2. for a set of ω’s of positive Lebesgue measure, hλ0,ω has embedded point

spectrum in [a, b].
3. for a set of ω’s of positive Lebesgue measure, hλ0,ω has embedded singular

continuous spectrum in [a, b].
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Example 11. Proposition 1 and a theorem of del Rio-Fuentes-Poltoratskii
[DFP] yield that there exist a bounded interval [a, b], a Borel probability
measure µR on [a, b] and λ0 > 0 such that:

1. spac(hλ,ω) = [a, b] for all λ, ω.
2. for all ω ∈ [0, 1], the spectrum of hλ0,ω is purely absolutely continuous.
3. for all ω 6∈ [0, 1], [a, b] ⊂ spsing(hλ0,ω).

2.9 Digression: the semi-circle law

In the proof of Proposition 1 we have solved the equation (11) for µR. In this
subsection we will find the fixed point of the equation (11). More precisely, we
will find a finite Borel measure ν whose Borel transform satisfies the functional
equation

H(z) =
1

−z − λ2H(z)
,

or, equivalently
λ2H(z)2 + zH(z) + 1 = 0. (41)

The unique analytic solution of this equation is

H(z) =

√
z2 − 4λ2 − z

2λ2
,

a two-valued function which can be made single valued by cutting the complex
plane along the line segment [−2|λ|, 2|λ|]. Only one branch has the Herglotz
property H(C+) ⊂ C+. This branch is explicitly given by

H(z) =
1

|λ|
ξ − 1

ξ + 1
, ξ ≡

√

z − 2|λ|
z + 2|λ| ,

where the branch of the square root is determined by Re ξ > 0 (the so-called
principal branch). In particular, H(x+ iy) ∼ iy−1 as y → +∞, and by a well
known result in harmonic analysis (see e.g. [Ja]) there exists a unique Borel
probability measure ν such that Fν(z) = H(z) for z ∈ C+. For all x ∈ R,

lim
y↓0

ImFν(x+ iy) = sλ(x),

where

sλ(x) =







√
4λ2 − x2

2λ2
if |x| ≤ 2|λ|,

0 if |x| > 2|λ|.
We deduce that the measure ν is absolutely continuous w.r.t. Lebesgue mea-
sure and that

dν(x) = π−1sλ(x)dx.

Of course, ν is the celebrated Wigner semi-circle law which naturally arises in
the study of the eigenvalue distribution of certain random matrices, see e.g.
[Meh]. The result of this computation will be used in several places in the
remaining part of our lectures.
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3 The perturbative theory

3.1 The Radiating Wigner-Weisskopf atom

In this section we consider a specific class of WWA models which satisfy the
following set of assumptions.

Assumption (A1) hR = L2(X, dx; K), where X = (e−, e+) ⊂ R is an open
(possibly infinite) interval and K is a separable Hilbert space. The Hamiltonian
hR ≡ x is the operator of multiplication by x.

Note that the spectrum of hR is purely absolutely continuous and equal
to X. For notational simplicity in this section we do not assume that f is a
cyclic vector for hR. This assumption is irrelevant for our purposes: since the
cyclic space h1 generated by hλ and 1 is independent of λ for λ 6= 0, so is
h⊥1 ⊂ hR and hλ|h⊥

1
= hR|h⊥

1
has purely absolutely continuous spectrum.

Assumption (A2) The function

g(t) =

∫

X

e−itx‖f(x)‖2
K dx,

is in L1(R, dt).

This assumption implies that x 7→ ‖f(x)‖K is a bounded continuous func-
tion on X. Note also that for Im z > 0,

FR(z) =

∫

X

‖f(x)‖2
K

x− z
dx = i

∫ ∞

0

eizsg(s) ds.

Hence, FR(z) is bounded and continuous on the closed half-plane C+. In
particular, the function FR(x + i0) is bounded and continuous on R. If in
addition tng(t) ∈ L1(R, dt) for some positive integer n, then ‖f(x)‖2

K and
FR(x+ i0) are n-times continuously differentiable with bounded derivatives.

Assumption (A3) ω ∈ X and ‖f(ω)‖K > 0.

This assumption implies that the eigenvalue ω of h0 is embedded in its
absolutely continuous spectrum.

Until the end of this section we will assume that Assumptions (A1)-(A3)
hold. We will call the WWA which satisfies (A1)-(A3) the Radiating Wigner-
Weisskopf Atom (abbreviated RWWA).

In contrast to the previous section, until the end of the paper we will keep
ω fixed and consider only λ as the perturbation parameter. In the sequel we
drop the subscript ω and write Fλ for Fλ,ω , etc.
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Since ‖f(x)‖K is a continuous function of x, the argument of Example 2
in Subsection 2.8 yields that hλ has no singular continuous spectrum for all
λ. However, hλ may have eigenvalues (and, if X 6= R, it will certainly have
them for λ large enough). For λ small, however, the spectrum of hλ is purely
absolutely continuous.

Proposition 9. There exists Λ > 0 such that for 0 < |λ| < Λ the spectrum of
hλ is purely absolutely continuous and equal to X.

Proof. By Theorem 1, the singular spectrum of hλ is concentrated on the
set

S = {x ∈ R |ω − x− λ2FR(x+ i0) = 0}.
Since ImFR(ω + i0) = π‖f(ω)‖2

K > 0, there is ǫ > 0 such that

ImFR(x+ i0) > 0,

for |x − ω| < ǫ. Let m ≡ maxx∈R |FR(x + i0)| and Λ ≡ (ǫ/m)1/2. Then, for
|λ| < Λ and x 6∈]ω − ǫ, ω + ǫ[, one has |ω − x| > λ2|FR(x + i0)|. Hence, S
is empty for 0 < |λ| < Λ, and the spectrum of hλ|h1

is purely absolutely
continuous. �

We finish this subsection with two examples.

Example 1. Assume that hR = L2(Rd, ddx) and let hR = −∆, where ∆ is the
usual Laplacian in Rd. The Fourier transform

ϕ̃(k) =
1

(2π)d/2

∫

Rd

e−ik·xϕ(x) dx,

maps unitarily L2(Rd, ddx) onto L2(Rd, ddk) and the Hamiltonian hR becomes
multiplication by |k|2. By passing to polar coordinates with r = |k| we identify
L2(Rd, ddk) with L2(R+, r

d−1dr; K), where K = L2(Sd−1, dσ), Sd−1 is the
unit sphere in Rd, and dσ is its surface measure. The operator hR becomes
multiplication by r2. Finally, the map

ϕ#(x) = 2−1/2x
d−2

4 ϕ̃(
√
x),

maps L2(Rd, ddx) unitarily onto L2(X, dx; K) with X = (0,∞), and

(hRϕ)#(x) = xϕ#(x).

This representation of hR and hR (sometimes called the spectral or the energy
representation) clearly satisfies (A1).

The function f# satisfies (A2) iff the function g(t) = (f |e−ithRf) is in
L1(R, dt). If f ∈ L2(Rd, ddx) is compactly supported, then g(t) = O(t−d/2),
and so if d ≥ 3, then (A2) holds for all compactly supported f . If d = 1, 2,
then (A2) holds if f is in the domain of |x|2 and its Fourier transform vanishes
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in a neighborhood of the origin. The proofs of these facts are simple and can
be found in [BR2], Example 5.4.9.

Example 2. Let hR = ℓ2(Z+), where Z+ = {1, 2, · · ·}, and let

hR =
1

2

∑

n∈Z+

(

(δn| · )δn+1 + (δn+1| · )δn
)

,

where δn is the Kronecker delta function at n ∈ Z+. hR is the usual dis-
crete Laplacian on ℓ2(Z+) with Dirichlet boundary condition. The Fourier-sine
transform

ϕ̃(k) ≡
√

2

π

∑

n∈Z+

ϕ(n) sin(kn),

maps ℓ2(Z+) unitarily onto L2([0, π], dk) and the Hamiltonian hR becomes
multiplication by cos k. Finally, the map

ϕ#(x) = (1 − x2)−1/4ϕ̃(arccosx),

maps ℓ2(Z+) unitarily onto L2(X, dx), where X = (−1, 1) and

(hRϕ)#(x) = xϕ#(x).

If f has bounded support in Z+, then |f#(x)|2 = (1 − x2)1/2Pf (x), where
Pf (x) is a polynomial in x. A simple stationary phase argument yields that
g(t) = O(|t|−3/2) and Assumption (A2) holds.

3.2 Perturbation theory of embedded eigenvalue

Until the end of this section Λ is the constant in Proposition 9.
Note that the operator h0 = ω ⊕ x has the eigenvalue ω embedded in the

absolutely continuous spectrum of x. On the other hand, for 0 < |λ| < Λ the
operator hλ has no eigenvalue—the embedded eigenvalue has ”dissolved” in
the absolutely continuous spectrum under the influence of the perturbation. In
this subsection we will analyze this phenomenon. At its heart are the concepts
of resonance and life-time of an embedded eigenvalue which are of profound
physical importance.

We set D(w, r) ≡ {z ∈ C | |z − w| < r}. In addition to (A1)-(A3) we will
need the following assumption.

Assumption (A4) There exists ρ > 0 such that the function

C+ ∋ z → FR(z),

has an analytic continuation across the interval ]ω − ρ, ω + ρ[ to the region
C+ ∪D(ω, ρ). We denote the extended function by F+

R (z).
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It is important to note that F+
R (z) is different from FR(z) for Im z < 0.

This is obvious from the fact that

ImFR(x+ i0) − ImFR(x− i0) = 2π‖f(x)‖2
K > 0,

near ω. In particular, if (A4) holds, then ρ must be such that ]ω−ρ, ω+ρ[⊂ X .
Until the end of this subsection we will assume that Assumptions (A1)-

(A4) hold.

Theorem 10. 1. The function Fλ(z) = (1|(hλ − z)−11) has a meromorphic
continuation from C+ to the region C+ ∪D(ω, ρ). We denote this contin-
uation by F+

λ (z).
2. Let 0 < ρ′ < ρ be given. Then there is Λ′ > 0 such that for |λ| < Λ′

the only singularity of F+
λ (z) in D(ω, ρ′) is a simple pole at ω(λ). The

function λ 7→ ω(λ) is analytic for |λ| < Λ′ and

ω(λ) = ω + a2λ
2 +O(λ4),

where a2 ≡ −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2
K < 0.

Proof. Part (1) is simple—Assumption A4 and Equ. (8) yield that

F+
λ (z) =

1

ω − z − λ2F+
R (z)

,

is the mermorphic continuation of C+ ∋ z 7→ Fλ(z) to C+ ∪D(ω, ρ).
For a given ρ′, choose Λ′ > 0 such that

ρ′ > |Λ′|2 sup
|z|=ρ′

|F+
R (z)|.

By Rouché’s theorem, there is an ǫ > 0 such that for |λ| < Λ′ the function
ω − z − λ2F+

R (z) has a unique simple zero ω(λ) inside D(ω, ρ′ + ǫ) such that
|ω(λ) − ω| < ρ′ − ǫ. This yields that F+

λ (z) is analytic in C+ ∪ D(ω, ρ′ + ǫ)
except for a simple pole at ω(λ). The function

P (λ) ≡
∮

|ω−z|=ρ′
zF+

λ (z)dz =

∞∑

n=0

λ2n

∮

|ω−z|=ρ′
z

(
F+
R (z)

ω − z

)n
dz

ω − z
,

is analytic for |λ| < Λ′. Similarly, the function

Q(λ) ≡
∮

|ω−z|=ρ′
F+
λ (z)dz =

∞∑

n=0

λ2n

∮

|ω−z|=ρ′

(
F+
R (z)

ω − z

)n
dz

ω − z
, (42)

is analytic and non-zero for |λ| < Λ′. Since

ω(λ) =
P (λ)

Q(λ)
,
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we see that ω(λ) is analytic for |λ| < Λ with the power series expansion

ω(λ) =
∞∑

n=0

λ2na2n.

Obviously, a0 = ω and

a2 = − 1

2πi

∮

|ω−z|=ρ′

F+
R (z)

z − ω
dz = −F+

R (ω) = −FR(ω + i0).

The same formula can be obtained by implicit differentiation of

ω − ω(λ) − λ2F+
R (ω(λ)) = 0,

at λ = 0. �

Theorem 10 explains the mechanism of ”dissolving” of the embedded eigen-
value ω. The embedded eigenvalue ω has moved from the real axis to a point
ω(λ) on the second (improperly called “unphysical”) Riemann sheet of the
function Fλ(z). There it remains the singularity of the analytically continued
resolvent matrix element (1|(hλ − z)−11), see Figure 1.

2nd Riemann sheet

ω(λ)

ω

ρ′

physical Riemann sheet

Fig. 1. The resonance pole ω(λ).

We now turn to the physically important concept of life-time of the em-
bedded eigenvalue.

Theorem 11. There exists Λ′′ > 0 such that for |λ| < Λ′′ and all t ≥ 0

(1|e−ithλ1) = e−itω(λ) +O(λ2).
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Proof. By Theorem 9 the spectrum of hλ is purely absolutely continuous for
0 < |λ| < Λ. Hence, by Theorem 1,

dµλ(x) = dµλac(x) =
1

π
ImFλ(x+ i0) dx =

1

π
ImF+

λ (x) dx.

Let Λ′ and ρ′ be the constants in Theorem 10, Λ′′ ≡ min(Λ′, Λ), and suppose
that 0 < |λ| < Λ′′. We split the integral representation

(1|e−ithλ1) =

∫

X

e−itxdµλ(x), (43)

into three parts as
∫ ω−ρ′

e−

+

∫ ω+ρ′

ω−ρ′
+

∫ e+

ω+ρ′
.

Equ. (8) yields

ImF+
λ (x) = λ2 ImF+

R (x)

|ω − x− λ2F+
R (x)|2 ,

and so the first term and the third term can be estimated as O(λ2). The
second term can be written as

I(t) ≡ 1

2πi

∫ ω+ρ′

ω−ρ′
e−itx

(

F+
λ (x) − F+

λ (x)
)

dx.

The function z 7→ F+
λ (z) is meromorphic in an open set containing D(ω, ρ)

with only singularity at ω(λ). We thus have

I(t) = −R(λ) e−itω(λ) +

∫

γ

e−itz
(

F+
λ (z) − F+

λ (z)
)

dz,

where the half-circle γ = {z | |z −ω| = ρ′, Im z ≤ 0} is positively oriented and

R(λ) = Resz=ω(λ)F
+
λ (z).

By Equ. (42), R(λ) = Q(λ)/2πi is analytic for |λ| < Λ′′ and

R(λ) = −1 +O(λ2).

Equ. (8) yields that for z ∈ γ

F+
λ (z) =

1

ω − z
+O(λ2).

Since ω is real, this estimate yields

F+
λ (z) − F+

λ (z) = O(λ2).
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Combining the estimates we derive the statement. �

If a quantum mechanical system, described by the Hilbert space h and the
Hamiltonian hλ, is initially in a pure state described by the vector 1, then

P (t) = |(1|e−ithλ1)|2,

is the probability that the system will be in the same state at time t. Since
the spectrum of hλ is purely absolutely continuous, by the Riemann-Lebesgue
lemma limt→∞ P (t) = 0. On physical grounds one expects more, namely an
approximate relation

P (t) ∼ e−tΓ(λ), (44)

where Γ(λ) is the so-called radiative life-time of the state 1. The strict ex-
ponential decay P (t) = O(e−at) is possible only if X = R. Since in a typical
physical situation X 6= R, the relation (44) is expected to hold on an in-
termediate time scale (for times which are not ”too long” or ”too short”).
Theorem 11 is a mathematically rigorous version of these heuristic claims and
Γ(λ) = −2 Imω(λ). The computation of the radiative life-time is of paramount
importance in quantum mechanics and the reader may consult standard ref-
erences [CDG, He, Mes] for additional information.

3.3 Complex deformations

In this subsection we will discuss Assumption (A4) and the perturbation the-
ory of the embedded eigenvalue in some specific situations.

Example 1. In this example we consider the case X =]0,∞[.
Let 0 < δ < π/2 and A(δ) = {z ∈ C |Re z > 0, |Arg z| < δ}. We denote by

H2
d(δ) the class of all functions f : X → K which have an analytic continuation

to the sector A(δ) such that

‖f‖2
δ = sup

|θ|<δ

∫

X

‖f(eiθx)‖2
Kdx <∞.

The class H2
d(δ) is a Hilbert space. The functions in H2

d(δ) are sometimes
called dilation analytic.

Proposition 10. Assume that f ∈ H2
d(δ). Then Assumption (A4) holds in

the following stronger form:

1. The function FR(z) has an analytic continuation to the region C+∪A(δ).
We denote the extended function by F+

R (z).
2. For 0 < δ′ < δ and ǫ > 0 one has

sup
|z|>ǫ,z∈A(δ′)

|F+
R (z)| <∞.
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Proof. The proposition follows from the representation

FR(z) =

∫

X

‖f(x)‖2
K

x− z
dx = eiθ

∫

X

(f(e−iθx)|f(eiθx))K

eiθx− z
dx, (45)

which holds for Im z > 0 and −δ < θ ≤ 0. This representation can be proven
as follows.

Let γ(θ) be the half-line eiθR+. We wish to prove that for Im z > 0

∫

X

‖f(x)‖2
K

x− z
dx =

∫

γ(θ)

(f(w)|f(w))K

w − z
dw.

To justify the interchange of the line of integration, it suffices to show that

lim
n→∞

rn

∫ 0

θ

|(f(rne−iϕ)|f(rneiϕ))K|
|rneiϕ − z| dϕ = 0,

along some sequence rn → ∞. This fact follows from the estimate

∫

X

[∫ 0

θ

x|(f(e−iϕx)|f(eiϕx))K|
|eiϕx− z| dϕ

]

dx ≤ Cz‖f‖2
δ.

�

Until the end of this example we assume that f ∈ H2
d(δ) and that Assump-

tion (A2) holds (this is the case, for example, if f ′ ∈ H2
d(δ) and f(0) = 0).

Then, Theorems 10 and 11 hold in the following stronger forms.

Theorem 12. 1. The function

Fλ(z) = (1|(hλ − z)−11),

has a meromorphic continuation from C+ to the region C+ ∪ A(δ). We
denote this continuation by F+

λ (z).
2. Let 0 < δ′ < δ be given. Then there is Λ′ > 0 such that for |λ| < Λ′ the

only singularity of F+
λ (z) in A(δ′) is a simple pole at ω(λ). The function

λ 7→ ω(λ) is analytic for |λ| < Λ′ and

ω(λ) = ω + λ2a2 +O(λ4),

where a2 = −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2
K < 0.

Theorem 13. There exists Λ′′ > 0 such that for |λ| < Λ′′ and all t ≥ 0,

(1|e−ithλ1) = e−itω(λ) +O(λ2t−1).

The proof of Theorem 13 starts with the identity

(1|e−ithλ1) = λ2

∫

X

e−itx‖f(x)‖2
K |F+

λ (x)|2 dx.
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Given 0 < δ′ < δ one can find Λ′′ such that for |λ| < Λ′′

(1|e−ithλ1) = e−itω(λ)+λ2

∫

e−iδ′R+

e−itw(f(w)|f(w))K F
+
λ (w)F+

λ (w) dw, (46)

and the integral on the right is easily estimated by O(t−1). We leave the details
of the proof as an exercise for the reader.

Example 2. We will use the structure of the previous example to illustrate
the complex deformation method in study of resonances. In this example we
assume that f ∈ H2

d(δ).
We define a group {u(θ) | θ ∈ R} of unitaries on h by

u(θ) : α⊕ f(x) 7→ α⊕ eθ/2f(eθx).

Note that hR(θ) ≡ u(−θ)hRu(θ) is the operator of multiplication by e−θx.
Set h0(θ) = ω ⊕ hR(θ), fθ(x) = u(−θ)f(x)u(θ) = f(e−θx), and

hλ(θ) = h0(θ) + λ ((1| · )fθ + (fθ| · )1) .

Clearly, hλ(θ) = u(−θ)hλu(θ).
We set S(δ) ≡ {z | |Im z| < δ} and note that the operator h0(θ) and the

function fθ are defined for all θ ∈ S(δ). We define hλ(θ) for λ ∈ C and θ ∈ S(δ)
by

hλ(θ) = h0(θ) + λ
(
(1| · )fθ + (fθ| · )1

)
.

The operators hλ(θ) are called dilated Hamiltonians. The basic properties of
this family of operators are:

1. Dom (hλ(θ)) is independent of λ and θ and equal to Dom (h0).
2. For all φ ∈ Dom(h0) the function C× S(δ) ∋ (λ, θ) 7→ hλ(θ)φ is analytic.
3. If Im θ = Im θ′, then the operators hλ(θ) and hλ(θ

′) are unitarily equiva-
lent, namely

h0(θ
′) = u(−(θ′ − θ))h0(θ)u(θ

′ − θ).

4. spess(h0(θ)) = e−θR+ and spdisc(h0(θ)) = {ω}, see Figure 2.

The important aspect of (4) is that while ω is an embedded eigenvalue
of h0, it is an isolated eigenvalue of h0(θ) as soon as Im θ < 0. Hence, if
Im θ < 0, then regular perturbation theory can be applied to the isolated
eigenvalue ω. Clearly, for all λ, spess(hλ(θ)) = sp(h0(θ)) and one easily shows
that for λ small enough spdisc(hλ)(θ) = {ω̃(λ)} (see Figure 2). Moreover, if
0 < ρ < min{ω, ω tan θ}, then for sufficiently small λ,

ω̃(λ) =

∮

|z−ω|=ρ

z(1|(hλ(θ) − z)−11) dz

∮

|z−ω|=ρ

(1|(hλ(θ) − z)−11) dz

.
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Fig. 2. The spectrum of the dilated Hamiltonian hλ(θ).

The reader should not be surprised that the eigenvalue ω̃(λ) is precisely the
pole ω(λ) of F+

λ (z) discussed in Theorem 10 (in particular, ω̃(λ) is independent
of θ). To clarify this connection, note that u(θ)1 = 1. Thus, for real θ and
Im z > 0,

Fλ(z) = (1|(hλ − z)−11) = (1|(hλ(θ) − z)−11).

On the other hand, the function R ∋ θ 7→ (1|hλ(θ) − z)−11) has an analytic
continuation to the strip −δ < Im θ < Im z. This analytic continuation is a
constant function, and so

F+
λ (z) = (1|(hλ(θ) − z)−11),

for −δ < Im θ < 0 and z ∈ C+ ∪ A(|Im θ|). This yields that ω(λ) = ω̃(λ).
The above set of ideas plays a very important role in mathematical physics.

For additional information and historical perspective we refer the reader to
[AC, BC, CFKS, Der2, Si2, RS4].

Example 3. In this example we consider the case X = R.
Let δ > 0. We denote by H2

t (δ) the class of all functions f : X → K which
have an analytic continuation to the strip S(δ) such that

‖f‖2
δ ≡ sup

|θ|<δ

∫

X

‖f(x+ iθ)‖2
K dx <∞.

The class H2
t (δ) is a Hilbert space. The functions in H2

t (δ) are sometimes
called translation analytic.

Proposition 11. Assume that f ∈ H2
t (δ). Then the function FR(z) has an

analytic continuation to the half-plane {z ∈ C | Im z > −δ}.

The proposition follows from the relation

FR(z) =

∫

X

‖f(x)‖2
K

x− z
dx =

∫

X

(f(x− iθ)|f(x+ iθ))K

x+ iθ − z
dx, (47)
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which holds for Im z > 0 and −δ < θ ≤ 0. The proof of (47) is similar to the
proof of (45).

Until the end of this example we will assume that f ∈ H2
t (δ). A change of

the line of integration yields that the function

g(t) =

∫

R

e−itx‖f(x)‖2
K dx,

satisfies the estimate |g(t)| ≤ e−δ|t|‖f‖2
δ, and so Assumption (A2) holds. More-

over, Theorems 10 and 11 hold in the following stronger forms.

Theorem 14. 1. The function

Fλ(z) = (1|(hλ − z)−11),

has a meromorphic continuation from C+ to the half-plane

{z ∈ C | Im z > −δ}.

We denote this continuation by F+
λ (z).

2. Let 0 < δ′ < δ be given. Then there is Λ′ > 0 such that for |λ| < Λ′ the
only singularity of F+

λ (z) in {z ∈ C | Im z > −δ′} is a simple pole at ω(λ).
ω(λ) is analytic for |λ| < Λ′ and

ω(λ) = ω + λ2a2 +O(λ4),

where a2 = −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2
K < 0.

Theorem 15. Let 0 < δ′ < δ be given. Then there exists Λ′′ > 0 such that
for |λ| < Λ′′ and all t ≥ 0

(1|e−ithλ1) = e−itω(λ) +O(λ2e−δ
′t).

In this example the survival probability has strict exponential decay.
We would like to mention two well-known models in mathematical physics

for which analogs of Theorems 14 and 15 holds. The first model is the Stark
Hamiltonian which describes charged quantum particle moving under the in-
fluence of a constant electric field [Her]. The second model is the spin-boson
system at positive temperature [JP1, JP2].

In the translation analytic case, one can repeat the discussion of the pre-
vious example with the analytic family of operators

hλ(θ) = ω ⊕ (x+ θ) + λ
(
(1| · )fθ + (fθ| · )1

)
,

where fθ(x) ≡ f(x+ θ) (see Figure 3). Note that in this case

spess(hλ(θ)) = spess(h0(θ)) = R + i Im θ.
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!!(�)�Im �
spess(h�(�))

Fig. 3. The spectrum of the translated Hamiltonian hλ(θ).

Example 4. Let us consider the model described in Example 2 of Subsection
3.1 where f ∈ ℓ2(Z+) has bounded support. In this case X =] − 1, 1[ and

FR(z) =

∫ 1

−1

√
1 − x2

x− z
Pf (x) dx, (48)

where Pf (x) is a polynomial in x. Since the integrand is analytic in the cut
plane C\{x ∈ R | |x| ≥ 1}, we can deform the path of integration to any curve
γ joining −1 to 1 and lying entirely in the lower half-plane. This shows that
the function FR(z) has an analytic continuation from C+ to the entire cut
plane C \ {x ∈ R | |x| ≥ 1}. Assumption (A4) holds in this case.

3.4 Weak coupling limit

The first computation of the radiative life-time in quantum mechanics goes
back to the seminal papers of Dirac [Di] and Wigner and Weisskopf [WW].
Consider the survival probability P (t) and assume that P (t) ∼ e−tΓ(λ) where
Γ(λ) = λ2Γ2 +O(λ3) for λ small. To compute the first non-trivial coefficient
Γ2, Dirac devised a computational scheme called time-dependent perturbation
theory. Dirac’s formula for Γ2 was called Golden Rule in Fermi’s lectures [Fer],
and since then this formula is known as Fermi’s Golden Rule.

One possible mathematically rigorous approach to time-dependent pertur-
bation theory is the so-called weak coupling (or van Hove) limit. The idea is
to study P (t/λ2) as λ→ 0. Under very general conditions one can prove that

lim
λ→0

P (t/λ2) = e−tΓ2 ,
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and that Γ2 is given by Dirac’s formula (see [Da2, Da3]).
In this section we will discuss the weak coupling limit for the RWWA. We

will prove:

Theorem 16. Suppose that Assumptions (A1)-(A3) hold. Then

lim
λ→0

∣
∣
∣(1|e−ithλ/λ

2

1) − e−itω/λ2

eitFR(ω+i0)
∣
∣
∣ = 0,

for any t ≥ 0. In particular,

lim
λ→0

|(1|e−ithλ/λ
2

1)|2 = e−2π‖f(ω)‖2
K
t.

Remark. If in addition Assumption (A4) holds, then Theorem 16 is an imme-
diate consequence of Theorem 11. The point is that the leading contribution
to the life-time can be rigorously derived under much weaker regularity as-
sumptions.

Lemma 3. Suppose that Assumptions (A1)-(A3) hold. Let u be a bounded
continuous function on X. Then

lim
λ→0

∣
∣
∣
∣
λ2

∫

X

e−itx/λ2

u(x)|Fλ(x+ i0)|2 dx− u(ω)

‖f(ω)‖2
K

e−it(ω/λ2−FR(ω+i0))

∣
∣
∣
∣
= 0,

for any t ≥ 0.

Proof. We set lω(x) ≡ |ω − x− λ2FR(ω + i0)|−2 and

Iλ(t) ≡ λ2

∫

X

e−itx/λ2

u(x)|Fλ(x+ i0)|2 dx.

We write u(x)|Fλ(x+ i0)|2 as

u(ω)lω(x) + (u(x) − u(ω))lω(x) + u(x)
(
|Fλ(x+ i0)|2 − lω(x)

)
,

and decompose Iλ(t) into three corresponding pieces Ik,λ(t). The first piece is

I1,λ(t) = λ2 u(ω)

∫ e+

e−

e−itx/λ2

(ω − x− λ2ReFR(ω + i0))2 + (λ2ImFR(ω + i0))2
dx.

The change of variable

y =
x− ω + λ2ReFR(ω + i0)

λ2ImFR(ω + i0)
,

and the relation ImFR(ω + i0) = π‖f(ω)‖2
K yield that

I1,λ(t) = e−it(ω/λ2−ReFR(ω+i0)) u(ω)

‖f(ω)‖2
K

1

π

∫ e+(λ)

e−(λ)

e−itImFR(ω+i0)y

y2 + 1
dy,
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where

e±(λ) ≡ λ−2 e± − ω

π‖f(ω)‖2
K

+
ReFR(ω + i0)

π‖f(ω)‖2
K

→ ±∞,

as λ→ 0. From the formula

1

π

∫ ∞

−∞

e−itImFR(ω+i0)y

y2 + 1
dy = e−tImFR(ω+i0),

we obtain that

I1,λ(t) =
u(ω)

‖f(ω)‖2
K

e−it(ω/λ2−FR(ω+i0)) (1 + o(1)) , (49)

as λ→ 0.
Using the boundedness and continuity properties of u and lω, one easily

shows that the second and the third piece can be estimated as

|I2,λ(t)| ≤ λ2

∫

X

∣
∣u(x) − u(ω)

∣
∣lω(x) dx,

|I3,λ(t)| ≤ λ2

∫

X

|u(x)|
∣
∣|Fλ(x+ i0)|2 − lω(x)

∣
∣ dx.

Hence, they vanish as λ→ 0, and the result follows from Equ. (49). �

Proof of Theorem 16. Let Λ be as in Proposition 9. Recall that for 0 <
|λ| < Λ the spectrum of hλ is purely absolutely continuous. Hence, for λ small,

(1|e−ithλ/λ
2

1) =
1

π

∫

X

e−itx/λ2

ImFλ(x + i0)dx

=
1

π

∫

X

e−itx/λ2 |Fλ(x + i0)|2ImFR(x + i0)dx

= λ2

∫

X

e−itx/λ2‖f(x)‖2
K |Fλ(x+ i0)|2dx,

where we used Equ. (19). This formula and Lemma 3 yield Theorem 16. �

The next result we wish to discuss concerns the weak coupling limit for
the form of the emitted wave. Let pR be the orthogonal projection on the
subspace hR of h.

Theorem 17. For any g ∈ C0(R),

lim
λ→0

(pRe−ithλ/λ
2

1|g(hR)pRe−ithλ/λ
2

1) = g(ω)
(

1 − e−2π‖f(ω)‖2
K
t
)

. (50)

Proof. Using the decomposition

pRg(hR)pR = (pRg(hR)pR − g(h0)) + (g(h0) − g(hλ)) + g(hλ)

= −g(ω)(1| · )1 + (g(h0) − g(hλ)) + g(hλ),
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we can rewrite (pRe−ithλ/λ
2

1|g(hR)pRe−ithλ/λ
2

1) as a sum of three pieces.
The first piece is equal to

−g(ω)|(1|e−ithλ/λ
2

1)|2 = −g(ω)e−2π‖f(ω)‖2
K
t. (51)

Since λ 7→ hλ is continuous in the norm resolvent sense, we have

lim
λ→0

‖g(hλ) − g(h0)‖ = 0,

and the second piece can be estimated

(e−ithλ/λ
2

1|(g(h0) − g(hλ))e
−ithλ/λ

2

1) = o(1), (52)

as λ→ 0. The third piece satisfies

(e−ithλ/λ
2

1|g(hλ)e−ithλ/λ
2

1) = (1|g(hλ)1)

= (1|g(h0)1) + (1|(g(hλ) − g(h0))1)

= g(ω) + o(1),

(53)

as λ→ 0. Equ. (51), (52) and (53) yield the statement. �

Needless to say, Theorems 16 and 17 can be also derived from the
general theory of weak coupling limit developed in [Da2, Da3]. For addi-
tional information about the weak coupling limit we refer the reader to
[Da2, Da3, Der3, FGP, Haa, VH].

3.5 Examples

In this subsection we describe the meromorphic continuation of

Fλ(z) = (1|(hλ − z)−11),

across spac(hλ) in some specific examples which allow for explicit computa-
tions. Since Fλ(z) = F−λ(z), we need to consider only λ ≥ 0.

Example 1. Let X =]0,∞[ and

f(x) ≡ π−1/2(2x)1/4(1 + x2)−1/2.

Note that f ∈ H2
d(δ) for 0 < δ < π/2 and so f is dilation analytic. In

this specific example one can evaluate FR(z) directly and describe the entire
Riemann surface of Fλ(z), thus going far beyond the results of Theorem 12.

For z ∈ C \ [0,∞) we set w ≡ √−z, where the branch is chosen so that
Rew > 0. Then iw ∈ C+ and the integral

FR(z) =
1

π

∫ ∞

0

√
2t

1 + t2
dt

t− z
=

√
2

π

∫ ∞

−∞

t2

1 + t4
dt

t2 + w2
,
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is easily evaluated by closing the integration path in the upper half-plane and
using the residue method. We get

FR(z) =
1

w2 +
√

2w + 1
.

Thus FR is a meromorphic function of w with two simple poles at w = e±3iπ/4.
It follows that FR(z) is meromorphic on the two-sheeted Riemann surface of√−z. On the first (physical) sheet, where Rew > 0, it is of course analytic.
On the second sheet, where Rew < 0, it has two simple poles at z = ±i.

In term of the uniformizing variable w, we have

Fλ(z) =
w2 +

√
2w + 1

(w2 + ω)(w2 +
√

2w + 1) − λ2
.

For λ > 0, this meromorphic function has 4 poles. These poles are analytic
functions of λ except at the collision points. For λ small, the poles form two
conjugate pairs, one near ±i

√
ω, the other near e±3iπ/4. Both pairs are on the

second sheet. For λ large, a pair of conjugated poles goes to infinity along the
asymptote Rew = −

√
2/4. A pair of real poles goes to ±∞. In particular, one

of them enters the first sheet at λ =
√
ω and hλ has one negative eigenvalue

for λ >
√
ω. Since

GR(x) =
1

π

∫ ∞

0

√
2

1 + t2
dt

(t− x)2
,

is finite for x < 0 and infinite for x ≥ 0, 0 is not an eigenvalue of hλ for
λ =

√
ω, but a zero energy resonance. Note that the image of the asymptote

Rew = −
√

2/4 on the second sheet is the parabola {z = x+iy |x = 2y2−1/8}.
Thus, as λ→ ∞, the poles of Fλ(z) move away from the spectrum. This means
that there are no resonances in the large coupling limit.

The qualitative trajectories of the poles (as functions of λ for fixed values
of ω) are plotted in Figure 4.

Example 2. Let X = R and

f(x) ≡ π−1/2(1 + x2)−1/2.

Since f ∈ H2
t (δ) for 0 < δ < 1, the function f is translation analytic. Here

again we can compute explicitly FR(z). For z ∈ C+, a simple residue calcula-
tion leads to

FR(z) =
1

π

∫ ∞

−∞

1

1 + t2
dt

t− z
= − 1

z + i
.

Hence,

Fλ(z) =
z + i

λ2 − (z + i)(z − ω)
,

has a meromorphic continuation across the real axis to the entire complex
plane. It has two poles given by the two branches of
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Fig. 4. Trajectories of the poles of Fλ(z) in w-space for various values of ω in
Example 1. Notice the simultaneous collision of the two pairs of conjugate poles
when ω = λ = 1/2. The second Riemann sheet is shaded.

ω(λ) =
ω − i +

√

(ω + i)2 + 4λ2

2
,

which are analytic except at the collision point ω = 0, λ = 1/2. For small λ,
one of these poles is near ω and the other is near −i. Since

ω(λ) = − i

2
+
(ω

2
± λ
)

+O(1/λ),

as λ→ ∞, hλ has no large coupling resonances. The resonance curve ω(λ) is
plotted in Figure 5.

Clearly, sp(hλ) = R for all ω and λ. Note that for all x ∈ R, GR(x) = ∞
and
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ImFλ(x+ i0) =
λ2

(x− ω)2 + (λ2 − x(x − ω))2
.

Hence, the operator hλ has purely absolutely continuous spectrum for all ω
and all λ 6= 0. ! > 0!�i

spa
(h�) ! = 0!�i
Fig. 5. The poles of Fλ(z) for Example 2.

Example 3. Let X =] − 1, 1[ and

f(x) ≡
√

2

π
(1 − x2)1/4.

(Recall Example 2 in Subsection 3.1 and Example 4 in Subsection 3.3 – hR
and hR are ℓ2(Z+) and the discrete Laplacian in the energy representation

and f = δ#1 .) In Subsection 2.9 we have shown that for z ∈ C \ [−1, 1],

FR(z) =
2

π

∫ 1

−1

√
1 − t2

t− z
dt = 2

ξ − 1

ξ + 1
, (54)

where

ξ =

√

z − 1

z + 1
.

The principal branch of the square root Re ξ > 0 corresponds to the first
(physical) sheet of the Riemann surface R of FR(z). The branch Re ξ < 0
corresponds to the second sheet of R. In particular,

FR(x+ i0) = 2(−x+ i
√

1 − x2).

To discuss the analytic structure of the Borel transform Fλ(z), it is convenient
to introduce the uniformizing variable

w ≡ − 2

FR(z)
=

1 + ξ

1 − ξ
,

which maps the Riemann surface R to C\{0}. Note that the first sheet of R is
mapped on the exterior of the unit disk and that the second sheet is mapped
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z w
2nd sheet

Fig. 6. Mapping the cut plane C \ [−1, 1] to the exterior of the unit disk

on the punctured disk {z ∈ C | 0 < |z| < 1} (see Figure 6). The inverse of this
map is

z =
1

2

(

w +
1

w

)

.

For z ∈ C \ [−1, 1] the function Fλ(z) is given by

Fλ(z) =
−2w

w2 − 2ωw + 1 − 4λ2
,

and thus has a meromorphic continuation to the entire Riemann surface R.
The resonance poles in the w-plane are computed by solving

w2 − 2ωw + 1 − 4λ2 = 0,

and are given by the two-valued analytic function

w = ω +
√

4λ2 + ω2 − 1.

We will describe the motion of the poles in the case ω ≥ 0 (the case ω ≤ 0 is
completely symmetric). For 0 < λ <

√
1 − ω2/2 there are two conjugate poles

on the second sheet which, in the w-plane, move towards the point ω on a
vertical line. After their collision at λ =

√
1 − ω2/2, they turn into a pair of

real poles moving towards ±∞ (see Figure 7). The pole moving to the right
reaches w = 1 at λ =

√

(1 − ω)/2 and enters the first sheet of R. We conclude
that hλ has a positive eigenvalue
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ω+(λ) =
1

2

(

ω +
√

4λ2 + ω2 − 1 +
1

ω +
√

4λ2 + ω2 − 1

)

,

for λ >
√

(1 − ω)/2. The pole moving to the left reaches w = 0 at λ = 1/2.
This means that this pole reaches z = ∞ on the second sheet of R. For
λ > 1/2, the pole continues its route towards w = −1, i.e., it comes back from
z = ∞ towards z = −1, still on the second sheet of R. At λ =

√

(1 + ω)/2, it
reaches w = −1 and enters the first sheet. We conclude that hλ has a negative
eigenvalue

ω−(λ) =
1

2

(

ω −
√

4λ2 + ω2 − 1 +
1

ω −
√

4λ2 + ω2 − 1

)

,

for λ >
√

(1 + ω)/2. The trajectory of these poles in the z cut-plane is shownw ! + ip1� !2
! � ip1� !2

Fig. 7. The trajectories of the poles of Fλ in the w-plane. The second sheet is
shaded.

on Figure 8. For clarity, only one pole of the conjugate pair is displayed.

Example 4. In Examples 1-3 there were no resonances in the large coupling
regime, i.e., the second sheet poles of Fλ kept away from the continuous
spectrum as λ → ∞. This fact can be understood as follows. If a reso-
nance ω(λ) approaches the real axis as λ → ∞, then it follows from Equ.
(8) that ImFR(ω(λ)) = o(λ−2). Since under Assumptions (A1) and (A2)
FR is continuous on C+, we conclude that if limλ→∞ ω(λ) = ω ∈ R, then
ImFR(ω + i0) = 0. Since ‖f(x)‖K is also continuous on X, if ω ∈ X, then
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Fig. 8. The trajectories of the poles of Fλ in the z-plane. Dashed lines are on the
second sheet.

we must have f(ω) = 0. Thus the only possible locations of large coupling
resonances are the zeros of f in X . We finish this subsection with an example
where such large coupling resonances exist.

Let again X =] − 1, 1[ and set

f(x) ≡
√

1

π
x(1 − x2)1/4.

The Borel transform

FR(z) =
1

π

∫ 1

−1

x2
√

1 − x2

x− z
dx,

is easily evaluated by a residue calculation and the change of variable

x = (u+ u−1)/2.

Using the same uniformizing variable w as in Example 3, we get

FR(z) = −1

4

(

1 +
1

w2

)
1

w
, (55)

and

Fλ(z) =
−4w3

2w4 − 4ωw3 + (2 − λ2)w2 − λ2
. (56)

We shall again restrict ourselves to the case 0 < ω < 1. At λ = 0 the de-
nominator of (56) has a double zero at w = 0 and a pair of conjugated zeros
at ω ± i

√
1 − ω2. As λ increases, the double zero at 0 splits into a pair of

real zeros going to ±∞. The right zero reaches 1 and enters the first sheet at
λ =

√

2(1 − ω). At λ =
√

2(1 + ω), the left zero reaches −1 and also enters
the first sheet. The pair of conjugated zeros move from their original posi-
tions towards ±i (of course, they remain within the unit disk). For large λ
they behave like

w = ±i +
2ω

λ2
− 2ω(2 ± 5iω)

λ4
+O(λ−6).

Thus, in the z plane, Fλ has two real poles emerging from ±∞ on the second
sheet and traveling towards ±1. The right pole reaches 1 at λ =

√

2(1 − ω)
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and becomes an eigenvalue of hλ which returns to +∞ as λ further increases.
The left pole reaches −1 at λ =

√

2(1 + ω), becomes an eigenvalue of hλ,
and further proceeds towards −∞. On the other hand, the eigenvalue ω of h0

turns into a pair of conjugated poles on the second sheet which, as λ → ∞,
tend towards 0 as

ω(λ) =
2ω

λ2
− 4ω(1 ± 2iω)

λ4
+O(λ−6),

see Figure 9. We conclude that hλ has a large coupling resonance approaching
0 as λ→ ∞. z 1�1 !
Fig. 9. The trajectories of the poles of Fλ in the z-plane. Dashed lines are on the
second sheet.

4 Fermionic quantization

4.1 Basic notions of fermionic quantization

This subsection is a telegraphic review of fermionic quantization. For addi-
tional information and references the reader may consult Section 5 in [AJPP1].

Let h be a Hilbert space. We denote by Γ(h) the fermionic (antisymmet-
ric) Fock space over h, and by Γn(h) the n-particle sector in h. Φh denotes
the vacuum in Γ(h) and a(f), a∗(f) the annihilation and creation operators
associated to f ∈ h. In the sequel a#(f) represents either a(f) or a∗(f). Recall
that ‖a#(f)‖ = ‖f‖. The CAR algebra over h, CAR(h), is the C∗-algebra of
bounded operators on Γ(h) generated by {a#(f) | f ∈ h}.

Let u be a unitary operator on h. Its second quantization

Γ(u)|Γn(h) ≡ u⊗ · · · ⊗ u = u⊗n,

defines a unitary operator on Γ(h) which satisfies

Γ(u)a#(f) = a#(uf)Γ(u).

Let h be a self-adjoint operator on h. The second quantization of eith is a
strongly continuous group of unitary operators on Γ(h). The generator of this
group is denoted by dΓ(h),

Γ(eith) = eitdΓ(h).
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dΓ(h) is essentially self-adjoint on Γ(Domh), where Domh is equipped with
the graph norm, and one has

dΓ(h)|Γn(Domh) =
∑n

k=1 I ⊗ · · · ⊗ I
︸ ︷︷ ︸

⊗h⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

.

k − 1 n− k

The maps

τ t(a#(f)) = eitdΓ(h)a#(f)e−itdΓ(h) = a#(eithf),

uniquely extend to a group τ of ∗-automorphisms of CAR(h). τ is often called
the group of Bogoliubov automorphisms induced by h. The group τ is norm
continuous and the pair (CAR(h), τ) is a C∗-dynamical system. We will call it
a CAR dynamical system. We will also call the pair (CAR(h), τ) the fermionic
quantization of (h, h).

If two pairs (h1, h1) and (h2, h2) are unitarily equivalent, that is, if
there exists a unitary u : h1 → h2 such that uh1u

−1 = h2, then the
fermionic quantizations (CAR(h1), τ1) and (CAR(h2), τ2) are isomorphic—
the map σ(a#(f)) = a#(uf) extends uniquely to a ∗-isomorphism such that
σ ◦ τ t1 = τ t2 ◦ σ.

4.2 Fermionic quantization of the WWA

Let hλ be a WWA on h = C ⊕ hR. Its fermionic quantization is the pair
(CAR(h), τλ), where

τ tλ(a
#(φ)) = eitdΓ(hλ)a#(φ)e−itdΓ(hλ) = a#(eithλφ).

We will refer to (CAR(h), τλ) as the Simple Electronic Black Box (SEBB)
model. This model has been discussed in the recent lecture notes [AJPP1].
The SEBB model is the simplest non-trivial example of the Electronic Black
Box model introduced and studied in [AJPP2].

The SEBB model is also the simplest non-trivial example of an open quan-
tum system. Set

τ tS(a#(α)) = a#(eitωα), τ tR(a#(g)) = a#(eithRg).

The CAR dynamical systems (CAR(C), τS) and (CAR(hR), τR) are naturally
identified with subsystems of the non-interacting SEBB (CAR(h), τ0). The
system (CAR(C), τS) is a two-level quantum dot without internal structure.
The system (CAR(hR), τR) is a free Fermi gas reservoir. Hence, (CAR(hλ), τλ)
describes the interaction of a two-level quantum system with a free Fermi gas
reservoir.

In the sequel we denote Hλ ≡ dΓ(hλ), HS ≡ dΓ(ω), HR ≡ dΓ(hR), and

V ≡ dΓ(v) = a∗(f)a(1) + a∗(1)a(f).

Clearly,
Hλ = H0 + λV.
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4.3 Spectral theory

The vacuum of Γ(h) is always an eigenvector of Hλ with eigenvalue zero. The
rest of the spectrum of Hλ is completely determined by the spectrum of hλ
and one may use the results of Sections 2 and 3.2 to characterize the spec-
trum of Hλ. We mention several obvious facts. If the spectrum of hλ is purely
absolutely continuous, then the spectrum of Hλ is also purely absolutely con-
tinuous except for a simple eigenvalue at zero. Hλ has no singular continuous
spectrum iff hλ has no singular continuous spectrum. Let {ei}i∈I be the eigen-
values of hλ, repeated according to their multiplicities. The eigenvalues of Hλ

are given by

spp(Hλ) =

{
∑

i∈I

niei
∣
∣ni ∈ {0, 1},

∑

i∈I

ni <∞
}

∪ {0}.

Until the end of this subsection we will discuss the fermionic quantization
of the Radiating Wigner-Weisskopf Atom introduced in Section 3.2. The point
spectrum of H0 consists of two simple eigenvalues {0, ω}. The corresponding
normalized eigenfunctions are

Ψn = a(1)nΦh, n = 0, 1.

Apart from these simple eigenvalues, the spectrum of H0 is purely absolutely
continuous and spac(H0) is equal to the closure of the set

{

e+

n∑

i=1

xi
∣
∣xi ∈ X, e ∈ {0, ω}, n ≥ 1

}

.

Let Λ be as in Theorem 9. Then for 0 < |λ| < Λ the spectrum of Hλ is purely
absolutely continuous except for a simple eigenvalue 0.

Note that

(Ψ1|e−itHλΨ1) = (a(1)Φh|e−itHλa(1)Φh)

= (a(1)Φh|a(e−ithλ)Φh) = (1|e−ithλ1).

Similarly,
(Ψ1|(Hλ − z)−1Ψ1) = (1|(hλ − z)−11).

Hence, one may use directly the results (and examples) of Section 3 to describe
the asymptotic of (Ψ1|e−itHλΨ1) and the meromorphic continuation of

C+ ∋ z 7→ (Ψ1|(Hλ − z)−1Ψ1). (57)
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4.4 Scattering theory

Let hλ be a WWA on h = C ⊕ hR. The relation

τ−t0 ◦ τ tλ(a#(φ)) = a#(e−ith0eithλφ),

yields that for φ ∈ hac(hλ) the limit

lim
t→∞

τ−t0 ◦ τ tλ(a#(φ)) = a#(Ω−
λ φ),

exists in the norm topology of CAR(h). Denote

τλ,ac ≡ τλ|CAR(hac(hλ)), τR,ac ≡ τR|CAR(hac(hR)).

By the intertwining property (26) of the wave operator Ω−
λ , the map

σ+
λ (a#(φ)) ≡ a#(Ω−

λ φ),

satisfies σ+
λ ◦ τ tλ,ac = τ tR,ac ◦ σ+

λ . Hence, σ+
λ is a ∗-isomorphism between the

CAR dynamical systems (CAR(hac(hλ)), τλ,ac) and (CAR(hac(hR)), τR,ac).
This isomorphism is the algebraic analog of the wave operator in Hilbert
space scattering theory and is often called the Møller isomorphism.

5 Quantum statistical mechanics of the SEBB model

5.1 Quasi-free states

This subsection is a direct continuation of Subsection 4.1. A positive linear
functional η : CAR(h) → C is called a state if η(I) = 1. A physical system P
is described by the CAR dynamical system (CAR(h), τ) if its physical observ-
ables can be identified with elements of CAR(h) and if their time evolution is
specified by the group τ . The physical states of P are specified by states on
CAR(h). If P is initially in a state described by η and A ∈ CAR(h) is a given
observable, then the expectation value of A at time t is η(τ t(A)). This is the
usual framework of the algebraic quantum statistical mechanics in the Heisen-
berg picture. In the Schrödinger picture one evolves the states and keeps the
observables fixed, i.e., if η is the initial state, then the state at time t is η ◦ τ t.
A state η is called τ -invariant (or stationary state, steady state) if η ◦ τ t = η
for all t.

Let T be a self-adjoint operator on h such that 0 ≤ T ≤ I. The map

ηT (a∗(fn) · · · a∗(f1)a(g1) · · · a(gm)) = δn,mdet{(gi|Tfj)}, (58)

uniquely extends to a state ηT on CAR(h). This state is usually called the
quasi-free gauge-invariant state generated by T . The state ηT is completely
determined by its two point function
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ηT (a∗(f)a(g)) = (g|Tf).

Note that if A ≡∑j fj(gj | · ) is a finite rank operator on h, then

dΓ(A) =
∑

j

a∗(fj)a(gj),

and
ηT (dΓ(A)) = Tr (TA) =

∑

j

(gj|Tfj). (59)

Let (CAR(h), τ) be the fermionic quantization of (h, h). The quasi-free
state ηT is τ -invariant iff eithT = T eith for all t ∈ R. In particular, the quasi-
free state generated by T = ̺(h), where ̺ is a positive bounded Borel function
on the spectrum of h, is τ -invariant. The function ̺ is the energy density of this
quasi-free state. Let β > 0 and µ ∈ R. Of particular importance in quantum
statistical mechanics is the quasi-free state associated with T = ̺βµ(h), where
the energy density ̺βµ is given by the Fermi-Dirac distribution

̺βµ(ε) ≡
1

eβ(ε−µ) + 1
. (60)

We denote this state by ηβµ. The pair (CAR(h), τ) and the state ηβµ describe
free Fermi gas in thermal equilibrium at inverse temperature β and chemical
potential µ.

5.2 Non-equilibrium stationary states

In this subsection we assume that hλ has purely absolutely continuous spec-
trum. We make this assumption in order to ensure that the system will evolve
towards a stationary state. This assumption will be partially relaxed in Sub-
section 5.5, where we discuss the effect of eigenvalues of hλ. We do not make
any assumptions on the spectrum of hR.

Let ηT be a quasi-free state on CAR(C ⊕ hR) generated by T = α ⊕ TR.
We denote by ηTR

the quasi-free state on CAR(hR) generated by TR. We
assume that ηTR

is τR-invariant and denote by TR,ac the restriction of TR to
the subspace hac(hR).

Let φ1, · · · , φn ∈ h and

A = a#(φ1) · · · a#(φn). (61)

Since ηT is τ0-invariant,

ηT (τ tλ(A))) = ηT (τ−t0 ◦ τ tλ(A))

= ηT (a#(e−ith0eithλφ1) · · · a#(e−ith0eithλφn)),

hence
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lim
t→∞

ηT (τ tλ(A)) = ηT (a#(Ω−
λ φ1) · · · a#(Ω−

λ φn)).

Since the set of observables of the form (61) is dense in h, we conclude that
for all A ∈ CAR(h) the limit

η+
λ (A) = lim

t→∞
ηT (τ tλ(A)),

exists and defines a state η+
λ on CAR(h). Note that η+

λ is the quasi-free state
generated by T+

λ ≡ (Ω−
λ )∗TΩ−

λ . Since RanΩ−
λ = hac(h0) = hac(hR), we have

T+
λ = (Ω−

λ )∗TR,acΩ
−
λ , (62)

and so
η+
λ = ηTR,ac

◦ σ+
λ ,

where σ+
λ is the Møller isomorphism introduced in Subsection 4.4. Obvi-

ously, η+
λ does not depend on the choice of α and on the restriction of TR

to hsing(hR). Since

eithλT+
λ e−ithλ = (Ω−

λ )∗eithRTR,ace
−ithRΩ−

λ = T+
λ ,

η+
λ is τλ-invariant.

The state η+
λ is called the non-equilibrium stationary state (NESS) of the

CAR dynamical system (CAR(h), τλ) associated to the initial state ηT . Note
that if A ≡∑j φj(ψj | · ), then, according to Equ. (59),

η+
λ (dΓ(A)) = Tr (TΩ−

λ AΩ
−
λ

∗
) =

∑

j

(Ω−
λ ψj |TΩ−

λ φj). (63)

By passing to the GNS representation associated to ηT one can prove the
following more general result. Let N be the set of states on CAR(h) which
are normal with respect to ηT (the set N does not depend on the choice of
α). Then for any η ∈ N and A ∈ CAR(h),

lim
t→∞

η(τ tλ(A)) = η+
λ (A).

If TR = ̺(hR) for some bounded Borel function ̺ on the spectrum of hR,
then the intertwining property of the wave operator implies that T+

λ = ̺(hλ)
and hence η+

λ = η̺(hλ). In particular, if the reservoir is initially in thermal
equilibrium at inverse temperature β > 0 and chemical potential µ ∈ R, then
η+
λ is the quasi-free state associated to (eβ(hλ−µ) + 1)−1, which is the thermal

equilibrium state of (CAR(h), τλ) at the inverse temperature β and chemical
potential µ. This phenomenon is often called return to equilibrium.
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5.3 Subsystem structure

In the rest of these lecture notes we assume that hR is multiplication by x on
hR = L2(X, dµ; K), where X ⊂ R is an open set and K is a separable Hilbert
space. The internal structure of R is specified by an orthogonal decomposition
K = ⊕Mk=1Kk. We set hRk

= L2(X, dµ; Kk) and denote by hRk
the operator of

multiplication by x on hRk
. Thus, we can write

hR =

M⊕

k=1

hRk
, hR =

M⊕

k=1

hRk
. (64)

We interpret (64) as a decomposition of the reservoir R into M indepen-
dent subreservoirs R1, · · · ,RM .

According to (64), we write f = ⊕Mk=1fk and we split the interaction v as

v =
∑M

k=1 vk, where
vk = (1| · )fk + (fk| · )1.

The wave operators Ω±
λ and the scattering matrix S have the following form.

Proposition 12. Let φ = α⊕ ϕ ∈ h. Then

(Ω±
λ φ)(x) = ϕ(x) − λf(x)Fλ(x± i0)(α− λ(f |(hR − x∓ i0)−1ϕ)). (65)

Moreover, for any ψ ∈ L2(X, dµac; K) one has (Sψ)(x) = S(x)ψ(x) where
S(x) : K → K has the form

(Sψ)(x) = ψ(x) + 2πiλ2Fλ(x+ i0)
dµac

dx
(x)(f(x)|ψ(x))Kf(x). (66)

This result is deduced from Proposition 7 as follows. Let hR,f be the cyclic
space generated by hR and f and dµR(x) = ‖f(x)‖2

Kdµ(x) the spectral mea-
sure for hR and f . Let U : hR,f → L2(R, dµR) be defined by U(Ff) = F ,

F ∈ L2(R, dµR). U is unitary, h̃R = UhRU
−1 is the operator of multiplica-

tion by x, and Uf = 1l. We extend h̃R to h̃R = L2(R, dµR)⊕ h⊥R,ψ by setting

h̃R = hR on h⊥R,f . Proposition 7 applies to the pair of operators h̃0 = ω⊕ h̃R
and

h̃λ = h̃0 + λ((1| · )1l + (1l| · )1),

acting on C⊕ h̃R. We denote the corresponding wave operators and S-matrix
by Ω̃±

λ and S̃. We extend U to h = C ⊕ hR,f ⊕ h⊥R,f by setting Uψ = ψ on

C ⊕ h⊥R,f . Clearly,

Ω±
λ = U−1Ω̃±

λ U, S = U−1S̃U,

and an explicit computation yields the statement. We leave the details of this
computation as an exercise for the reader.

The formula (65) can be also proven directly following line by line the
proof of Proposition 7.
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5.4 Non-equilibrium thermodynamics

In the sequel we assume that f ∈ DomhR. In this subsection we also assume
that hλ has purely absolutely continuous spectrum. The projection onto the
subspace hRk

is denoted by 1Rk
. Set

fk ≡ − d

dt
eithλhRk

e−ithλ
∣
∣
t=0

= −i[hλ, hRk
] = −i[hS +

∑

j

(
hRj

+ λvj
)
, hRk

]

= λi[hRk
, vk]

= λi ((1| · )hRk
fk − (hRk

fk| · )1) ,

(67)

and

jk ≡ − d

dt
eithλ1Rk

e−ithλ
∣
∣
t=0

= −i[hλ, 1Rk
] = −i[hS +

∑

j

(
hRj

+ λvj
)
, 1Rk

]

= λi[1Rk
, vk]

= λi ((1| · )fk − (fk| · )1) .

(68)

The observables describing the heat and particle fluxes out of the k-th sub-
reservoir are

Fk ≡ dΓ(fk) = λi(a∗(hRk
fk)a(1) − a∗(1)a(hRk

fk)),

Jk ≡ dΓ(jk) = λi(a∗(fk)a(1) − a∗(1)a(fk)).

We assume that the initial state of the coupled system S +R is the quasi-
free state associated to T ≡ α⊕ TR, where

TR =

M⊕

k=1

TRk
=

M⊕

k=1

̺k(hRk
),

and the ̺k are bounded positive Borel functions on X .
Let η+

λ be the NESS of (CAR(h), τλ) associated to the initial state ηT .
According to Equ. (62) and (59), the steady state heat current out of the
subreservoir Rk is

η+
λ (Fk) = Tr (T+

λ fk) = Tr (TRΩ
−
λ fk(Ω

−
λ )∗)

=
M∑

j=1

Tr (̺j(hRj
)1Rj

Ω−
λ fk(Ω

−
λ )∗1Rj

).

Using Equ. (67) we can rewrite this expression as

η+
λ (Fk) = 2λ

M∑

j=1

Im (1Rj
Ω−
λ hRk

fk|̺j(hRj
)1Rj

Ω−
λ 1).
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Equ. (65) yields the relations

(̺j(hRj
)1Rj

Ω−
λ 1)(x) = −λ̺j(x)Fλ(x− i0)fj(x),

(1Rj
Ω−
λ hRk

fk)(x) =
(
δkj x+ λ2Fλ(x− i0)Hk(x − i0)

)
fj(x),

where we have set

Hk(z) ≡
∫

X

x‖fk(x)‖2
Kk

x− z
dµ(x).

Since RanΩ−
λ = hac(hR), it follows that (1Rj

Ω−
λ hRk

fk|̺j(hRj
)1Rj

Ω−
λ 1) is

equal to

λ

∫

X

(
δkjxFλ(x+ i0) − λ2|Fλ(x+ i0)|2Hk(x+ i0)

)
‖fj(x)‖2

Kj
̺j(x) dµac(x).

From Equ. (18) we deduce that

ImHk(x+ i0) = πx‖fk(x)‖2
Kk

dµac

dx
(x),

for Lebesgue a.e. x ∈ X . Equ. (19) yields

ImFλ(x+ i0) = πλ2|Fλ(x+ i0)|2‖f(x)‖2
K

dµac

dx
(x).

It follows that Im (1Rj
Ω−
λ hRk

fk|̺j(hRj
)1Rj

Ω−
λ 1) is equal to

λ3π

∫

X

(
δkj‖f(x)‖2

K − ‖fk(x)‖2
Kk

)
‖fj(x)‖2

Kj
|Fλ(x+i0)|2 x̺j(x)

(
dµac

dx
(x)

)2

dx.

Finally, using the fact that ‖f(x)‖2
K =

∑

j ‖fj(x)‖2
Kj

, we obtain

η+
λ (Fk) =

M∑

j=1

∫

X

x(̺k(x) − ̺j(x))Dkj(x)
dx

2π
, (69)

where

Dkj(x) ≡ 4π2λ4‖fk(x)‖2
hk
‖fj(x)‖2

hj
|Fλ(x+ i0)|2

(
dµac

dx
(x)

)2

. (70)

Proceeding in a completely similar way we obtain the formula for the steady
particle current

η+
λ (Jk) =

M∑

j=1

∫

X

(̺k(x) − ̺j(x))Dkj(x)
dx

2π
. (71)

The functions Dkj can be related to the S-matrix associated to Ω±
λ . Ac-

cording to the decomposition (64), the S-matrix (66) can be written as
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(1Rk
Sψ)(x) =

M∑

j=1

Skj(x)(1Rj
ψ)(x) ≡ (1Rk

ψ)(x) +

M∑

j=1

tkj(x)(1Rj
ψ)(x),

where

tkj(x) = 2πiλ2 dµac

dx
(x)Fλ(x+ i0)fk(x)(fj(x)| · )Kj

,

and we derive that

Dkj(x) = Tr Kj

(

tkj(x)
∗tkj(x)

)

. (72)

Equ. (69), (71) together with (72) are the well-known Büttiker-Landauer for-
mulas for the steady currents.

It immediately follows from Equ. (69) that

M∑

k=1

η+
λ (Fk) = 0,

which is the first law of thermodynamics (conservation of energy). Similarly,
particle number conservation

M∑

k=1

η+
λ (Jk) = 0,

follows from Equ. (71).
To describe the entropy production of the system, assume that the k-th

subreservoir is initially in thermal equilibrium at inverse temperature βk > 0
and chemical potential µk ∈ R. This means that

̺k(x) = F (Zk(x)),

where F (t) ≡ (et + 1)−1 and Zk(x) ≡ βk(x − µk). The entropy production
observable is then given by

σ ≡ −
M∑

k=1

βk(Fk − µkJk).

The entropy production rate of the NESS η+
λ is

Ep(η+
λ ) = η+

λ (σ) =
1

2

M∑

k,j=1

∫

X

(Zj − Zk)(F (Zk) − F (Zj))Dkj
dx

2π
. (73)

Since the function F is monotone decreasing, Ep(η+
λ ) is clearly non-negative.

This is the second law of thermodynamics (increase of entropy). Note that
in the case of two subreservoirs with µ1 = µ2 the positivity of the entropy
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production implies that the heat flows from the hot to the cold reservoir. For
k 6= j let

Fkj ≡ {x ∈ X | ‖fk(x)‖hk
‖fj(x)‖hj

> 0}.
The subreservoirs Rk and Rj are effectively coupled if µac(Fkj) > 0. The
SEBB model is thermodynamically trivial unless some of the subreservoirs
are effectively coupled. If Rk and Rj are effectively coupled, then Ep(η+

λ ) > 0
unless βk = βj and µk = µj , that is, unless the reservoirs Rk and Rj are in
the same thermodynamical state.

5.5 The effect of eigenvalues

In our study of NESS and thermodynamics in Subsections 5.2 and 5.4 we have
made the assumption that hλ has purely absolutely continuous spectrum. If
X 6= R, then this assumption does not hold for λ large. For example, if
X =]0,∞[, ω > 0, and

λ2 > ω

(∫ ∞

0

‖f(x)‖2
h x

−1dµ(x)

)−1

,

then hλ will have an eigenvalue in ] −∞, 0[. In particular, if

∫ ∞

0

‖f(x)‖2
h x

−1dµ(x) = ∞,

then hλ will have a negative eigenvalue for all λ 6= 0. Hence, the assumption
that hλ has empty point spectrum is very restrictive, and it is important to
understand the NESS and thermodynamics of the SEBB model in the case
where hλ has some eigenvalues. Of course, we are concerned only with point
spectrum of hλ restricted to the cyclic subspace generated by the vector 1.

Assume that λ is such that sppp(hλ) 6= ∅ and spsc(hλ) = ∅. We make
no assumption on the structure of sppp(hλ) (in particular this point spectrum
may be dense in some interval). We also make no assumptions on the spectrum
of hR.

For notational simplicity, in this subsection we write hac for hac(hλ), 1ac

for 1ac(hλ), etc.
Let T and ηT be as in Subsection 5.2 and let φ, ψ ∈ h = C ⊕ hR. Then,

ηT (τ tλ(a
∗(φ)a(ψ))) = (eithλψ|T eithλφ) =

3∑

j=1

Nj(e
ithλψ, eithλφ),

where we have set
N1(ψ, φ) ≡ (1acψ|T1acφ),

N2(ψ, φ) ≡ 2Re (1ppψ|T1acφ),

N3(ψ, φ) ≡ (1ppψ|T1ppφ).
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Since e−ith0T = T e−ith0, we have

N1(e
ithλψ, eithλφ) = (e−ith0eithλ1acψ|T e−ith0eithλ1acφ),

and so
lim
t→∞

N1(e
ithλψ, eithλφ) = (Ω−

λ ψ|TΩ−
λ φ).

Since h is separable, there exists a sequence Pn of finite rank projections com-
muting with hλ such that s − lim Pn = 1pp. The Riemann-Lebesgue lemma
yields that for all n

lim
t→∞

‖PnT eithλ1acφ‖ = 0.

The relation

N2(e
ithλψ|eithλφ) = (eithλ1ppψ|PnT eithλ1acφ)

+ (eithλ(I − Pn)1ppψ|T eithλ1acφ),

yields that
lim
t→∞

N2(e
ithλψ, eithλφ) = 0.

Since N3(e
ithλψ, eithλφ) is either a periodic or a quasi-periodic function of

t, the limit
lim
t→∞

ηT (τ tλ(a
∗(φ)a(ψ))),

does not exist in general. The resolution of this difficulty is well known—to
extract the steady part of a time evolution in the presence of a (quasi-)periodic
component one needs to average over time. Indeed, one easily shows that

lim
t→∞

1

t

∫ t

0

N3(e
ishλψ, eishλφ)ds =

∑

e∈spp(hλ)

(Peψ|TPeφ),

where Pe denotes the spectral projection of hλ associated with the eigenvalue
e. Hence,

lim
t→∞

1

t

∫ t

0

ηT (τsλ(a∗(φ)a(ψ)))ds =
∑

e∈spp(hλ)

(Peψ|TPeφ) + (Ω−
λ ψ|TΩ−

λ φ).

In a similar way one concludes that for any observable of the form

A = a∗(φn) · · · a∗(φ1)a(ψ1) · · · a(ψm), (74)

the limit

lim
t→∞

1

t

∫ t

0

ηT (τsλ(A))ds = δn,m lim
t→∞

1

t

∫ t

0

det
{
(eishλψi|T eishλφj)}ds,

exists and is equal to the limit
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lim
t→∞

1

t

∫ t

0

det
{
(eishλ1ppψi|T eishλ1ppφj) + (Ω−

λ 1acψi|TΩ−
λ 1acφj)

}
ds, (75)

see [Kat] Section VI.5 for basic results about quasi-periodic function on R.
Since the linear span of the set of observables of the form (74) is dense in h,
we conclude that for all A ∈ CAR(h) the limit

η+
λ (A) = lim

t→∞

1

t

∫ t

0

ηT (τsλ(A))ds,

exists and defines a state η+
λ on CAR(h). By construction, this state is τλ-

invariant. η+
λ is the NESS of (CAR(h), τλ) associated to the initial state ηT .

Note that this definition reduces to the previous if the point spectrum of hλ
is empty.

To further elucidate the structure of η+
λ we will make use of the decompo-

sition
h = hac ⊕ hpp. (76)

The subspaces hac and hpp are invariant under hλ and we denote the restric-
tions of τλ to CAR(hac) and CAR(hpp) by τλ,ac and τλ,pp. We also denote by
η+
λ,ac and η+

λ,pp the restrictions of η+
λ to CAR(hac) and CAR(hpp). η+

λ,ac is the

quasi-free state generated by T+
λ ≡ (Ω−

λ )∗TΩ−
λ . If A is of the form (74) and

φj , ψi ∈ hpp, then

η+
λ,pp(A) = δn,m lim

t→∞

1

t

∫ t

0

det{(eishλψi|T eishλφj)}ds.

Clearly, η+
λ,ac is τλ,ac invariant and η+

λ,pp is τλ,pp invariant. Expanding the

determinant in (75) one can easily see that η+
λ,ac and η+

λ,pp uniquely determine

η+
λ .

While the state η+
λ,pp obviously depends on the choice of α and on

TR|hsing(hR) in T = α ⊕ TR, the state η+
λ,ac does not. In fact, if η is any

initial state normal w.r.t. ηT , then for A ∈ CAR(hac),

lim
t→∞

η(τ tλ(A)) = η+
λ,ac(A).

For a finite rank operator A ≡∑j φj(ψj | · ) one has

η+
λ (dΓ(A)) =

∑

j

η+
λ (a∗(φj)a(ψj)),

and so

η+
λ (dΓ(A)) =

∑

j




∑

e∈spp(hλ)

(Peψj |TPeφj) + (Ω−
λ ψj |TΩ−

λ φj)



 .
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The conclusion is that in the presence of eigenvalues one needs to add the
term ∑

j

∑

e∈spp(hλ)

(Peψj |TPeφj),

to Equ. (63), i.e., we obtain the following formula generalizing Equ. (63),

η+
λ (dΓ(A)) = Tr






T




∑

e∈spp(hλ)

PeAPe +Ω−
λ AΩ

−
λ

∗










. (77)

Note that if for some operator q, A = i[hλ, q] in the sense of quadratic forms
on Domhλ, then PeAPe = 0 and eigenvalues do not contribute to η+

λ (dΓ(A)).
This is the case of the current observables dΓ(fk) and dΓ(jk) of Subsection 5.4.
We conclude that the formulas (69) and (71), which we have previously derived
under the assumption spsing(hλ) = ∅, remain valid as long as spsc(hλ) = ∅,
i.e., they are not affected by the presence of eigenvalues.

5.6 Thermodynamics in the non-perturbative regime

The results of the previous subsection can be summarized as follows.
If spsc(hλ) = ∅ and sppp(hλ) 6= ∅ then, on the qualitative level, the ther-

modynamics of the SEBB model is similar to the case spsing(hλ) = 0. To
construct NESS one takes the ergodic averages of the states ηT ◦ τ tλ. The
NESS is unique. The formulas for steady currents and entropy production are
not affected by the point spectra and are given by (69), (71), (73) and (70)
or (72) for all λ 6= 0. In particular, the NESS and thermodynamics are well
defined for all λ 6= 0 and all ω. One can proceed further along the lines of
[AJPP1] and study the linear response theory of the SEBB model (Onsager
relations, Kubo formulas, etc) in the non-perturbative regime. Given the re-
sults of the previous subsection, the arguments and the formulas are exactly
the same as in [AJPP1] and we will not reproduce them here.

The study of NESS and thermodynamics is more delicate in the presence
of singular continuous spectrum and we will not pursue it here. We wish
to point, however, that unlike the point spectrum, the singular continuous
spectrum can be excluded in ”generic” physical situations. Assume that X
is an open set and that the absolutely continuous spectrum of hR is ”well-
behaved” in the sense that ImFR(x+ i0) > 0 for Lebesgue a.e. x ∈ X . Then,
by the Simon-Wolff theorem 5, hλ has no singular continuous spectrum for
Lebesgue a.e. λ ∈ R. If f is a continuous function and dµR = dx, then hλ has
no singular continuous spectrum for all λ.

5.7 Properties of the fluxes

In this subsection we consider a SEBB model without singular continuous
spectrum, i.e, we assume that spsc(hλ) = ∅ for all λ and ω. We will study the
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properties of the steady currents as functions of (λ, ω). For this reason, we
will again indicate explicitly the dependence on ω.

More precisely, in this subsection we will study the properties of the func-
tion

(λ, ω) 7→ η+
λ,ω(F), (78)

where F is one of the observables Fk or Jk for a given k. We assume that (A1)
holds. For simplicity of exposition we also assume that the functions

gj(t) ≡
∫

X

e−itx‖fj(x)‖2
Kj

dx,

are in L1(R, dt), that ‖f(x)‖K is non-vanishing onX , that the energy densities
̺j(x) of the subreservoirs are bounded continuous functions on X , and that
the functions (1 + |x|)̺j(x) are integrable on X . According to Equ. (69), (71)
and (70), one has

η+
λ,ω(F) = 2πλ4

M∑

j=1

∫

X

‖fk(x)‖2
Kk

‖fj(x)‖2
Kj
|Fλ(x+ i0)|2xn(̺k(x) − ̺j(x)) dx,

where n = 0 if F = Jk and n = 1 if F = Fk.
Obviously, the function (78) is real-analytic on R × R \X and for a given

ω 6∈ X,
η+
λ,ω(F) = O(λ4), (79)

as λ → 0. The function (78) is also real-analytic on R \ {0} × R. For ω ∈ X ,
Lemma 3 shows that

lim
λ→0

λ−2η+
ω,λ(F) = 2π

M∑

j=1

‖fk(ω)‖2
Kk

‖fj(ω)‖2
Kj

‖f(ω)‖2
K

ωn(̺k(ω) − ̺j(ω)). (80)

Comparing (79) and (80) we see that in the weak coupling limit we can
distinguish two regimes: the ”conducting” regime ω ∈ X and the ”insulating”
regime ω 6∈ X. Clearly, the conducting regime coincides with the ”resonance”
regime for hλ,ω and, colloquially speaking, the currents are carried by the
resonance pole. In the insulating regime there is no resonance for small λ and
the corresponding heat flux is infinitesimal compared to the heat flux in the
”conducting” regime.

For x ∈ X one has

λ4|Fλ(x+ i0)|2 =
λ4

(ω − x− λ2ReFR(x+ i0))2 + λ4π2‖f(x)‖4
K

.

Hence,

sup
λ∈R

λ4|Fλ(x+ i0)|2 =



π

M∑

j=1

‖fj(x)‖2
Kj





−2

, (81)
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and so

λ4‖fk(x)‖2
Kk

‖fj(x)‖2
Kj
|Fλ(x+ i0)|2 ≤ 1

4π2
.

This estimate and the dominated convergence theorem yield that for all ω ∈ R,

lim
|λ|→∞

η+
λ,ω(F) = 2π

M∑

j=1

∫

X

‖fk(x)‖2
Kk

‖fj(x)‖2
Kj

|FR(x+ i0)|2 xn(̺k(x) − ̺i(x)) dx. (82)

Thus, the steady currents are independent of ω in the strong coupling limit.
In the same way one shows that

lim
|ω|→∞

η+
λ,ω(F) = 0, (83)

for all λ.
The cross-over between the weak coupling regime (80) and the large cou-

pling regime (82) is delicate and its study requires detailed information about
the model. We will discuss this topic further in the next subsection.

We finish this subsection with one simple but physically important remark.
Assume that the functions

Cj(x) ≡ 2π‖fk(x)‖2
Kk

‖fj(x)‖2
Kj
xn(̺k(x) − ̺j(x)),

are sharply peaked around the points xj . This happens, for example, if all the
reservoirs are at thermal equilibrium at low temperatures. Then, the flux (78)
is well approximated by the formula

η+
λ,ω(F) ≃

M∑

j=1

λ4|Fλ(xj)|2
∫

X

Cj(x) dx,

and since the supremum in (81) is achieved at ω = x + λ2ReFλ(x + i0), the
flux (78) will be peaked along the parabolic resonance curves

ω = xj + λ2ReFλ(xj + i0).

5.8 Examples

We finish these lecture notes with several examples of the SEBB model which
we will study using numerical calculations. For simplicity, we will only consider
the case of two subreservoirs, i.e., in this subsection K = C

2 = C⊕C. We also
take

f(x) = f1(x) ⊕ f2(x) ≡
1√
2

(
f0(x)

0

)

⊕ 1√
2

(
0

f0(x)

)

,

so that

‖f1(x)‖2
K1

= ‖f2(x)‖2
K2

=
1

2
‖f(x)‖2

K =
1

2
|f0(x)|2.
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Example 1. We consider the fermionic quantization of Example 1 in Subsection
3.5, i.e., hR = L2(]0,∞[, dx; C2) and

f0(x) = π−1/2(2x)1/4(1 + x2)−1/2.

We put the two subreservoirs at thermal equilibrium

̺j(x) =
1

1 + eβj(x−µj)
,

where we set the inverse temperatures to β1 = β2 = 50 (low temperature)
and the chemical potentials to µ1 = 0.3, µ2 = 0.2. We shall only consider the
particle flux (n = 0) in this example. The behavior of the heat flux is similar.
The function

C2(x) = 2π‖f1(x)‖2
K1
‖f2(x)‖2

K2
(̺1(x) − ̺2(x)) =

x(̺1(x) − ̺2(x))

π(1 + x2)2
,

plotted in Figure 10, is peaked at x ≃ 0.25. In accordance with our discussion

0 0.25 0.5 0.75 1
0

0.1

0.2

x

C
2

Fig. 10. The function C2(x) in Example 1.

in the previous subsection, the particle current, represented in Figure 11, is
sharply peaked around the parabola ω = x+ 2λ2(1− x)/(1 + x2) (dark line).
The convergence to an ω-independent limit as λ → ∞ and convergence to 0
as ω → ∞ are also clearly illustrated.

Example 2. We consider now the heat flux in the SEBB model corresponding
to Example 2 of Subsection 3.5. Here hR = L2(] − 1, 1[, dx; C2),

f0(x) =

√

2

π
(1 − x2)1/4,
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Fig. 11. The particle flux in Example 1.
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Fig. 12. The rescaled heat flux (weak coupling regime) in Example 2.
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and we choose the high temperature regime by setting β1 = β2 = 0.1, µ1 = 0.3
and µ2 = 0.2. Convergence of the rescaled heat flux to the weak coupling limit
(80) is illustrated in Figure 12. In this case the function C2 is given by

C2(x) =
2

π
x(1 − x2)(̺1(x) − ̺2(x)),

and is completely delocalized as shown in Figure 13.

−1 0 1

−2

0

2

x 10
−3

x

C
2

Fig. 13. The function C2(x) in Example 2.

Even in this simple example the cross-over between the weak and the
strong coupling regime is difficult to analyze. This cross-over is non trivial, as
can be seen in Figure 14. Note in particular that the function λ 7→ η+

λ,ω(F) is
not necessarily monotone and may have several local minima/maxima before
reaching its limiting value (82) as shown by the section ω = 0.5 in Figure 14.

Example 3. In this example we will discuss the large coupling limit. Note that
in the case of two subreservoirs Equ. (82) can be written as

lim
|λ|→∞

η+
λ,ω(F) =

1

2π

∫

X

sin2 θ(x)xn(̺1(x) − ̺2(x)) dx, (84)

where θ(x) ≡ Arg(FR(x+i0)). Therefore, large currents can be obtained if one
of the reservoir, say R1, has an energy distribution concentrated in a region
where ImFR(x + i0) ≫ ReFR(x + i0) while the energy distribution of R2 is
concentrated in a region where ImFR(x + i0) ≪ ReFR(x+ i0).

As an illustration, we consider the SEBB model corresponding to Example
3 of Subsection 3.5, i.e., hR = L2(] − 1, 1[, dx; C2) and

f0(x) =

√

1

π
x(1 − x2)1/4.
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Fig. 14. The heat flux in Example 2.

From Equ. (55) we obtain that

FR(x + i0) = −x
(

x2 − 1

2

)

+ ix2
√

1 − x2.

Hence,
sin2 θ(x) = 4x2(1 − x2),

reaches its maximal value 1 at energy x = ±1/
√

2.
We use the following initial states: the first subreservoir has a quasi-

monochromatic energy distribution

̺1(x) ≡ 3 e−1000(x−Ω)2 ,

at energy Ω ∈ [−1, 1]. The second subreservoir is at thermal equilibrium
at low temperature β = 10 and chemical potential µ2 = −0.9. Thus, ̺2 is
well localized near the lower band edge x = −1 where sin θ vanishes. Figure
15 shows the limiting currents (84) as functions of Ω, with extrema near
±1/

√
2 ≃ ±0.7 as expected.

Another feature of Figure 15 is worth a comment. As discussed in Example
4 of Subsection 3.5, this model has a resonance approaching 0 as λ → ∞.
However, since sin θ(0) = 0, the large coupling resonance near zero does not
lead to a noticeable flux enhancement. This can be seen in Figure 15 by
noticing that the fluxes at the resonant energy Ω = 0 are the same as at the
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Fig. 15. The limiting particle and heat fluxes in Example 3.

band edges Ω = ±1. It is a simple exercise to show that this phenomenon is
related to the fact that the resonance pole of Fλ approaches 0 tangentially to
the real axis (see Figure 9).

In fact, the following argument shows that this behavior is typical. As-
sume that FR(z) has a meromorphic continuation from the upper half-plane
across X with a zero at ω ∈ X (we argued in our discussion of Example 3 in
Subsection 3.5 that this is a necessary condition for ω to be a large coupling
resonance). Since ImFR(x + iy) ≥ 0 for y ≥ 0, it is easy to show, using the
power series expansion of FR around ω, that (∂zFR)(ω) > 0. Combining this
fact with the Cauchy-Riemann equations we derive

∂xReFR(x+ i0)|x=ω > 0, ∂xImFR(x+ i0)|x=ω = 0,

and so
sin θ(ω) = 0.

Thus, in contrast with the weak coupling resonances, the strong coupling
resonances do not induce large currents.
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