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Abstract

We study spectral properties of Pauli-Fierz operators which are commonly used
to describe the interaction of a small quantum system with a bosonic free field. We
give precise estimates of the location and multiplicity of the singular spectrum of
such operators. Applications of these estimates, which will be discussed elsewhere,
concern spectral and ergodic theory of non-relativistic QED. Our proof has two
ingredients: the Feshbach method, which is developed in an abstract framework,
and Mourre theory applied to the operator restricted to the sector orthogonal to
the vacuum.
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1 Introduction

In this paper we study spectral properties of a certain class of self-adjoint operators which
appear in non-relativistic physics. They are commonly used to describe the interaction
of a small quantum system (an “atom”) with a bosonic free field (“radiation” or a “heat
bath”). We will refer to them as Pauli-Fierz operators (see [Bl, BFSS, DG, PF)).

In a few words, the main result of our paper can be described as follows: the predictions
of the second-order perturbation theory for embedded eigenvalues of a large class of Pauli-
Fierz operators are correct for a sufficiently small coupling constant. A large part of our
argument is abstract and uses only certain structural properties of Pauli-Fierz operators
which are common to many different problems of mathematical physics. Therefore we
would like to devote the first part of the introduction to a description of the general
structure of our results and arguments. Only afterwards will we explain them in the
context of Pauli-Fierz operators.

1.1 The conjugate operator method

Let H be a self-adjoint operator and © a fixed open subset of the real line. First, we
would like to describe two well-known methods used in the study of the spectrum of the
operator H inside ©: the analytic deformation method and Mourre theory. These two
methods have a lot in common and can be viewed as two versions of one method that we
will call the conjugate operator method. Although in this paper we will use only Mourre
theory, it is helpful to keep in mind the intuition derived from the analytic deformation
method.

In what follows o(B) will denote the spectrum of the operator B and o,,(B) will
denote its pure point spectrum.

(1) The analytic deformation approach. One considers a family of operators
H() := ¢S He 5, (1.1)

where S is an appropriately chosen self-adjoint operator (sometimes called a conjugate
operator). The basic assumptions that one imposes on H and S are the following:

(a) The family H () is analytic in some strip [Im| < a.

(b) For Im¢ < 0, the essential spectrum of H (&) “moves down” below ©, uncovering a
region below the real axis, which belongs to the unphysical sheet of the complex plane.

In the uncovered region, H (&) may have some discrete eigenvalues. One can show that
these eigenvalues do not depend on & and that the eigenvalues of H () contained in © C R
coincide with o,,(H) N ©. The non-real eigenvalues of H () are called resonances. All
these eigenvalues can be studied by standard methods of perturbation theory developed
for isolated eigenvalues.



The analytic deformation method gives the following practical criterion for the study
of the spectral properties of H: If for Im¢ < 0 the deformed operator H () has no eigenval-
ues in ©, then H has no pure point spectrum in ©. Even if H () has some real eigenvalues
in ©, the method allows one to exclude the singular continuous spectrum inside this set.

(2) Mourre Theory and Limiting Absorption Principle. This is an infinitesimal
version of the analytic deformation approach. Probably the most advanced version of
Mourre theory can be found in [BG, BGS]. Below we briefly describe the Mourre theory
following essentially [BG].

One again considers a family of operators (1.1), where now & is restricted to the real
line. Let n =10,1,..., 0 < # <1 and v = n + #. The basic assumptions of the Mourre
theory are:

(a,) The nth derivative of £ — (z — H()) ! is §-Holder continuous.
(b) (The Mourre estimate). For any x € © there exists an open interval I 3 x, a positive
number Cy > 0 and a compact operator K such that

1,(H)i[S, H|1;(H) > Col;(H) + K. (1.2)

(Here 1;(H) denotes the spectral projection of H onto I.)

If (a,) holds with v = 1, (b) and some other technical assumptions hold, then one can
show that o,,(H) N O is a discrete set which consists of eigenvalues of finite multiplicity.
If in addition v > 1 and p > 3, then for z € ©\ 0,,,(H) one can establish the existence of

(S) (x40 — H)HS)™ := lim(S) " (x + iy — H)~"(S)~*. (1.3)

y40

((S) denotes (1 + S2)2.) Note that (1.3) implies the absence of singular continuous
spectrum in ©. Moreover, if v < p+ 3 then the function (1.3) is C"~1(©\ 0,,,(H)) and its
(n — 1)st derivative is #-Holder continuous. Statements similar to the existence of (1.3)
usually go under the name of the Limiting Absorption Principle.

The Mourre method in the form described above does not give much information about
the location and the multiplicity of o,,(H). However, if for all x € © there is no compact
operator K in the Mourre estimate (1.2), then o,,(H) N © is empty.

The two methods described above are complementary. The analytic deformation
method typically yields stronger results and allows study of resonances, which are of
considerable physical interest. This method, however, is usually applicable to a restricted
class of operators that meet the analyticity condition. The Mourre theory approach is of
much wider applicability but it yields weaker results. In particular, resonances cannot be
studied with this approach.

The analytic deformation technique was started in [AC, BC]. For more information
about the early literature on this subject see [Si, RS4].



The Mourre theory originated in [Mo] and was further developed in [ABG, AHS, BG,
CFKS, FH, JMP, PSS].

Both these methods were first applied to Schrodinger operators where S was the
generator of dilations. The generator of dilations is often applicable in situations where
the spectrum of the operator covers the half-line. The subset of the lower half-plane
uncovered by the analytic deformation in this case is the wedge —a < argz < 0.

Another choice of S that can be found in the literature is the generator of translations.
With such S, the set uncovered by the analytic deformation is the strip —a < Imz < 0.
This choice was made in works devoted to the Stark operator. A similar choice (the
generator of translations in energy) was made in [JP1, JP2] in the context of Pauli-Fierz
operators, and we will keep the same S here.

Our treatment of the Mourre theory follows [BG]. One of the differences between our
approach and [BG] is that we use weighted spaces instead of Besov spaces. This makes
our treatment somewhat less general, but also more elementary than that of [BG]. There
are some other differences, due to the special properties of Pauli-Fierz operators, which
we will describe later.

1.2 The Feshbach Method

The structural properties of Pauli-Fierz operators which will play an important role in
our paper can be described as follows. They are self-adjoint operators of the form

H = Hy, + )\‘/7
on a Hilbert space H. This Hilbert space has a distinguished decomposition
H=H &H. (1.4)

With respect to this decomposition, the full operator can be written as a 2 X 2 matrix

o HvV HVV (1 5)
- HY HY |’ ’

We will use a similar notation for other operators, for instance,

N »

We assume that the “free operator” has the form

o
Hfr: )

0 HY



and that the perturbation has the form

0 Vv
v=| . (1.8)
VVV VVV

To explain the Feshbach formula in its simplest form, we will assume that z ¢ o(H"Y).
We remark that this is not the most interesting case in the context of our paper, since
in our case o(H"Y) = R and we want to study embedded eigenvalues. However, the
assumption z ¢ o(H") allows us to explain the Feshbach method with the least amount
of technical assumptions.

For z ¢ o(H") we introduce the following objects:

W.(z) = HY(21"Y — HV) 'H",
(1.9)
Gy(z) =21V — HY —W,(2).
In the physics literature, the operator W,(z) is sometimes called the self-energy. We
propose to call Gy(z) the resonance function.

One can show that z € o(H) iff 0 € 0(Gy(2)). Moreover, if 0 & 0(G(2)), then one can
express the resolvent of H in terms of the resolvent of H" with the help of the following
identity:

(Z _ H)—l — (lvv + (Z].W _ HW)—IHVV) G—l(z) (IVV + HVV(Z]_W _ HW)—I)

v

(1.10)
+(217V — HV) L.
We call (1.10) the Feshbach formula. This formula was discovered independently by many
physicists and mathematicians and it is known under a variety of names — the Grushin,
Krein, Livshic formula. In the physics literature, where it is especially widely used and
known (see for instance [CT]), it is usually called the Feshbach formula, and we keep this
name. It was used recently in a context similar to ours in [BFS1, BFS2]. We refer the
reader to [BFS1, How, MeMo| for more information on the literature about this formula.

1.3 Combining the Feshbach Method with the Mourre Theory

Next we want to describe how we study o,,(H) embedded in o(H) with the help of the
Feshbach formula. To that end we study the boundary values of (z — H)™! at the real
axis using the expression (1.10). We choose an operator S on H of the form

5:[8 S(i_vl (1.11)

Let us list the most important additional properties of H and S that we use in our analysis.
(a},) The family H(£)" satisfies an assumption analogous to (a,).
(b") The following global Mourre estimate holds:

i[S™,H"™] > C, > 0. (1.12)



(¢) V¥(1 + |S])*~2 is bounded.

Using (al,) with v > 1, (b’) and some additional technical assumptions, we develop the
Mourre theory for HY, which implies that H"" satisfies the Limiting Absorption Principle
uniformly on the whole real line. More precisely, for p > % we prove that the limit

(ST ((x +10)17 — H™) H{(ST) + = 1yiig<sw>*“((x +iy) 17 — H™)"H(S™) 7 (1.13)
exists and is uniformly bounded in x and A\. Moreover, if v > u+ % =n+ 1+ 60 for some
0 < @ < 1 then the function (1.13) is in C""'(R) and its (n — 1)st derivative is §-Holder
continuous.

As we have mentioned before, our treatment of the Mourre theory follows [BG]. Nev-
ertheless, there are some important differences. First, the spectrum of H'Y covers the
whole real line while [BG] make the assumption that operator has a spectral gap. More
importantly, in our case the commutator i{H", S*] is not bounded relatively to H". This
leads to some difficulties related to the infrared problem of QED which require delicate
arguments.

If (al,), (b") and (¢’) with v > 1 hold, one shows, using (1.13), that the limit

Wy (xz +10) := lim W, (z + iy)
y40

exists and satisfies appropriate regularity properties. Now, it follows from the Feshbach

formula that if x € R and 0 € o(Gy(z 4 10)), then the Limiting Absorption Principle for

H holds. Moreover, we can show that 0 € ogisc(Gy (2 +10)) implies x € o,,(H) and that

the multiplicity of 0 as the eigenvalue of G (z +i0) is equal to the multiplicity of x as the

eigenvalue of H. Thus, the study of o,,(H) can be reduced to the study of G, (z + i0).
An additional property useful in our analysis is the bound

(SY (w410 — HY)"HS) ™ — (S)™H(x 4+10 — HYY)"H{S)™* = O(\*), (1.14)

where Kk = ”T_l These results together with the Feshbach formula give us a lot of control
over the resolvent of the full operator H. In particular, we are able to describe the ap-
proximate location of the pure point spectrum, to give sharp estimates on its multiplicity
and to rule out the singular continuous spectrum.

1.4 Main results

As we have said before, our results concern a certain class of Pauli-Fierz operators. While
we still postpone the description of these operators, let us mention that for our purposes
their most important properties are the following: They are self-adjoint operators of the
form described in (1.5), (1.7), (1.8). In addition, they satisfy a certain hypothesis, called
S(v), which resembles the assumption (a,) of the Mourre theory.



We introduce the following auxiliary object:
w(z) == V(21" — HZ) 'V,

Note that A?w(z) is the second-order approximation to the self-energy W, (z).

If v > 1, it follows from the Mourre theory for HY that w(z) has the boundary values
on the real line which we denote by w(x+10). It is easy to see that w(z+1i0) is a dissipative
operator, that is, Imw(z +10) < 0.

Let us describe the main results of our paper. Let H be a Pauli-Fierz operator satis-

. . .« . . . _1
fying appropriate conditions. We assume S(v) with v > 1 and set x = “=.

(a) Our first result is Theorem 6.2. In this theorem we show that outside of an O(\?)
neighborhood of o(H""), the spectrum of H is purely absolutely continuous and that the
Limiting Absorption Principle holds.

(b) Let k£ be an isolated eigenvalue of HYY. Theorem 6.3 describes the structure of the
spectrum of H in an O()\?) neighborhood of k. Let p; be the projection of HYY onto k.
Set

wy = prw(k +10)pg. (1.15)

It is easy to see that this operator is dissipative. If
o(wg) NR =10, (1.16)

then we will say that the Fermi Golden Rule assumption for k£ holds. Under this assump-
tion we can show that the spectrum of H is purely absolutely continuous in a neighborhood
of k£ and that the Limiting Absorption Principle holds.

If the Fermi Golden Rule assumption fails, we show that outside an O(\?*™*) neigh-
borhood of k + A?c(wy), the spectrum of H is purely absolutely continuous and that the
Limiting Absorption Principle holds.

(c) If the Fermi Golden Rule assumption fails and m € ogis(wr) N R, Theorem 6.4
describes the spectrum of H in a neighborhood of k£ 4+ A>m where, by second-order per-
turbation theory, we can expect some eigenvalues of H. Let p;, be the projection of
wy, onto m (we will prove that this projection is orthogonal). We know from (b) that
opp(H) around & + A?m is located in an O(A?***) neighborhood of £ + A\*m. In Theorem
6.4 we show that if S(v) holds with v > 2, then the dimension of this point spectrum is
not bigger than dim py, ,,. Moreover, the Limiting Absorption Principle holds away from
Opp(H).

To summarize, we show that isolated eigenvalues of HYY, which may give rise to
a cluster of eigenvalues of the size O(A\?), split into subclusters of size O(A***) with
the multiplicities estimated from above by the predictions of second-order perturbation
theory. Outside these eigenvalues, the Limiting Absorption Principle holds. Note that as
v — 00, k — 1, as expected from the analytic case.



Our results in (b) and (c) hold even if k£ has infinite multiplicity (this situation is
typical for Pauli-Fierz Liouvilleans which arise in quantum statistical mechanics).

Our approach is reminiscent of what can be found in the early literature on stationary
scattering theory, eq. in [Fr|. It has a lot in common with typical presentations of the
perturbation of embedded eigenvalues found in physics textbooks [He]. The Fermi Golden
Rule idea goes back to Dirac [Di] (for the history of the name see [Hal, Section I.1.5).

1.5 Pauli-Fierz operators

In this section we describe the operators that we study in our paper. They belong to the
class of the so-called Pauli-Fierz operators, which are often used in quantum physics as
generators of approximate dynamics of a (usually small) quantum system interacting with
a free Bose gas. The class of operators that we study is quite abstract, with few specific
assumptions; physical examples of Hamiltonians and Liouvilleans belonging to this class
will be given in Sections 1.6-1.9.

Suppose that this small system is described by a Hilbert space K and a self-adjoint
Hamiltonian K. The one-particle bosonic space is denoted by h and the one-particle
energy operator by w. After the second quantization, the bosons are described by the
symmetric Fock space I'(h) and their Hamiltonian is dI'(w). The Hilbert space of the
composite system is H := K @ I'(h). The free Pauli-Fierz operator has the form

Hy=K®1+1®dl'(w). (1.17)
The interacting Pauli-Fierz operator is given by
H = Hy + AV, (1.18)

where V' = p(a), A is a real constant and ¢(«) is the field operator corresponding to
a € B(K,K®h).

We remark that from the physical point of view one might wish to consider a more
general class of operators which also have a quadratic term in the field. In fact, it is for
reasons of space that we have decided to discuss the linear case only — our techniques
easily extend to couplings which are quadratic in the field.

In the next section we will say a few words on the physical origin of Pauli-Fierz
operators. Let us stress that they are interesting also from the purely mathematical point
of view and they have been studied (under various names) by rigorous methods by many
authors, eg [AH, Ar, BFS1, BFS2, BFSS, BS, HuSp1, HuSp2, JP1, JP2, Sk, DGJ.

Let us now state the most important additional assumption that we impose on the
Pauli-Fierz operators in our paper. We suppose that, for some auxiliary Hilbert space g,

h = L*(R) ® g, and w is the multiplication operator by w € R. (1.19)



The reader may find it surprising that the bosonic energy is unbounded both from
below and above. Further on we will explain how usual physical systems with the energy
bounded from below fit in our framework.

We split the Hilbert space into H = HY & H", where H¥ := K ® T'y(p) is the vacuum
sector. We will call HY := (H")* the radiation sector. It is easy to see that the operators
H, Hy and V are of the form (1.5), (1.7), (1.8). Note in particular that HYY = K.

The conjugate operator S, which plays the crucial role in the Mourre theory, is chosen
to be S :=1® dI'(s), where s = —id,, acts on . Note that in the absence of interaction
we have

i[S, Hy,| = N,
where N is the number operator. Therefore, on H¥ we have a global Mourre estimate:
i[SY™, H] = NV > 1.
A similar estimate holds in the interacting case: for sufficiently small A, we can find
C > 0 such that
i[S™,H™] > CyN™". (1.20)

This relation will be the initial building block in our development of the Mourre theory.

1.6 From nonrelativistic QED to Pauli-Fierz Hamiltonians

In this section we briefly describe how Pauli-Fierz operators arise in physics. We follow
[PF, CT, RZ, BFS1].

We start from the Hamiltonian of nonrelativistic QED. Suppose that we are given
a system of N nonrelativistic particles. Assume that the ¢th particle has mass m; and
charge distribution p;(x). (If we suppose that the particles are pointlike we would obtain
ultraviolet divergences. A smeared out charge distribution serves as an ultraviolet cut-
off.) Suppose that the particles are in an external electrostatic potential ® and interact
with photons.

The full system is described by the Hilbert space L?(R3*") ® T'(R? ® C?) with the
Hamiltonian equal to

H = ;2::1 ((2mi)_1(Dz‘ — Ay (2:))* + Qz(fvz)) + 1<i§,<NQij($i — ;) (1.21)
£ 5 fay(k)ay (k) Kldk, - |

s=1,2
where

Qi(x
Qij(ri — x;

Az

= [ pi(z — y)®(y)dy,

= | [ dydy,

= ¥ (2n) 2 [(2k) 26, (k) (€, (k) + 7 ay (k))dk,

s=1,2

)
)
)
) = J Az —y)pi(y)dy,

A, (z

10



and €,(k) are polarization vectors (an orthogonal basis of the orthogonal complement to
k inside R?).

Let
N
Hmatter = E ((2mz)_1Dz2 + Qz(l'l)) + E QZ](IL'Z - l‘j)
! 1<i<j<N (1.22)
Honion = % J a3(K)a, (k) KIdE.

Suppose that Hp.ier has discrete eigenvalues at the lower part of its spectrum. Let K C
L*(R3N) be the subspace spanned by the eigenvectors of the n lowest lying eigenvalues
of Hyaster, and let P be the orthogonal projection onto ;. Set Ky := PiHater- 1f One is
interested in the physical processes that involve only bound states of the matter, then it
is natural to restrict states of the system to the subspace

Ko I'(L*(R?) ® C?). (1.23)
In this approximation the dynamics is generated by the following effective Hamiltonian:
H; := PHP; = K1 + Hppoton + V1 + Vo, (1.24)
where
Vi = (g:(k)as (k) + gs(~k)as(k))dk
Vo =S [ J (9(ks, k2)as (ka)a (k2) + g(=hn, —hz)as (i )as (ko)
+2g(ky, —ka)at (k1 )as (ko) ) dydy,

gs(k) = (2m;)~" pL‘)|PesD ek Py,

— 1 pi(k1) pi(k2) i(k1+k2)x
g(k‘l,kg) 21:(27711) \/2‘71\/2|T2Pe P[.
One often drops the higher order term V5 and keeps just Vi. Without V5, the Hamiltonian
Hi has the form
Hy= K@ 1+ 1@ d(k) + [(ar(k)a” (k) + of (K)a(k)dk.

and this operator belongs to the class of Pauli-Fierz operators.
An alternative strategy, due to Pauli-Fierz, is also commonly used to approximate the
Hamiltonian (1.21) [PF, BFS1]. First one uses the unitary transformation

U = exp (i > xiApi(O)),
obtaining

UHU* = "k + Hopoton

0i (k)i
+ S (k)5 (pkyat () + pul—k)a(k))dk 4,

11



where - - - denotes the terms that depend on A(z;) — A(0). Let Ky € L2(R3*Y) denote the
subspace spanned by the eigenvectors of the n lowest lying eigenvalues of

Hmatter,II = Hmatter + / ‘ Z ﬁz(k)xz de

and P the projection onto Kyr. Set Ky = PirHpagteri- Then one can argue that one
should use the Hilbert space
Ku @ T(LA(R?) @ C?) (1.25)

and the following effective Hamiltonian:

Hy .= PhUHU* Py = Ky + Hphoton
4B J ey B (ko (8) + p(—R)a(k)) .

where

B = ZPIIJ:@'PII-
Again, (1.26) has the form
Hﬁ:Kh®1+1®dmmp+/mﬂmwwyu%wmwmk

and belongs to the class of Pauli-Fierz operators.
The advantage of Hyy over Hj is a milder infrared behavior of the interaction:

ar(k) ~ Clk|™2,  au(k) ~Clk|Z, |k| — 0.

For further use let us note that the one photon space h = L?*(R3) ® C?, by using polar
coordinates, can be identified with L?(R,) ® g, where g = L?(S5?) ® C? and S? denotes
the unit sphere. After this change of coordinates the photon energy becomes the operator
of multiplication by @ € R;. The infrared behavior of the interaction is then

(@) ~ CoT,  ag(@) ~CoT, @& — 0. (1.27)

Clearly, the operators (1.24) and (1.26) have a positive one-photon energy and do
not satisfy the assumption (1.19). We will explain below several different means by which
such operators can be naturally fit into the class of operators which satisfy the assumption
(1.19).

Finally, we mention that the Pauli-Fierz operators also arise in solid state physics,
where they are used to describe the interaction of phonons with a quantum system with
finitely many degrees of freedom. In this case, the form of the function « is dictated by
the particular physical situation one wishes to describe and to a large extent o can be an
arbitrary function [LCD].

12



1.7 Pauli-Fierz Liouvilleans

The most common description of a quantum system is based on the so-called Schrodinger
picture. Pure states are described by rays in a Hilbert space H and the generator of
dynamics is a self-adjoint operator H called a Hamiltonian. Hamiltonians describing
realistic quantum systems are usually bounded from below.

It is often advantageous to use the so-called Heisenberg picture. In this picture, the
generator of the dynamics is sometimes called Liouvillean and the states (including mixed
ones) are described by positive Hilbert-Schmidt operators, see [Ha, HHW] for details. The
space of Hilbert-Schmidt operators is unitarily equivalent to H ® H and the Liouvillean
is unitarily equivalent to

Li=H®1-1®H (1.28)

(the bar denotes complex conjugation). In the sequel we will distinguish between the
Hamiltonian H, which is bounded from below, and the operator Ly, which we will call
the “zero temperature Liouvillean”.

The above description of the Liouvillean formalism is actually valid only at the zero
temperature. If we deal with an infinitely extended system at a positive temperature,
it is appropriate to use a more sophisticated formalism, which involves von Neumann
algebras in standard forms and the Araki-Woods representation of CCR. This approach
is explained in [AW, BR, JP1, JP2] and it will also be the subject of our forthcoming
paper [DJP].

Let us briefly explain the basic ideas related to a Pauli-Fierz system at temperature
T > 0. (For simplicity, in the sequel we will drop the dependence on the spin of the
photon). Instead of the Hilbert space (1.23) or (1.25) one should use a larger Hilbert
space:

K ®K e T'(L*(R?) & L2(R3)) (1.29)

(K and L?(R3) denote the complex conjugate of the spaces K and L?*(R?)). The L*(R?)
part of the Fock space corresponds to the “excitations” over the Gibbs state, and the
L2(R3) part corresponds to the “holes”. The former will be described by creation/annihilation
operators denoted by a; (k) and a;(k) and the latter will be described by af(k) and a.(k).
Let p(k) := (e®/T — 1)~' for T > 0 and p = 0 for T = 0. The function p(k) (the
Planck law) describes the momentum distribution of the Bose gas in thermal equilibrium
at temperature 7'. The Liouvillean at temperature 7' corresponding to the Pauli-Fierz

Hamiltonian (1.24) or (1.26) is equal to

LT = Lfr + >\VT (130)

13



where L
Ly =K®191-19K®1

11010 [a(k)ak)|kldk— 11 [ (k)a(k)|k|dk

Vi ::fa(k)®1®(,/1+p af (k) + /p(k)ax (k) ) dk
+ar (k) @1 (1 + plk +/p(k)az(k))dk
—[1®a (v )+ /1 + p(k)az(k))dk

(k) @ (\/p(k)ai(k
—J1ea k) ® (yokaf (k) +/1+ p(k)arw))dk.

For T" > 0, the form of the Liouvillean is dictated by Tomita-Takesaki modular theory
[BR, JP2, DJP], while for T = 0, Ly reduces to the zero-temperature Liouvillean Ly. One
can use polar coordinates in both copies of R? appearing in (1.29), as described at the
end of the last subsection, and then “glue” them together using the exponential law for
bosonic systems, see [JP1, JP2, DJP] for details (for an example of how is this “gluing”
done see Section 5.2 below). Then (1.29) becomes K ® K ® ['(R ® g) and the Liouvillean
(1.30) becomes a Pauli-Fierz operator satisfying the condition (1.19). Thus the main
results of our paper can be applied to Pauli-Fierz Liouvilleans at temperature T > 0
(including the case of T'=0). We will indicate below the main ideas of this application.

1.8 Return to equilibrium

One says that a quantum dynamical system has the property of return to equilibrium if
all normal states converge to a unique stationary state as t — 400 (see eg [Rol, Ro2, JP2,
JP3]). If the stationary state is faithful then this property holds if the Liouvillean has no
singular spectrum except for a simple eigenvalue zero [JP2]. The results of our paper can
be used to prove the return to equilibrium for a large class of Pauli-Fierz systems in the
whole range of temperatures 7' > 0, uniformly in the coupling constant. The details of
this application require use of techniques of algebraic quantum statistical mechanics and
will be given in our forthcoming paper [DJP], so below we just briefly indicate some of
the main ideas involved in this application.

Suppose that the operator K has pure point spectrum. Then the pure point spectrum
of Lg consists of differences of eigenvalues of K. In particular, 0 is an eigenvalue of
degeneracy at least dim IC. All these eigenvalues are embedded in the continuous spectrum
of Ly and one may ask how many of them survive perturbation V7.

If the temperature 7' is positive, then the general theory of perturbations of KMS states
due to Araki guarantees that the perturbed Liouvillean L has at least one eigenstate
with eigenvalue zero — the vector representative of the KMS state of the perturbed system
(see eg [BR]).

It has been proven in [AH, BFSI1] (see also [DuSp, Spl, Sp2], and [BFS3] for the
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physically realistic model (1.21)) that a Pauli-Fierz Hamiltonian H has a ground state.
This implies that the zero temperature Liouvillean Ly has an eigenvalue 0.

Thus for any T" > 0 we know that 0 is an eigenvalue of the perturbed Liouvillean Ly.
This is reflected by the fact that the operator wy, defined for Ly by (1.15), always has a
zero eigenvalue.

Suppose that we assume that 0 is a simple eigenvalue of wq and for any k& # 0, the op-
erator wy has spectrum away from the real line. (These assumptions can be shown to hold
generically [Fri, Sp3]). Suppose that the assumptions of Theorem 6.4 are satisfied. Then
this theorem implies that, for a small coupling constant, Ly has no singular spectrum,
except possibly for a simple eigenvalue at zero. But since we know that the KMS/ground
state survives as a bound state of Ly, we conclude that the singular spectrum of Ly
consists exactly of a simple eigenvalue zero.

Under appropriate conditions on the interaction, the assumptions of Theorem 6.4 can
be checked uniformly in the temperature. In this case, we obtain a proof of the return to
equilibrium property for Pauli-Fierz systems with a small coupling constant uniformly in
the temperature 7" > 0.

If o has an analytic continuation to a strip along the real axis then there exists an
alternative proof of the return to equilibrium based on the analytic deformation method
[JP1, JP2]. In many respects, this method yields stronger results than the Mourre theory.
However, the analyticity condition this method requires is never satisfied in the zero-
temperature case. Moreover, the analytic deformation method of [JP1, JP2] works for
|A| < A(T'), where A(T) L 0 as T | 0, and so this method does not yield the return to
equilibrium property uniformly in the temperature 1" > 0.

1.9 “Gluing non-physical free bosons”

Recall that Hamiltonians H are related to zero-temperature Liouvilleans Lq by the formula
(1.28). Therefore, if we study properties of Ly, as described in the previous section, we
can learn about some of the properties of H. For instance, L, satisfies dim 1(o}(Lg) =1
iff H satisfies dim 1PP(H) = 1.

There exists, however, a more direct method of studying spectral properties of Pauli-
Fierz Hamiltonians by applying the results of our paper. This method is described in
detail in Section 5.2. Its main idea is to add a non-physical copy of the free bosonic
field. In this way, the one-particle space becomes isomorphic to L?(R) ® g. After this
modification we obtain an extended Hilbert space and an extended Pauli-Fierz operator,
which satisfies the condition (1.19).

The pure point and singular continuous spectrum of the Pauli-Fierz operator do not
change after gluing the non-physical bosons. Therefore, the spectral results we prove for
the extended Pauli-Fierz operator remain valid for the Pauli-Fierz Hamiltonian.

Consider a Pauli-Fierz Hamiltonian with positive boson energy, where «(&) behaves
as @° around zero. It is easy to see that, after gluing the nonphysical bosons, Hypothesis
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S(v) is satisfied with v > 6 + 5. Therefore, Theorems 6.2 and 6.3 hold for § > 3 and
Theorem 6.4 holds for 6 > %

By (1.27), Theorems 6.2 and 6.3 do not cover the effective Hamiltonian H; of (1.24)
but apply to Hy of (1.26). Unfortunately, Theorem 6.4 does not cover either Hy or Hyy.

1.10 Comparison with the literature

In the literature one can find other applications of the Mourre theory to zero-temperature
Pauli-Fierz operators. Probably the earliest is contained in [HuSp2|, where the massive
radiation field is considered. The conjugate operator that is used there is the second
quantization of the generator of translations in the energy variable. However, unlike in
our paper, in [HuSp2] the energy variable is restricted to the positive half-line, hence this
operator is not self-adjoint.

The massless case, which is physically more important and technically more demand-
ing due to infrared difficulties, was first considered in [BFS1]. This paper contains several
interesting results. One of them is based on the Mourre theory using the second quantiza-
tion of the generator of dilations, which is applied to study the spectrum of H in regions
away from o(K).

Concerning the Mourre theory in the massless case, the first relatively complete results
are presented in [Sk|. This work uses the same non-self-adjoint S as [HuSp2], which is
however approximated with a sequence of self-adjoint operators.

Another choice of S, a suitably modified second quantization of the generator of di-
lations, is used in [BFSS]. Note that the generator of dilations should in principle allow
one to treat perturbations with a more singular infrared behavior than the generator of
translations.

All of the above papers, including ours, give results which are valid for a small coupling
constant. All values of the coupling constant are covered in [DG], where the Mourre theory
for a massive radiation field is developed. Unfortunately, the techniques of [DG] do not
seem applicable to the massless case considered here.

Let us remark that in all of the above works the Mourre theory is studied on the whole
Hilbert space. The distinct feature of our method is that we apply first Mourre theory
to H" and then use the Feshbach method. We believe that this approach is natural
and that it gives more precise information on the location and multiplicity of embedded
eigenvalues.

Among other works related to our paper we mention those in which the complex
deformation technique is applied to Pauli-Fierz operators. In the case of bosons with a
positive mass the complex scaling was first used in [OY].

In the case of massless bosons, the complex scaling method was studied by [BFSI,
BFS2]. These papers contain a technique, which the authors call the renormalization
group, that is used to study the properties of the spectrum of the deformed operator.
Among the results of the paper one can find the proof that eigenvalues satisfying the
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Fermi Golden Rule turn into resonances, under the assumption of the dilation analyticity.
In [BFS3] the complex scaling has been applied to the full Hamiltonian (1.21).

The papers [JP1, JP2] are the main predecessors of our work — these works treated
positive temperature Liouvilleans, introduced the method of gluing negative and positive
energy bosons and the analytic deformation generated by the second quantization of the
translation operator.

Some of the results of our paper are quite general. These results concern spectral
analysis of a relatively arbitrary linear operator and are related to the Feshbach method.
Similar ideas can be found throughout the literature, notably in [BFS1, BFS2, GGK]. We
believe that these results are of interest outside of the context of Pauli-Fierz operators. In
particular, the following of our general results appear to be new: Proposition 3.2 about
real eigenvalues of a dissipative operator, Proposition 3.7 and Theorem 3.8 about the
Feshbach method for embedded eigenvalues, and Theorem 3.12 and Corollary 3.13 about
estimating the number of embedded eigenvalues.

Almost one year after the original version of our paper was circulated, a very interest-
ing, closely related paper appeared [BFS4]. This paper describes a proof of the return to
equilibrium property for a certain class of Pauli-Fierz systems uniformly in temperature
for a small coupling constant. As we mentioned above, a similar result (for a somewhat
different class of interactions) is a relatively easy consequence of the main result of our
paper and will be the subject of our forthcoming paper. We remark that the methods
of [BFS4] are completely different from ours. One of the main features of [BFS4] is the
use of the generator of dilations, whereas in our approach the major role is played by the

generator of translations. We will compare these two methods in our forthcoming paper
[DJP].

1.11 Organization of the paper

The paper is organized as follows.

In Chapter 2 we introduce notation and, for reference purposes, state some general
facts about operators in Hilbert spaces.

In Chapter 3 we describe some properties of self-adjoint operators in a Hilbert space
decomposed as a direct sum of two Hilbert spaces. They are centered around the Feshbach
formula. This formula leads to certain identities for the projections onto eigenvectors of
the operator H, which we found appealing and useful in our analysis. It also leads to
certain precise estimates on the number of eigenvalues of the operator H. In spite of the
fact that they are general and simple, some of the results of Chapter 3 appear to be new.
Problems involving embedded eigenvalues arise naturally in spectral geometry, number
theory and mathematical physics, and we hope that some of the results of this chapter
will find applications outside of our work.

We present in a parallel way results concerning the spectrum of H outside of o(H"Y)
and the embedded point spectrum of H inside o(H"). The results about the spectrum
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outside o(H"") are less technical and can be partly found in the literature, eg. in [BFS1].
They are not used in the remaining part of our paper. On the other hand, the more
difficult results concerning the embedded spectrum inside o(H") are among the most
important tools of our paper. We believe that it is helpful for the reader to compare these
two types of results.

In Chapter 4 we review the basic notions of quantum field theory. This chapter makes
the paper essentially self-contained.

In Chapter 5 we introduce Pauli-Fierz Hamiltonians and discuss some of their basic
properties.

The main results of the paper are stated in Chapter 6.

Chapter 7 describes the proof of the Limiting Absorption Principle for the operator
H™. As we have stressed before, our proof follows the arguments of [BG]. In Section 7.1
we derive a bound on the boundary value of the resolvent of H"Y, which is the basic ingre-
dient of the Limiting Absorption Principle, following essentially the original arguments
of [Mo] and [PSS], with modifications due to [BG]. The main additional difficulty is the
infrared problem, which we handle following [JP1]. In Section 7.2 we study the regularity
of the boundary value of the resolvent of H", following [BG]. In Section 7.4 we estimate
the difference of the full and the free resolvent.

Chapter 8 completes the proof of our main results. The main tool is the Feshbach
formula, which is applied several times to various decompositions of our Hilbert space.

Acknowledgments. We are grateful to A. Jensen, C.-A. Pillet and E. Skibsted for useful
discussions and comments on the manuscript. The research of the first author was a part
of the project Nr 2 PO3A 019 15 financed by a grant of Komitet Badan Naukowych. A
part of this work was done during a visit of the first author to University of Ottawa,
which was supported by NSERC, and during his visit to Aarhus University supported
by MaPhySto funded by the Danish National Research Foundation. The research of the
second author was partly supported by NSERC. Part of this work was done during the
visit of the second author to Caltech. We are grateful to A. Jensen, E. Skibsted, Y. Last
and B. Simon for their hospitality.

2 Preliminaries

In this section we set the notation and, for reference purposes, recall some definitions and
facts which will be used in the paper.

N := {0,1,2,...} denotes the set of natural numbers (including 0). We set (t) :=
Vv 1+ t2. We will also use the shorthand

Ci:={z€C : £Imz > 0},
R, ={zreR : £z > 0}.

The closure of a set 2 C C we denote by €.
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If QC Candr >0, we set
B(Q,r):={z€ C : dist(,2) < r},
B(Q,r):={z€ C : dist(Q2,2) <r}.
In particular, for k € C,
B(k,r) := B({k},r), B(k,r):= B({k},r)

denotes the open/closed ball of center k and radius r.
If © C R, we set
I1(0,r):={z e R : dist(0,z) < r},
1O,r):={r eR : dist(0,z) <r}.

In particular, for & € R,
I(k,r) = I({k},r), I(k,r):=1({k},r)

denotes the open/closed interval of center £ and radius r.

Let H be a Hilbert space. The inner product on H we denote by (|- ).

Let H;,Hs be Hilbert spaces. We denote by B(Hi,#Hs) the Banach space of all
bounded operators from H; to Hs. If these two spaces are the same and equal to H,
we will write simply B(H).

Let 2 C C. In this paper we will often deal with operator-valued functions

Q32— A(z) € B(H). (2.31)

Unless otherwise specified, the various limits of such functions are always defined with
respect to the norm of the Banach space B(H).

Definition 2.1 Assume that zy € €2 is not an isolated point of Q2. We say that the
function (2.31) is differentiable at zo with derivative A'(z0) € B(H) if

G %) (A(2) — Alz)) — A'(=0)[| = 0.

We say that the function A(z) is differentiable on Q if it is differentiable at every non-
1solated point of €.

As usual, we denote the n-th derivative by 07 A(z).

Definition 2.2 Let n € N. We say that a function Q2 > z +— A(z) is in the class C'(Q)
if it has a continuous n-th derivative on €2 and satisfies the bound

|07 A(2)]| < Cpy  2€8, m=0,...,n. (2.32)
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Let ¢ : Ry — Ry be a positive continuous function with £(0) = 0. We say that the
function Q> 2z A(2) is in the class C™(Q) if A € C™(Q) and there exists C such that

||82A(Zl) — 3?14(22)“ S O€(|Zl — 2’2|), 21,22 € Q. (233)

If we have a family of functions Ay defined on sets 2y, A € I, we say that Ay is of the
class C™(S2y) or C™H(Q\) uniformly in X\ if the constants C in (2.38) and Cy, in (2.32)
can be chosen independently of A € T.

For 0 < # < 1 we define functions £y on R, by the formula
0

T ifo<o<1
bol(7) = { T(1+In(l+771)) ifg=1. (2.34)

The classes C™% will figure in the Limiting Absorption Principle which we will establish
in this paper. In the sequel we use the shorthands C™Y = C™%.

Let Q C C and I' C 0Q. We say that a continuous function 2 5 z +— A(z) extends by
continuity to QQ U T if for every 2y € I the limit

A(z) = lim A(z)

2—20,2€8

exists. We will denote the functions extended by continuity with the same letter. If
2 C C. and A(z) extends by continuity to a part of the real axis, we denote by A(x £1i0)
its values along R.

In the development of Mourre theory, we will make use of the following two simple
facts.

Proposition 2.3 Let 2 be an open convex set, and let
R, x Q3 (e,2) = A(e, 2) € B(H)

be a bounded function which is continuously differentiable in each variable separately.
Assume further that for some constants C and 0 < 6 < 1,

sup ||0%0L A(e, 2)|| < Ce ™ ey(e), kE+1=1.
2€Q

Then, the function Q> 2z + A(0, 2) is in the class C%Y(Q).
Proof. For 21,2, € 2 and € > 0 we have
14(0, 20) = A0, 22)l| < Jg 10-A(7, 20) 1T + |21 = 22| Jy 10:A(e, 21 + £z — 21)) |t
+J5 10-A(7, 22) ||d7

< 2C 57 Hp(T)dT + Clz1 — 2ale Hy(€).
(2.35)
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Using the form of functions ¢y one easily shows that for some constants Cy and all € > 0,
/ 7 o (T)dT < Cyly(e).
0

Combining this estimate with (2.35) and setting € = |z; — 25| we derive that A(0,z) €
Co%0(Q). O

Proposition 2.4 Let Ay, A € Z, be a family of functions defined on open conver sets
O\ C C. If the family Ay is of the class C™*(Qy) uniformly in X, then the functions Ay
extend by continuity to 0\ and the family Ay is of the class C™*(Q) uniformly in .

The proof of this proposition is elementary and we will skip it.
Let H be a closed operator on . We denote the domain of H by D(H) and the
spectrum of H by o(H). The numerical range of H is defined by

N(H) :={(V|HY) : ¢ € D(H), [[¢[ =1}
The vector space D(H) equipped with the graph norm

[l = 1[¢l + [[H ],

is a Banach space. A vector space C C D(H) is called a core of H if C is dense in D(H)
in the graph norm. The following useful fact is well known:

Lemma 2.5 Let A and B be closed operators and let D(B) be a core of A. Then any
core of B is a core of A.

For any closed operator H, we say that €2 is an isolated subset of o(H) if it is relatively
closed and open subset of o(H). If in addition €2 is bounded, then there exists a simple
closed path v which separates Q and o(H) \ €2, and we can define the spectral projection
of H onto €2 by the formula

lo(H) = — 7{(2 ~ H)'d=.

It is easy to show the following fact:

Lemma 2.6 Let Q be a bounded isolated subset of o(H) and p is a projection such that
Ranlg(H) = Ranp and [p, (z — H)™'| =0 for 2 & o(H). Then p = 1q(H).

An isolated point of o(H) will be called an isolated eigenvalue of H. An isolated
eigenvalue zy of H is called semisimple if (z— H) ! has a simple pole at zg, or equivalently,
if

Ranly, (H) = Ker(H — 2).
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We denote by ogisc(H) the discrete spectrum of H, that is, the set of all isolated
eigenvalues e such that dim1y)(H) < oo. The essential spectrum of H is defined by
Oess(H) :==0(H) \ 0gisc(H).

If H is a self-adjoint operator, we denote by o, (H ), 0s.(H) and o, (H) the pure point,
singular continuous and absolutely continuous spectrum of H. The singular spectrum is
defined by oging(H) = 0pp(H) Uog(H). If © a Borel subset of R, then 1¢(H) will denote
the spectral projection of H onto ©. We denote by 1% (H), 1&(H), 1&(H) the spectral
projections of H onto © associated to the pure point, singular continuous and absolutely
continuous spectrum.

We now recall some standard results about linear operators that will be used through-
out the paper.

Proposition 2.7 Let H be a self-adjoint operator. If z € C\ o(H) then
1

dist(z, 0 (H))’

An immediate consequence of this proposition is

Proposition 2.8 Let H be a self-adjoint and V' a bounded operator. Then, o(H + V) C
B(o(H),||V]|) and for z € C\ B(c(H),||V||) one has the bound
1
< :
= TG o m) - V]

I(z — H) || =

Iz = (H+V))

The concept of the numerical range allows to formulate related results for closed operators.

Proposition 2.9 Let H be a closed operator such that D(H) = D(H*). Then, o(H) C
N(H) and, for z € C\ N(H), one has the bound

—1 1
1= 8"l < Gy

Proposition 2.10 Let H be a closed operator such that D(H) = D(H*), and let V be a
bounded operator. Then, o(H +V) C B(M(H),||V|), and for = € C\ B((H), ||V]|) one

has the bound )

—H) < :
= Gt v
We say that the operator B is A-bounded if D(B) D D(A) and
[Bo|| < allAg|l +blloll, ¢ € D(A). (2.36)

The infimum of possible values of a in (2.36) is called the A-bound of B. Recall that if
A is closed and the A-bound of B is less than 1, then A + B is closed on D(A). Clearly,
if for some 2zq & o(A), ||Bi(20 — A) || = a, where B = By + B, and By is bounded, then
the A-bound of B is less than or equal to a.

Iz = (H+V))
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Proposition 2.11 Suppose that A, B are operators such that A is closed, D(B) D D(A)
and, for some zy € C, we have

[Bi(z — A)7H <1, (20— A)7'Bif| < 1,
where B = By + By and By 1s bounded. Then

(A+ B)" = A"+ B*. (2.37)

Proof. Replacing A with A — 2, where z5 € 0(A), we can assume that zyp = 0. We can
also subtract the bounded operator By from B without affecting (2.37).
Clearly, D(A* + B*) D D(A*) and

(A+ B)*

A = A"+ B*.
We want to show that
D(A*) D D((A+ B)Y). (2.38)

Let » € D(A). Since [|[A™'B|| < 1, we know that 1 + A~'B has a bounded inverse.
Hence ¢, := (1 + A ' B) !¢ satisfies

[l < Chl[¥]]- (2.39)

Since ||[BA™!|| < 1, the operator 1+ BA~! has also a bounded inverse. But, on D(A),
(1+A'B)™' = A7 (1 + BA™")"'A. Therefore, 1+ BA™! is bounded as an operator on
D(A). Thus ¢, € D(A).

Now let ¢ € D((A + B)*). Using that ¢y € D(A) = D(A + B), we have

[(¢(A+ B)y)| < Cl[h]]. (2.40)
Clearly,
(3lAv)| = [(8|A(1 + A B)¢n)
= (¢[(A+ B)in)
< Cllgnl < Gl

where in the last steps we used (2.40) and (2.39). This shows that ¢ € D(A*), and ends
the proof of the inclusion (2.38). O
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3 General theory

3.1 Dissipative operators

We begin with

Definition 3.1 A closed operator B is called dissipative if W(B) C C_.
On D(B) N D(B*) we can define

1 1
i
Clearly, ReB and ImB are symmetric operators.
In all our applications the following condition will be satisfied:

D(B) =D(B*), ImB is bounded and ReB is self-adjoint on D(B). (3.41)
Clearly, under this condition B is dissipative iff ImB < 0.

Proposition 3.2 Let B be a dissipative operator satisfying (3.41) and e € R. Then,
(i) Ker(B — e) = Ranl;(ReB) N Ranlye (ImB).

(ii) Let p be the orthogonal projection onto Ker(B —e). Then 0 = [p, B].

(iii) If in addition e € o4isc(B), then the eigenvalue e is semisimple and p = 1oy (B).

Proof. Let ¢ € Ker(B — ¢). Then ¢ € D(B) = D(B*) and

0= (¢I(B—e)y) = (¥|(B* —e)y).
Hence 0 = (¢[ImBv). Since ImB < 0, we derive that 0 = ImB1). This and 0 = (B — e)
yield that ey = ReB1. Hence
Ranl{e} (ReB) N Ranl{g} (ImB) D Ranl{e} (B)

The inclusion C is obvious, and Part (i) follows.
By Part (i) we have

p < 1 (Re(B)), p < 1) (Im(B)).
Hence
0 = [p,ReB] = [p,ImB].
This implies (ii).
To establish Part (iii), we note that if e € ogis(B) then e is a pole of (z — B)™!.

By Proposition 2.9 this pole is simple. Hence e is a semisimple eigenvalue of B. An
application of Lemma 2.6 completes the proof of (iii). O

If e is an isolated real eigenvalue of B with dim 1 (B) = oo, then Ker(B — e) may
be strictly smaller than Ranly,(B). (We thank E. Skibsted for pointing this out to us).
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Proposition 3.3 Let B be a bounded dissipative operator on a Hilbert space H such that
o(B)NR C 04isc(B). Then

¢ := sup H(z - B)’IIU(B)\R(B)H < 00, (3.42)
2eC4

and, for z € C4 \ o(B),
1

- B) < : 3.43
Itz = B) 7| < max (dist(z,a(B) R)’ ‘) (3:43)
Proof. By Proposition 3.2
Lypyrr = . Lia(B),
eco(B)NR
is an orthogonal projection. Therefore
Iz = Bl = max (Il¢z = B Loy (B)l. |z = B Ly (B)).  (3.44)
Also by Proposition 3.2, Bl,p)nr(B) is self-adjoint. Hence
1 1
[(z = B)™ 1o5)nr(B)|| (3.45)

~ dist(z,0(B) N R)’

Since Bl,(p)\r(B) is a bounded operator with spectrum contained in C_, we clearly
have (3.42). Now (3.44), (3.42) and (3.45) imply (3.43). O

The following result is an immediate consequence of the previous proposition.

Proposition 3.4 Let B be a bounded dissipative operator such that o(B)NR C ogisc(B),
and let ¢ be the constant defined in (3.42). If V' is a bounded operator such that ¢||V|| < 1,
then o B

o(B+V)NCi C B(a(B)NR,[|V]]).
Furthermore, for z € C, \ B(o(B) N R, ||V]|) one has the bound

1

= dist(z,0(B)NR) — |V’ (3.46)

I(z=B V)~
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3.2 The Feshbach formula

Let H be a Hilbert space decomposed into a direct sum H = H" @ H". The projections
onto H¥ and H" we denote by 1'¥ and 1VV. In this section we study operators of the form

HYV HVV
H=— [ oo ] , (3.47)
HY HYW

We assume that HYY and H"Y are closed operators on H' and H'; moreover we suppose
that HY : H" — H" and HY : H" — H' are bounded operators. Clearly H is closed
and D(H) = D(HY) @ D(HY).

For any 2z ¢ o(H"") we define

We(z) = HY(21"Y — HV)"'H",
(3.48)
Gy(z) =21V — HY —W,(2).

In the physics literature, the operator Wy (z) is sometimes called the self-energy. For Gy (z)
we propose the name the resonance function. Note that W, (z) is an analytic operator-
valued function on C\ o(H"V), and that W, (2)* = W, ().

The following proposition is well known:

Proposition 3.5 Assume that z & o(H"Y). Then,
(i) z € o(H) iff 0 € 0(G\(2));
(ii) If 0 € o(G,(2)) then
(2= H)™' = (1" + (217 = H™) ' H™) G7(2) (17 + H7 (217 — H™) ™)

v

(3.49)
+(21%Y — H) L,
Proof. Our proof is inspired by [GGK]. Set
A(z) =14+ HY(1" —H™) ' B(z2):=1+ (21" - HV) 'H™.
Both A(z) and B(z) have bounded inverses:
AY2)=1-H" (1" -HY)Y, B Y2)=1- (21" - HY) 'H™.
Moreover, both B(z) and B~1(z) are bounded operators on D(H).
The following identity holds in the sense of operators from D(H) to H:
A(2)(z — H)B(2) = Gy(2) + 217Y — H™ (3.50)

If z ¢ o(H), then the left hand side of (3.50) is invertible. Hence so is the right hand
side. This implies that Gy(z) is invertible.
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Next we will use the identity (also understood in the sense of operators from D(H) to
H):
(z — H) = A7 (2)(Gy(2) + 217 — HV)B7(2). (3.51)
If 0 ¢ 0(Gy(2)), then the right hand side of (3.51) is invertible. Hence so is z — H. This
completes the proof of (i).
To show (ii) we note that if z & o(H), (3.50) or (3.51) implies

(== H)™' = B(2)(G7 ' () + (217 = H™) 7 A(2),

which, after substituting the expressions defining A(z) and B(z), yields (3.49). O

From now on we assume in addition that HY and H are self-adjoint and HYW =
(H¥)*. This clearly implies that H is self-adjoint. Moreover, W, (z)* = W,(z), the
operator W, (z) is dissipative if Imz > 0. If z € R\ o(H""), then W,(z) is self-adjoint

and
d

dz
The rest of this section is devoted to various refinements of Proposition 3.5. The first
result in this direction is

Wy(z) = —H" (217 — HV) 2H" <0. (3.52)

Theorem 3.6 Assume that e € R\ o(H™). Then,

(i) e is an eigenvalue of H iff 0 is an eigenvalue of G(e).

(ii) dim l{e} (H) = dim 1{0} (Gv(e))

(iii) Set p = 1403(Gy(€)). Then pW(e)p is a negative operator and

1 (H) = (p+ (17 — H™) ™' H™p)

» L (3.53)
x (p—pWie)p)™" (p+pH" (1™ — H™)7).
(iv) If
ui=(p—pWi(e)p) 2 (p+pH (1™ — H) '),
then u s a partial isometry and
uu* = p, uwu =1y (H).
Proof. Let HiY) = e. Then
vawv + HVVwV — ewv,
_ . (3.54)
HVV/I/)V _|_ HVV,QZ}V — e,l/)V‘
The second equation gives (recall that e € o(H"Y))
WF = (17 — H) L HY (3.55)
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Inserting this identity into the first equation of (3.54) we get
Gy ()i = 0. (3.56)

Now, if ¥ € D(H"Y) satisfies (3.56) and " is given in terms of ¢¥ by (3.55), then
W = ¥ @ YV satisfies Hiy = e, which follows by a simple computation. Thus, the
projection

W Y (3.57)

restricted to Ranl (H) is a bijection onto Ranp. This yields (i) and (ii).
Define w : H' — H' & H' by setting

w:=p+ (el — HV)""H"p.
Then w is the inverse of the map (3.57). Besides,
w*w = p+pH" (e1VY — HV)2H"p

restricted to Ranp is a positive, invertible operator. With a slight abuse of the notation
we denote its inverse by (w*w)~!. One easily checks that w(w*w) 'w* is an orthogonal
projection on Ranw = Ranly.(H). Hence

1 (H) = w(w*w) 'w*.

This shows (iii). Part (iv) follows from the identity v = (w*w) zw*. O

Due to the assumption e & o(H"Y), the proof of Theorem 3.6 was relatively simple.
Related results are subtler if e € o(H"). As a warm up, we prove

Proposition 3.7 Let e € R. Suppose that the limat

lim W (e + iy) = Wi(e +10) (3.58)
Y

exists. Then W, (e + i0) is dissipative.
Assume moreover that e is not an eigenvalue of HY. Then

dim Ker(H — e) < dim KerGy (e +i0). (3.59)
In particular, if e is an eigenvalue of H, then 0 is an eigenvalue of G (e +10).

Proof. Assume that ¢y € D(H) and Htv = et. Since e is not an eigenvalue of H'Y,
el™ — HY is injective and

Y= (e1™ — H™) ' H™y. (3.60)
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Moreover, B B B
0=1((H")=—-s— ligliy((e +iy) 1™ — HV)L (3.61)
Y

Therefore,

g — hm ((6 + ly)]_W _ HW)fl _ (61W _ HW)fl HVVQ/)V
o S ) i (3.62)
= g — hmyLO 1y((€ + 1y)]_vv _ va)fl(elvv _ va)levvd)v — 0
Combining (3.60) and (3.62) we get

P =5 — 1;?01((6 +iy) 1V — HY) TH™yY.
Substituting this identity into the first equation in (3.54) we derive that
Gy(e +i0)y" = 0.
Now assume that /¥ = 0. Then ) € H" and therefore
el = Hip = HV1).
Since e & opp(HYY), 1 = 0. Thus, the projection 1) — " restricted to Ranly, (H) is an
injective map into KerGy(z +i0). O
The following theorem is the principal result of this section.
Theorem 3.8 Assume that e is not an eigenvalue of H'Y, that the limit (3.58) exists,

and that the function
CiU{e} 32— Wy(z)

is in the class C1(C, U {e}) (its derivative at z = e we denote by W!(e +10)). Further,
assume that 0 € o4isc(Gy(e 4+ 10)). Then the following holds:
(i) e is an eigenvalue of H.
(ii) dim 1oy (H) = dim KerG, (e + i0).
(iii) Set p = 1403(Gv(e +10)). Then, p is the orthogonal projection onto Ker(G\ (e + i0),
the operator

pWe (e +10)p =: pWy(e)p

15 self-adjoint, and the operator
pWe(e +i0)p =: pWi(e)p
18 negative.
(iv) The limits
3l/i£r[1]((e +iy)1VY — HY)"'HYp =: (e1¥Y — HW)"'H"p

v s v G/ AT — 3.63
hr%pva((e + ly) lvv _ va)—l = pHVV(eIVV _ HVV)_I, ( )
y—
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exist and o B ~
l{e}(H) — (p + (elvv - va)levvp) (3 64)
x(p—pWi(e)p) * (p+ pH™(e1™ — H™) 1) .

(v) If 1 S
wi=(p—pW.(e)p)"% (p+ pH (1™ — H™) ™),

then u is a partial isometry and

uu® = p, u'u = 1y (H).

Proof. We begin with proofs of Parts (iii) and (iv).

We first observe that the relation W (z) = W, (%) yields that the functions W, (z) and
Gy (z) are also of the class C'(C_ U {e}).

Since the operator —G, (e +10) is dissipative and 0 € ogis.(Gy (e +10)), Proposition 3.2
yields that p is an orthogonal projection. It follows that

10y (G (e +10)) = .
Since Gi(e +i0) = G (e — i0), the identities pGy (e +10)p = 0 can be rewritten as
p(el™ — H")p = pW, (e £1i0)p.
This yields the relation
pW, (e +1i0)p = pW, (e — i0)p =: pW, (e)p. (3.65)

Clearly, the operator pW, (e)p is self-adjoint.
Let 7 — (1) € C; U{e}, v(0) = e, be a smooth curve such that v(0) = e and 7 is
tangent to R at 7 = 0. We may assume that '(0) = 1. Then,

7 = ImpW., ((7))p,
is a function with values in dissipative operators such that
ImpW, (v(0))p = ImpW,(e)p = 0.
It follows that

d .
0 = —TmpW (3(7))pl,—o = TmpIVi(e +i0)p.

This shows that
pWi (e +i0)p =: pW,(e)p (3.66)
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is a self-adjoint operator. This proves (iii) except for the part asserting that pW/(e)p is a
negative operator. Using p = p*, W/ (e —i0) = W/ (e +10)* and (3.66), we also have that

pWl(e —i0)p = pW. (e +i0)p. (3.67)
We now show that the limit

(1™ — HY)'"H™p:= lim ((e+iy)1™ — H™) "' H™p, (3.68)

y—0,y7#0
exists. Denote the expression inside the limit by L(y). Then, the resolvent identity yields
(L*(y1) = L*(y2))(L(y1) — L(y2)) = 557 PWe(e — iy1)p — pWe(e +iy1)p)
+ai; (DWW (e — iy2)p — pWo (e + iy2)p)

A (3.69)
(y2+y1 7 (PWe(e —iy1)p — pWy(e + iy2)p)
— iy (PWh(e = iya)p — pWo(e +iy)p) -
Note that it follows from (3.65) and (3.67) that the function
C,UC_U{e} 3z pW,(2)p, (3.70)

is continuously differentiable. This observation and identity (3.69) yield that the sequence
L(y,) is Cauchy whenever y, — 0. Thus, the limit (3.68) exists and this implies the
existence of the limits (3.63) (for the second limit take the adjoint of (3.68)). Since

PV (e)p = —((e1 — H™) " H™p)" (1™ — H™) " H™),

it follows that the operator pW/(e)p is negative. This completes the proof of Part (iii).
Set w:=p+ (e1VV — HY)"'H"p and w(z) :=p+ (21V¥ — HY)"'H"p. By (3.63) we
have

limw(e + iy) = w. (3.71)
y40

We easily compute that
Hw(z) = 2w(z) — Gy(2)p.
Hence

lim Hw(e + iy) = ew. (3.72)
yl0

(3.71) and (3.72) imply that Ranw C Ker(H — e). Thus w maps KerG,(e + i0) into
Ker(H — ¢). Clearly, the inverse of w is 1YV restricted to Ker(H — ¢). Therefore, w is a
bijective map from KerG, (e + i0) to Ker(H — e). Similarly as at the end of the proof of
Theorem 3.6, we note that

ww = P + ((GIW _ HW)—IHVVp)*(e]_W _ HW)—IHVVp

=p —pW.(e)p,
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and
11 (H) = w(w*w) 'w*.

This proves Relation (3.64) and completes the proof of Part (iv). Part (v) follows from
the identity

Lo«

u = (w'w) 2w".

O

3.3 Counting the eigenvalues

Let [e_,e4] 2 x + G(x) be a function with values in bounded self-adjoint operators on a
Hilbert space H. We say that the function G is strictly increasing if the following holds:
If x > y, then there is € > 0 such that, for all ¢ € H,

(WG (@)y) > (IG(y)Y) + ellvl.

Proposition 3.9 Let [e_,e;] >z — G(z) € B(H) be a function such that:
(a) For all x € [e_,e4], G(x) is self-adjoint.
(b) [e—,e4] 2 . — G(z) is continuous and strictly increasing.
(c) dim 1jp (G (eq)) < 00.
Then:
(i) The set {z € [e_,ey] : 0 € o(G(x))} is a finite subset of [e_,ey] and, forz € [e_,ey],
we have 0 € o(G(z)) iff 0 € oaisc(G()).
(i)
> dimKerG(z) = dim 1} oo[(G(e1)) — dim 1jg o[ (G(e2)).

z€le—,eq]

Proof. We will use the Courant-Weyl (min-max) principle ([RS4], Theorem XIII.1,
[We]). Let

fo(z) := inf sup (V|G (z)1).

Y1yt le]l=1
Ve 1}t
We set 3(z) := —oo if H is finite dimensional, 3(z) := inf,, f,(z) otherwise. It follows

from the min-max principle that ¥(x) = sup oess(G(x)) (note that sup) = —oc). Fur-
thermore, f,(z) is a non-increasing sequence such that if ¥(z) < f,(x) then f,(z) is the
n-th eigenvalue of G(x) (in the non-increasing order) counted with multiplicites.
Clearly, since G(x) is a strictly increasing continuous function, the functions f,(z)
are also strictly increasing and continuous in z. In particular, it follows that ¥(z) is an
increasing function. By (c), X(e;) < 0, hence ¥(z) < 0 for all x € [e_, e;]. Therefore,

dim 1 oo[(G(2)) = #{n : fu(x) > 0},
dimKer G(z) = #{n : f.(x) =0},
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and the result follows from elementary properties of strictly increasing continuous func-
tions. O

The following two theorems follow by combining the last proposition with Theorems
3.6 and 3.8. We consider a self-adjoint operator H which has the same form as in Section
3.2. We will assume in addition that HYV is a bounded operator. The first theorem
describes how to count eigenvalues outside o(H"Y).

Theorem 3.10 Assume that [e_,e ] No(H") = 0 and that dim 1} (G (e4)) < oo.
Then,

dim 1P ’e+](H) = dim 1[8_,e+](H) = dim 1[0,00[(GV(6+)) — dim l}gyw[(Gv(G,)).

le—
Proof. We know by Proposition 3.5 (i) that
le_,ei]No(H) C{x €le_,eqs] : 0€0(Gy(x))} (3.73)

Since G’ (x) > 1"V we see that G,(z) is strictly increasing. Thus we easily see that the
function G(z) satisfies the assumptions of Proposition 3.9, which implies that the set
(3.73) is finite. Hence

e o (H) =100  S(H)= > 1(H).
z€le—,e4]
It follows from Theorem 3.6 that for all z € [e_, e.],
dim 1,3 (H) = dim Ker G, (z),

and the result follows from Proposition 3.9. O

Corollary 3.11 Assume that [e_,e,|No(HY) =0. Then
dim 1[87’e+} (H) < dim H". (374)
If the self-energy is differentiable, one can also count eigenvalues of H inside o(H"Y).

Theorem 3.12 Assume that op,(HY) N e—, e ] =0, and that the following holds:
(a) The limit

We(x +10) := lig)l W, (z + iy) (3.75)

y
exists for all x € [e_, e4].
(b) The function ReW, (x +10) is differentiable and for some € > 0 and all x € [e_, e ] it
satisfies
ReG! (z +1i0) = 1YV — ReW/(z) > 1.

(c) dim 1)y [(Re Gy (eq +10)) < o00.
Then,

dim 177 | (H) < dim 1 o[(ReGy(e+ +10)) — dim 1jg oo (ReGy (e— +10)).

le
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Proof. Assumptions (a) and Theorem 3.8, and then Proposition 3.2, yield that for
x e [6—7 e-l—]a

dim 1,y (H) < dim Ker G (z +i0) < dim KerReG\ (2 + i0). (3.76)

Assumption (b) yields that the function [e_,e;] 3  — ReGy(x + i0) is continuous and
strictly increasing. Using also (c) we see that the function ReGy(z + i0) satisfies the
conditions of Proposition 3.9. This proposition and Relation (3.76) yield the statement
of the theorem. O

Corollary 3.13 Assume that op,,(HV) Nle_,e.] =0, and that the following holds:
(a) The limit
W, (z +10) := lig]l W, (z + iy), (3.77)
y

ezists for all x € [e_, e4].
(b) The function [e_,e;] > v — ReWy(x +10) is differentiable, and for some ¢ > 0 and
all x € [e_,e4],

ReG, (z +10) = 1YV — ReW. (z +10) > 1",

Then
dim 1P e+}(H) < dimH". (3.78)

le—,

4 Fock spaces and all that

In this section we describe in an abstract setting some Hilbert spaces and operators
of the quantum field theory. We have attempted to give an essentially self-contained
presentation of the topics we will need. For additional information, the reader may consult
[BSZ, BR, De, DG, GJ, RS2].

Let h be a Hilbert space. We set ¢ := C and p"™® == ph®...®h. If A is a closed
operator on h, we denote by A®" the closed operator on h"® defined by A® ... ® A (if
n =0, A%9 = 1). Let S, be the group of permutations of n elements. For each o € S,
we define an operator (which we also denote by o) on the basis elements of h"® by

o(fiy® .- ® fi,) = foin) ® - ® fo(in),

where {f;} is a basis of §. o extends by linearity to a unitary operator on h®", which does
not depend on a basis. We set,
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The operator P, is an orthogonal projection. Let
[,(h) := RanP,.

This Hilbert space is commonly called the n-particle bosonic space.
The symmetric (or boson) Fock space over p is defined by

L(h) = & Tu(h).

The vector 2 = (1,0,0,...) plays a special role and is called the vacuum. A vector
U = (g, 91, . ..) is called a finite particle vector if ¢,, = 0 for all but finitely many n. The
set of all finite particle vectors we denote by Iy (b).

If A is an operator on h, we define I'(A) to be the operator which is equal to A®"
on I',(h). If w is a self-adjoint operator on H then I'(exp(itw)) is a strongly continuous
unitary group on I'(h), and we denote its generator by dI'(w). Note that

[(exp(itw)) = exp(itdT'(w)),

and dI'(w)Q? = 0. dI'(w) preserves the n-particle subspaces, and on D(dI'(w))) N Ty, () it
acts as
WwR1..®1+1Qw...01+...1®%...01Qw.

The number operator is defined by N = dI'(1).

In the models we will study, the boson Fock space will represent only a part of the
system, usually referred to as a “radiation field” or a “heat bath”. The other part is an
“atom” or a “small system”, to which we associate a Hilbert space IC. The interaction
of these two sub-systems is described by a suitable self-adjoint operator on K ® I'(h). To
describe these interaction operators in a sufficient generality, it is convenient to extend
the notion of the usual creation and annihilation operators on the Fock space. For the
conventional definitions of these operators we refer the reader to [RS2], Section X.7. The
definitions we will use are also discussed in [DG].

Notation. In the rest of the paper, whenever the meaning is clear within the context,
we will write A for the operators of the form 1 ® A and A ® 1.
Let
v e BK,K®h).

Such operators will be called form-factors. We define a linear operator b(v) on K ®
(B2 ,h"?) as follows:
b(v) : K@ 5" 0,

b(v) : K@ p"® — K @ D2,
) (VR ®...0 ¢n) == VYV RP1) R PR ... R Py.
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It is not difficult to show that b(v) is a bounded operator which takes I ® I'() into itself.
Note that [[b(v)[| = [[o]lsc.cen)-
We define the annihilation operator a(v) on K ® I'(h) with domain I ® T'g,(h) by

b(v).

The operator a(v) is closable, and we denote its closure with the same letter.
The adjoint of a(v) we denote by a*(v) and call it the creation operator. To describe
this operator, note that on I ® g, (h) we have

[SIE

a(v) = (N+1)

a*(v) = Pb*(v)(N + 1)3, (4.79)
where P = Y2/ P,. Moreover, b*(v) acts on K ® (% ,h"®) as follows:

n=0

b (v) : K@ 5" s K @ pnthe,

V() @01 @ ... 0n) = (1)) @1 @ ... @ Py

Here ¢ € IC, ¢ € b.

We remark that the map v — a(v) is anti-linear while the map v +— a*(v) is linear. In
the sequel a (v) stands either for a(v) or a*(v).

The (Segal) field operator is defined by

o) = %(a(v) +a*(w)).

The operator ¢(v) is essentially self-adjoint on lC®D(N%). The following two elementary
estimates will be often used in the rest of the paper:

IV +D)72a* @) < [loll, [NV +1D)720(@)] < V2ol (4.80)
Note that if v acts as vi) = (q¢) ® f, where f is a fixed vector in § and ¢ € B(K), then
a'(v)=q®a’(f),  alv)=q¢ @al(f).

Here a?(f) are the usual creation and annihilation operators on I'(h). Such form-factors
we will call simple.

More generally, if {f,} is an orthogonal basis of h, for any v € B(IC, L ® ), there are
operators v, € B(K) such that

v = () ® fa, ol =D llwavl?, ¥ €K

Thus, every form-factor can be decomposed into a sum of simple form-factors. One can
alternatively use this fact to define the operators a*(v), etc.
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If U is a unitary operator on b, then
D(U)p(o)D(U) = (). (4.81)

From this relation it follows that if w is a self-adjoint operator on h such that wv €
B(K,K ® 1), then

i[dl (w), ()] = p(iwv). (4.82)
We now describe several technical results which will be used in the sequel.

Proposition 4.1 Let v € B(K,K ®b) and w an operator on . Assume that w > 0 and
that w is invertible on the range of v. Set Ky := v*v. Then the following estimates hold
for any ¥ in the quadratic form domain of dI'(w):

la(v)¥)* < [lo*w™ | (¥]dT(w) W),
la*(0)W[* < (P[Ko¥) + [Jo*w ™ | (¥]dT(w) ¥), (4.83)
lo()¥[? < (¥]KoW) + 2[jv*w ™ o||(¥[dI(w) ).

Remark. Results of this genre go back to the N, -estimates of Glimm and Jaffe [GJ], see
also [Ar, BFS1].

Proof. Before we start, we remark that v*w='v € K iff v wTE € B(K ®1b,5), and that
o w0l = flo*w™2|* = [lw™ 2]
Let Q denote the quadratic form domain of dI'(w). Since
[N, a*(v)a(v)] = [N, a(v)a"(v)] =0,
it suffices to establish the first two relations for
Uedn(KT,(h). (4.84)
Note also that if ¥; € LT, (h), i = 1,2, then

* o 0 if Ng — N1 % 1,
(\IJ2|CL (,U)\Ijl) o { Vi + ]_(\112|U X 1®n1\111) if Nog — N1 = 1. (485)

Using Relation (4.85) twice, we derive
(V0" (4)a(0)¥) = n(Wjov* © 150~ D)
= n(lx ® w} @ 19| (v* (1 ® w2))*
x (v (1 @ w™2)) (e @ w? @ 12 DY)
< |lo*(1x @ w2) |2 n(V]1x @ w ® 1°M=1)
= [Jv*w ™ o[|(P]dT (w) ©).
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This proves the first relation in (4.83). Before we prove the second, it is convenient to
introduce some additional nota‘mon

Fori:=1,...,n,let 7' ) denote the transposition of 1 and 7. Recall that 7' ) defines a
unitary operator (which we denote by the same letter) on p®". Clearly, (7" )) = 1. For
any h € B(h) we define

W™ = 190D @ h @ 19070 = 70" (h @ 190V (7)1,
Assume that W satisfies (4.84). Then, using (4.79) and (4.85), we derive that
(a*(v)Ula* (v) ) = (n +1)(T|(v" ® 197) Py (v ® 197)0)
(\m(v ® 19" (1 @ 7" (v ® 19") W) (4.86)
= (‘I’|K0 )+ T, (|(0" @ 197 (1 @ 7"V (v @ 197) ).
Note that for i > 1,
(¥|(v* @ 1% (e @ ") (v © 1°M) W) =
= (") 0(0* © 19" ()" (1 @ 7)) (0 ) (0 © 197) (w?) ) 1)
= (W) T|(0" (e ®w™2) @ 19") (1e @ 7)1 @ w™F)o ® 197) (w3) () 0)
< o (1 @ w 3| |(1x @ w )| [|(w? )i ¢ |2

= ||lv*w™||(¥|w @ 12— D ).
Thus,

Zn+1(\11|(1;* ® ]_®n)(]_’C ® Ti(n-l-l))(v ® 1®n)\11) < n||v*w*11;||(\11|w Q 1®(n71)\11)
= ||Jv*w ™ ||(|dT (w)P).

Combining this inequality with the identity (4.86), we derive the second relation in (4.83).
Finally, the third relation follows from the first two and the simple estimate

le@)@* < lla() @] + lla* () P[]

We will also make use of the following estimate.

Lemma 4.2 Letv € B(K,K®%4),1>06 >0 and Ns:=1+ IN. Then, for any 3,

(e (v) = Ny ") NIl < CV/d] vl
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Proof. It suffices to consider the case > 0. For ¥ € X ® [',,(h) we have
(a*(v) - Ngﬁa*(v)Nf) U= \/W(l - (Hlé*gzl))’g)PnHv ® 197,
For 0 < z < 1 we have |1 — (1 — z)?| < Cgx. Hence
a*(v) = N; Pa* ()N} < sup,sp v+ 1| (1= (555225)7) |llo]
< Pz Cov/n T Tl (4.87)
< CsVolJv]l.

After taking adjoints, (4.87) yields

|aw) = Ny Pa()N] | < Cva o]l

Clearly, the above two estimates yield the statement. O

The final results which we need is the exponential law for bosonic systems, see e.g.
[BSZ], Section 3.2.

Theorem 4.3 Let b, and by be Hilbert spaces. There exist a unitary mapping
L'(h1) ® ['(b2) = (b1 D b2),

with the following properties:
(i) If Ay and Ay are operators on by and by then

U(A) @T(A))U ' =T (A, D Ay).
(ii) If Q denotes the vacuum on T'(hy @ be) and Qy, Qo the vacua on '(hy), [(ha), then
U ®€y) = Q.
(iii) If f1 € b1, f2 € ba, then

U exp(ip(f1) ® exp(ip(f2))U™" = exp(io(fi @ f2))-

(iv) Let K be a Hilbert space. Assume that v € B(IK, X ® b1), f2 € by and vo = 1 ® fo.
Then vy @ vy can be viewed as an element of B(K, K ® (h1 @ b2)) and

(1c ® U) exp(igp(v1)) @ exp(ip(v2)) (1 ® U) ™" = exp(ip(v1 @ v2)).

Remark. The properties (ii), (iii) specify U uniquely.
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5 Pauli-Fierz operators

In this section we define operators which we will study.

In quantum physics such operators are used to describe systems which consist of two
parts: the “small system” A and the “radiation field” R. The system A is described by a
Hilbert space K and a self-adjoint operator K on K. The “radiation field” R is described
by a bosonic Fock space. Its 1-particle space is h := L?*(R) ® g, where g is an auxiliary
Hilbert space. We denote by w the operator of multiplication by w € R. The Hilbert
space of the combined system is H := K ® ['(h) and its free Hamiltonian is

Hyp = K®1+1®dl'(w).

Let o € B(IK,K ®b) be a given form factor. The Hamiltonian of the coupled system is

formally given by
H := Hp, + Mp(a). (5.88)

We make the following hypothesis:
Hypothesis A. H is essentially self-adjoint on D := D(Hy,) N D(p()).
If we equip D with the norm
[@[lp = [|@[| + || He®[| + [|o(c) @],

then D becomes a Banach space. It follows from Hypothesis A and an easy abstract

argument (the same that is needed to show Lemma 2.5) that any vector space dense in D

is a core for H. Thus, for instance, Dg, := D(K) @ (T'sn(h) N D(dAI'(|w|))) is a core of H.
Below we give two explicit conditions that imply Hypothesis A.

5.1 “Positive-temperature systems”

Proposition 5.1 Assume that the operators «, |w|a and (|K|®1,)a—a|K| are bounded.
Let X
N = |K|+dl(jw|+1).

Then, for any A € R, H is essentially self-adjoint on any core of]\7. Moreover, Hypothesis
A is satisfied.

A

Proof. Clearly, H is a well defined symmetric operator on D(NN). We will prove the
proposition by invoking Nelson’s commutator theorem ([RS2], Theorem X.37). We must
show that there is a constant d > 0 such that the following estimates hold for any
¥ € D(N):
[HY|| < d|N],
. . . (5.89)
(HU|NT) — (NU[HT)| < d|N}O|2
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By (4.80), A¢(«) is an infinitesimal perturbation of N and therefore of N. Obviously,
dl’(w) is bounded with respect to dI'(Jw|). These observation yield the first relation.

Since
(HUINT) — (NUIHT)| = [M[(T][N, p(a)]P)],
and
iV, ()] = o(illw] + 1)a) +¢(B),
where = i(|K|® 1,)a — ia|K |, the second relation in (5.89) follows from the estimates

(4.80).
Finally, since Dy, is a core for N, Hypothesis A is satisfied. O

5.2 “Zero-temperature systems”

Let h := L*(R,) ® g, where g is an auxiliary Hilbert space. We denote by @ the operator
of multiplication by w € R,. Consider the Hilbert space H := K ® ['(h) and the free
Hamiltonian

Hy = K®1+1dl'(®). (5.90)
Let & € B(K,K ® ). The Hamiltonian of the coupled system is formally given by
H := Hp + \p(a), (5.91)
where )\ is a real constant.

Proposition 5.2 Assume that the operator K is bounded from below and that
a*ota e B(K). (5.92)

Then p(&) is infinitesimally small with respect to Hi,. In particular, for any X € R, the

operator H is self-adjoint on D(Hyg).

Proof. Without loss of generality we may assume that K is strictly positive. By (4.83)
there is a constant ¢ > 0 such that for any W € D(Hy) and any € > 0,

lo(@)P|* < el W[ + (U HoP)) < c(1+ e )| W] + cel| Hr |,

It follows that (&) is an infinitesimal perturbation of Hy. The other conclusions of the
proposition follow from the Kato-Rellich theorem. O

The operator H has a different form than the operator (5.88). Nevertheless, we will
show below that by studying operators of the form (5.88) one can obtain information on
the “zero-temperature” Hamiltonian H.
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Consider an operator of the form (5.91) and assume that (5.92) holds. This operator
can be extended to act on the Hilbert space H ® I'(p) as

e = Hy @1 —1®d0(0),
H* = H®1-1@dl(®).
Since H ® I'y(h) is an invariant subspace of H®* and

I::[ — ]:Iext

HRTo(h)’

the spectral properties of H can be inferred from the spectral properties of H® (note in
particular that op,(H) = ooy (H™) and o4 (H) = 05 (H®)). Let us show that H®* is
unitarily equivalent to an operator of the form (5.88) satisfying Hypothesis A.

Let U be the map from I'(h) ® T'(h) to T'(h & b) defined in Theorem 4.3. Clearly,

1 QU :HRT(h) - KT (h )
is a unitary map. Next, we have the unitary map
L*(R.) ® L*(Ry) 3 (fu, f2) = f € L*(R), (5.93)
where
=g A T
which induces the unitary map
wih@h=(L*Ry)®e)® (L2(Ry) ®q) = h=LA(R) 3.

Set
W =1 @ (I'(w)U).

Clearly, .
W:HQT(h) — H,

is a unitary map. Let o € B(K, K ® h) be given by
a:=a®0.

We have

w(w, —w)w* =w,
W(dI'w)®@1-1dl'(@))W* =dl'(w),
We(a) @ 1IW* = p(a).
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Thus ~
WHEW* =K ®1+1dl'(w),

WHSW* = K ®1+1®dl(w) + Ap(a).

Hence WHZW* and W H®*W* have the form of the operators Hy,, H. Furthermore, it
follows from Proposition 5.2 that the operator W H®*IW* is self-adjoint on

D(WHSW*) = D(WHZW*) N D(p(a)).

Thus the operator WH®W* satisfies Hypothesis A. O

6 Main results

The Hilbert space H = K ® I'(h) has a natural decomposition H = H" & HY, where

HY =K@ To(),
H =@, K®T,(h).

(v stands for the vacuum). Note that HYY = K, D(Hy) = D(K)®D(HL') and D(p(a)) =
K&D(p(«)™). Hence, if D is as in Hypothesis A, then D = D(K) ®@D(HZ)ND(p(a)™).
Using Hypothesis A, the fact that H™ = Ap(a)" is a bounded operator and the Kato—
Rellich theorem we see that HYY + H"" is essentially self-adjoint on D. Therefore, H"" is
essentially self-adjoint on D(HE )ND(¢(«)"Y). Thus the formalism and results of Chapter
3 can be applied to the operator H. We will use the notation introduced in Section 3.2.
In particular, we recall that the self-energy is defined by

WV(Z) — HVV(ZIW_ HW)—IHVV
— %)\ZG(&)VV(Z].W _ HW)fla*(a)V\/.

We define a self-adjoint operator s on the Hilbert space h by s := —id,, ® 1,, so that
[s,w] = —i. The conjugate operator is defined by

S =1 @ dI'(s). (6.94)
For any v > 0 we introduce the following hypothesis:
Hypothesis S(v). (s)'a e B(K,K®H).
We will compare W, (z) with its second-order approximation A\?w(z), where
w(z) = (@) (217 — HY) ()™
= (a(a)(2 — Hy)'a*(a))
=o'z -K®l-1®w) o
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We now state an auxiliary result on the regularity properties of the function w(z). Some
of these properties will be used in the statement of our main theorems, but we remark
that they are of independent interest.

Theorem 6.1 Assume that Hypothesis S(v) holds with v > 5. Letn € N and 0 < 0 < 1
be such that v =n + % + 6. Then, the function Cy > z — w(z) extends by continuity to
C, and is in the class C™(C,).

The next three theorems describe our main results. In our model, the spectrum of
K plays a role of the threshold set. The first theorem asserts that, away from an O()\?)
neighborhood of ¢(K), the Limiting Absorption Principle holds.

Theorem 6.2 Assume that Hypotheses A and S(v) hold with v > 1. Let p > % and
0 < Ay < (V2|[sal|)~". Then, there exists a constant By > 0 such that for |\| < A, the
following holds:
(i) Set for shortness

0 : =R\ I(o(K),\*3).

Then, the function
z (S) Mz — H)THS)™# (6.95)

extends by continuity to a function on C,L U ©O. In particular, the spectrum of H on the
set © s absolutely continuous.

(ii) Let n € N, 0 < 0 <1, and p be such that v > p + % =1+n+0. Then, the function
(6.95) is of the class C™Y of the set

C, \ B(o(K), \*B).

Our last two theorems describe the structure of the spectrum near an isolated eigen-
value k of K. They incorporate the notion of Fermi’s Golden Rule. We remark that in
our approach the eigenvalue £ may have an infinite multiplicity. Let p, = 1y (K). If
S(v) holds for some v > £ then it follows from Theorem 6.1 that

wy = prw(k +10)py (6.96)

is a bounded dissipative operator. We will always consider w; as an operator on the
Hilbert space Ranp,. In the standard description of atomic radiation, the spectrum of
Imw,, captures the emission and absorption processes and radiative life-time of energy
level k (of order A\?). The spectrum of Rewy captures the line shift of this energy level
(of order \?). If o(wg) N R = (), that is, if Imwy < 0, one expects that the energy level &
has dissolved into the continuum, and that the spectrum of H in a neighborhood of & is
purely absolutely continuous. Among other things, our next theorem justifies rigorously
this heuristic expectation.

44



Theorem 6.3 Assume that Hypotheses A and S(v) hold with v > 1 and let p > 5. Let
k be an isolated eigenvalue of K. Assume that

T .= o(wg) NR C ogise (wi)-

Let 31 be the constant from the previous theorem and k == 1 — v 1.
constants Ay > 0 and By > 0 such that for |A| < Ay the following holds:

(i) Set for shortness

Then there exist

O(k) = I(k, A*B1) \ T({k} + N*Ti, |A[*""B2).

Then, the function
2 (S) H(z— H) Y{S) (6.97)

extends by continuity to a function on Cy U O(k). In particular, the spectrum of H on
the set ©(k) is absolutely continuous.

(ii) Let n € N, 0 < 0 <1 and p be such that v > p+ 3+ =n+1+6. Then, the function
(6.97) is in the class C™? of the set

C..n (B(k, X)) \ B({k} + X Tr, |AP75,)

The next theorem is perhaps our deepest result. It concerns the situation where T;, # 0,
and describes the structure of the spectrum of H around a point m € ogisc(wg) NR. We set
Prym = Limy(wy). It follows from Proposition 3.2 that py, ., is an orthogonal projection. We
emphasize that in the following theorem we need a stronger assumption on the interaction,
namely we need S(v) with v > 2.

Theorem 6.4 Assume that Hypotheses A and S(v) hold with v > 2. Let k be an isolated
eigenvalue of K,
T = o(wg) NR C ogise (wi)-

and let m € Ty. Let B1, P and Kk be as in the previous theorems. Then there exists a
constant Az > 0 such that for 0 < |A| < A3 the following holds:
(i) Set for shortness

G(ka m) = T(k + )‘Zma |)‘|2+Hﬁ2) N T(ka )‘ZBI)‘
Then dim ]‘%Izk,m) < dim pg - In particular, op,(H) N O(k,m) is a finite set consisting of
eigenvalues of finite multiplicity.

(ii) If p > 3, then the function

25 (SY Mz — H)HS) ™+ (6.98)
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extends by continuity to a function on CLU(O(k, m)\op,(H)). In particular, the spectrum
of H on ©(k,m) \ op,p,(H) is absolutely continuous.

(iii) Let n e N, 0 <0 <1 andv > u+% =n+1+4+60. Then, for any € > 0, the function
(6.98) is in the class C™? of the set

C. N (B(k + X2m, |\ 32) N Bk, A261) \ Bloy(H), €))

7 Mourre theory on the radiation sector

In this chapter we prove the Limiting Absorption Principle for the operator H reduced to
the radiation sector. In Section 7.1 we prove the basic form and in Section 7.2 more refined
versions of the Limiting Absorption Principle. As we have remarked in the introduction,
the Limiting Absorption Principle for H*Y will hold uniformly on R. In Section 7.3 we
prove Theorem 6.1. In Section 7.4 we prove an estimate on the difference (21VV — H"V)~! —
(217 — HYY) L.

7.1 Limiting Absorption Principle
This section is devoted to the proof of the following theorem:

Theorem 7.1 Assume that Hypotheses A and S(v) hold with v > 1. Let p > % and
0 <Ay < (V2||sal|)~t. Then,
sup (ST (AT — HT)THST) | < oo

(/\,Z)E[—Al,/\l] xC 4

Notation. In this section we will always work in the space #". Henceforth, until the end
of the section we will drop the superscripts ¥v. Thus, we write H, S, N for the operators
HY, S, NY, etc.

We start by assembling some preliminary definitions and facts. Let
SA =[S, 4],

elTSA — elTSAe—lTS‘

Note that _
e™SdlN(w) = dl(w) + 7N,
eiTSN — ]\[7
e™>(a(a)) = a(ea),
eiTS(a* (a)) — a*(ei”a).
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We choose a real function ¢ € C§°(R) such that ((¢) = 1 in a neighborhood of 0 and set

£(t) == e'C(1). (7.99)

Let
® := D(Hy) N D(N). (7.100)

For e € R we define

Ve = J(alg(—es)a) + a*(E(es)a)), (7.101)
H, :=H. g+ \V..

where for € = 0 we have Hy = Hp, Hy = H and for € # 0 the domain is chosen as
D(H.s,) =D(H,) = .
Remark. We remark that the following identity holds on ®:

1 ~ .
Ho= o / E(r)e™S Hdr. (7.102)

Thus, formally, we could write H, = £(eS)H, following the notation of [BG] and [BGS].
In [BG], a functional calculus was developed for expressions similar to (7.102). In our
case, strictly speaking, this calculus does not apply, because H is an unbounded opera-
tor. Nevertheless, this calculus certainly motivates the definition of H, and the algebraic
computations of this section.

The basic properties of the operators H, s are summarized in the following lemma:

Lemma 7.2 For any e € R, Hcs is a normal operator such that He’"fr =H_ g,
|H oV = [|HeV|)* + €||NY||?, ¥ € D(H,y), (7.103)

0(Hep) ={-ine+R : n=1,2,...}.

The next lemma gives the basic properties of the operator H..

Lemma 7.3 Assume that Hypothesis S(0) holds. Then the following is true:

(i) For any € # 0, V. is an infinitesimal perturbation of Heg. In particular, H, is a closed
operator with domain D.

(ii) For any € we have HF = H ..
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Proof. It follows from estimate (4.80) that
N2 Vel < 2l ool el (7.104)

and thus V is an infinitesimal perturbation of N. This observation and (7.103) yield that
Ve is also an infinitesimal perturbation of H.g. This proves (i).

Let us show (ii). Clearly, we can assume that € # 0. It is easy to see that we can split
Ve as V. = V.1 + V.o where V, 5 is bounded and ||[N "'V, || < 1, [|[VeaN Y| < 1. Therefore,
we can apply Proposition 2.11. O

For z ¢ o(H,) we set
G (2) = (z— H) .

In the next 3 lemmas we describe some properties of G.(z) that hold under the assumption
S(0) and € # 0. Although they are formally obvious, they require a proof due to the
unboundedness of some of the operators.

Forn =1,2,... we define closed operators HE(") by the formula

A
H = —i61,N + = (=1)*a(s"€™ (—es)a) + a* (576 (es)a)) | (7.105)
V2
where 6;, = 1 if n = 1 and 0 otherwise. Here, of course, £ is the n-th derivative of the
function £. Note that for any ¥ € ®
dn

—H.U = HM,
den €

Lemma 7.4 Assume that Hypothesis S(0) holds and let z ¢ o(H,). Then the function

R, 3¢ G (2), (7.106)
15 infinitely differentiable and
d’l’L
d—GE(Z) = > G (2)H™G (2) - - Go(2) H™ G, (). (7.107)
€ ni+--+n;=n

Remark. In this section we will deal only with the first derivative of the function (7.106).
The higher derivatives will be used in Section 7.2.
Proof. Let € > 0 be fixed and z ¢ o(H,). First note that

ING(2)]| < C. (7.108)

In fact, by Lemma 7.3 ||(Hen + 1)Ge(2)|| is bounded and hence (7.108) follows from the
bound
INGe(2)|| < [IN(Hege +1) I (Hege + 1D Ge(2)]]-
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Next we note that for |h| < § we have

— h /
Voo = VON= < Pl sup (). (7.109)

€]

Hence, for |h| < §

[(Hern — Ho)Ge(2)|| = [[(-1AN 4+ Vepn = Vo) Ge(2) || < Chh.
Therefore, for small enough h, z € o(Hy) and h — G, p(2) is norm continuous at h = 0.
We will now show that the function (7.106) is differentiable and that Relation (7.107)
holds for n = 1. An easy inductive argument then yields that this function is infinitely
differentiable and that Relation (7.107) holds for all n.

We have
Gesn(2) — Ge(2) = hG(2) HV G (2) = T +11, (7.110)

where
I = (Gein(2) = Ge(2)) (Hern — He) Ge(2)
= Geyn(2) (1N + AWVein — AVO)Ge(2) (—1AN + AVeip — AVE)G(2),
I :=G(2)(Hep — Ho— hHM)G(2)
= Ge(2)(AWVepn — AVe = BAVID) G (2)

For |h| < §, we have

h 2
IVesn = Ve 0N < L sup (o), T.11)
Using (7.108), (7.109) and (7.111) we see that I and IT are less than C'h?. This ends
the proof of the lemma for n = 1. O

We proceed to derive an alternative expression for iGg(z) which will play an important
role in the sequel.
The commutator [S, H], defined as a quadratic form on D(S) N D(H,) is equal to

A
[S,H] = —iN + 7 (—a(s&(—es)a) + a*(s&(es)a)) . (7.112)
If we assume S(0), then it is easy to show that % (—a(s&(—es)a) + a*(sé(es)ar)) is an
infinitesimal perturbation of —iN. Hence the right hand side of (7.112) defines a closed

operator with domain D(N). By a slight abuse of notation, this operator will be also
denoted by [S, H].
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Lemma 7.5 Assume that Hypothesis S(0) holds. Let € # 0, z ¢ o(H,) and m > 1.
Then, [S,G™(z)], defined as a quadratic form on D(S), extends by continuity to a bounded
operator on H equal to

[S,G™ (2 ]—ZG’c+1 )[S, HGT " (2).

Remark. In this section, we will use Lemmas 7.5 and 7.6 with mm = 1. The cases
m > 1 will be used in the next section.

Proof. For t real we define
He,t = eitSHEefitS
= Hepe +tN + J5(a(eE(—es)a) + a* ("¢ (es) ).

Let . .
Get = eltS(Z _ He)flefltS

= (Z — He,t)_l.

Arguing as in the proof of Lemma 7.4, one shows that the function

R>t— Gy
is differentiable and that
d .
EGE:tLﬁ:O = GE(Z)I[Sa HE]GE(Z)
It follows that .
d "
prLCH I > GFU(2)[S, HIGT*(2). (7.113)
N k=0
On the other hand, in the quadratic form sense on D(S),
d ) m
7 ety = i[S, G (2)]. (7.114)

Combining (7.113) and (7.114) we derive the statement. O
Let ¢ be as in (7.99) and let

n(t) = e't¢’(t) = t('(t) — £(1)). (7.115)
We set
K. = 2 (a(n(=es)a) + a* (n(es)a)) (7.116)
<=7 ) )
Note that 0 ¢ suppn (this fact will play an important role in the sequel) and that
Y _[S,H] =K. (7.117)
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Lemma 7.6 Assume that Hypothesis S(0) holds and let z ¢ o(H,) be fized. Then, for
any m > 1,

%GT(z) = [S,G™(2)] + Zf: GH () K.G™ % (2). (7.118)

Proof. Note that

Lam(z) =Ty GH2) (£G(2)) Gm=170(2)
= Sr GEFL(z) HO G (2).

The result follows from the identity (7.117) and Lemma 7.5. O

From now on we strengthen the hypothesis on the interaction and we will assume S(1).
Note that the following inequality plays the role of the Mourre estimate.

Lemma 7.7 Assume that Hypothesis S(1) holds and let € > 0. Then, for any ¥ € D,

—i(‘l’l(ﬂe — H)) > (1= V2| ol 50l ) (T IND).

Remark. Since £'(t) = e’ around 0, we have that ||£'||.c > 1. On the other hand, by an
appropriate choice of the function (, we can make ||€'||o as close to 1 as we wish.

Proof. Let

Then on D,
_i(He - H:) =N+ ﬁ(v—e - ‘/e)

= N+ p(&1(es)sa)

= N (1 + )\N_%gp(&(es)sa)N_%) Nz,

M

The result follows from this identity and the elementary estimate

INT2p(Ei(es)sa)N 73| < V2[& (es)sall
< V2l llsollsall < V211 |solsx]]-
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In the sequel we choose Ay > 0 and Cy > 0 such that
A < (V2sall)
Co < 1—+2Asql.
It follows from Lemma 7.7 that we can choose ¢ in (7.99) so that for |[A\| < A; and ¥ € D,
5 (VI(H, — H) ) > Cy(W|NW) (7.120)
All the results in the sequel will hold for real A such that |[A\| < Aj, uniformly in A.

(7.119)

Lemma 7.8 Assume that Hypothesis S(1) holds and let € > 0. If Imz > —Cye then
z ¢ o(H.) and
1

<
1G] < Imz + Cyhe

Proof. It follows from Relation (7.120) that the numerical range of the operator H, is
contained in the region Imz < —Cje. Since D(H,) = D(H}), the statement follows from
Proposition 2.9. O

Before we make use of the last result, we need one additional lemma.

Lemma 7.9 Assume that Hypothesis S(1) holds and let ¢ > 0 and z € C, be given.
Then, for any ¥ € H,

M

INSGU()W]| < (Coe)H (WG () D),
INRGE ()] < (Coe) H|(W]GL() W) }.

Proof. We prove the first relation. A similar argument yields the second. We have
IN?G(2)¥|? = (V|G (2) NG (2)¥)]
< (Coe) 1 (¥]G2(2)(ImH + Imz) G (2) V)
= (i2Co6) H(T(GE(2) — Ge(2))¥)
< (Coe) T (¥|Ge(2) D),
where in the first estimate we used (7.120) O

From now on p will denote a Schwartz function. Set

(S)ep = (S) "p(eS),

Fep(2) = (9)5G(2)(S)cp-

Note that Lemma 7.4 yields that the function R, 3 € — F, ,(2) is infinitely differentiable.
We are now ready to prove one of the key technical results of this section.

(7.121)
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Lemma 7.10 Assume that Hypothesis S(v) holds with v > 1 and let ;1 > 0. Set y(p) =

min(p, 1). Then, for any z € C,

d 3 1 oty
HEFe,p(z) < Cie W F,,(2)]17 + |A|Cae™ || Fp(2)]].

Proof. It follows from Lemma 7.6 that

d
T Fep(z) =THITHTIL

where

|

(£48)a8) Gel2)(S) o + ()b Gl2) (2(S)e)
IT = (S)70[S, G(2)(S)2h,
I = (S) LG (2) K Ge(2)(S) b

d

Z(G\H

FEE
Note also that Lemma 7.9 yields the estimates

1GENS) A < INFGES) b < (Coo) "2 | Fep(2)12,

)
)
Note that

< e W

IG(S) A < IN2G(=)(S)74]] < (Coe) 2| Fep(2)]|2-
Thus, the term I is estimated as follows:
T < e 015 |l (1G(2)(S)at | + [|G2(2)(S)41)

_1
< 20, 2|9/ ||owe™ 2P| Fp(2)]|2.

Since for any € > 0,
1SSl = 11S)eh ST < €W plos,

the estimates (7.123) yield

I < e O ol (IGU)(S)Z + G2 (2)(S)21)
< 20, * pllse™H10| F, (=) 3.
The term III is estimated as
I < N3G NS) AN Gl S AN KN
< Gy Al ([l (—es)al] + l[n(es)al) | Fen(2)]

< 205 A ||s e[ sup, [t n(t)|e || Fe,(2)]].
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Note that since 0 & supp 7, sup, |[t~"n(t)| < co. Combining the estimates (7.124), (7.125)
and (7.126) we derive that Relation (7.122) holds with

_1
Cr =2C, *(llpllso + 11£']lo0)
Cy =205 "[|s"al|sup, [t "n(t)]-

(7.127)

O

Lemma 7.11 Assume that Hypothesis S(v) holds for some v > 1 and let 1 > % Then,

(i) Sup(eyer xcy [ Fep(2)]| < C.
ii) For any z € Cy, the norm-limit lim, o F, ,(2) exist.
+ il N

Proof. Since )
[ Fep(2)]]2 <1+ [[Fe,(2)

it follows from (7.122) that

d

—F

d€ G,P(Z) S aE“Fe,p(Z)H +b57 (7128)

a, = Cre 3 ¢ |A|Cye™21,

where

b = Cre 2t

Since p > %, v > 1, we have
1 1
/ a,dT < 00, / b,dr < oo.
0 0

Note also that Lemma 7.8 yields that for e > 1, ||F,,(z)|| < Cy' for all z € C,. Thus by
the Gronwall inequality (see e.g. [DG], Proposition A.1.1) we obtain for all z € C, and
e >0,

IFp(2)l < C, (7.129)

1 1 1
C :=exp (/0 aTdT> (Oo_l/o a,dr +/0 deT> . (7.130)

This yields Part (i) of the lemma.
To establish Part (ii), note that Relations (7.128) and (7.129) yield that for any 0 <
€1 < €2,

where

[Feop(2) = Fep(2)l| < ST
< [2(Ca, + b,)dr.

1

LFp(2)| dr
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Thus, if €, — 0 then the sequence F, ,(z) is Cauchy and this yields the statement. O
Assume now that p(0) = 1. Clearly,

Fy,(2) = (S)™"(z = H)"(S)™".
Thus, to finish the proof of Theorem 7.1 it suffices to show that

IE%I F.,(2) = Fy,(2). (7.131)
(Note that Part (ii) of Lemma 7.11 guarantees the existence of the limit in (7.131) but says
nothing about its value). The proof of Relation (7.131) resolves the infrared problem we
have discussed in the introduction. In the physics language, there is no infrared problem
as long as € > 0 — this constant plays a role of a “complex boson mass”. In our approach,
the infrared problem appears in the limit € | 0 and is due to the fact that domains of
H and H, with € > 0 are different. This difficulty is resolved below. We remark that
an argument similar to ours has been used in [JP1]. The reader may consult [JP3] for
additional discussion of this point.

The following technical result plays a key role in the resolution of the infrared problem.
Recall that Go(z) = (z — H) L.

Lemma 7.12 Assume that Hypothesis S(1) holds and let = € C,. be given. Let f = +3.
Then,
(i) For any € > 0,

|

Imz

IN-2G, () NP|| < é (1 + M) | (7.132)

(ii) Assume in addition that Hypothesis A is satisfied. Then, (7.132) is true also for e = 0.

Proof. Let Nj be as in Lemma 4.2. For any € > 0 consider the operator
H.5p:= H.+ AN; PV.NP — \V..
It follows from Lemma 4.2 that
IN; PVN] = Vil < OV,

where we use the shorthand C := /2||a||. Therefore, if ¢ > 0, H, ;4 is a closed operator
on ®. If ¢ = 0, Hypothesis A yields that H, ;g is essentially self-adjoint on ©. Note also
that for any € > 0,

N(H,) C{z: Imz < —Cje},

(recall the estimate (7.120)), therefore

N(H.s55) C {z: Imz < —Cye + C|A|V6}.
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Thus, if Imz > —Cye 4+ C|A[V/§ then the operator z — H.;p is invertible and

-1

I(2 = Hegp) 'l < (Imz + Coe — CIAVD)
From now on we fix z € C and choose 0 such that
CIAVG < Ime.

Let
Din =D N (K Tin)-

For any ¥ € D5, we have
H.nU = Ny PH. o N/ O

Similarly, for ¥ € ©g, we have
(N5 "V = Vo = N; VN ¥ — Vw.

Thus, on D4,
He s = Heg + N;PV.NY

= N, "H.N?.

(7.133)

One easily shows that Dg, is a core for Heg. If € > 0, V. is an infinitesimal perturbation
of H. g, and therefore Dy, is also a core for H, and H. ;4. It follows from Hypothesis A

that Dg, is a core of Hy. Therefore, for € > 0,
Dfin 1= (2 — He5,5)Dfn,
is dense in H and on Dg,,
(2= Hesp) ™t = Ny P(2 — H) !N},
Next, we note that

(1+46)%, B>0,

Ba—B| — -B B
B e B A

Therefore, for any € > 0 and ¥ € Dy,

1+0

15 )
INP(z — H)T'NP@| < (T) (Imz+Coe—C’|)\|\/5) 1||\I/||

2
Taking 6 = (;g‘;\') , we derive the statements of the lemma. O
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Lemma 7.13 Assume that Hypotheses A and S(1) hold. Then
lim N 3G (2)N 2 =N 3(z— H) 'N 2. (7.135)
Proof. Let e > 0. We have
N"3(Ge(2) = Go(2))N " = N 2Go(2) (He = H)Ge(2)N % (7.136)
1 L 1 _1\ AL _1
= N2Gy(2)N?> (—ie+ AN2(V, = V)N"2) N3G (z)N "%, (7.137)
This identity and Lemma 7.12 yield that

INT2(Ge(2) = Gol2)) N2 | < C2e (1 + 2|\ [l sup €' (11 + t2>|) . (71138)

where C, is the constant on the right-hand side in (7.132). Clearly, this estimate yields
(7.135). O

We are now ready to finish
Proof of Theorem 7.1. As we have already remarked, it follows from Lemma 7.11 that
to prove Theorem 7.1 it suffices to show that for any z € C,,

lifgl F.,(2) = Fy,(2). (7.139)

Since we know that the limit on the right hand side exists, it suffices to show that

w— ligl F. ,(2) = Fy 5(2). (7.140)

This relation follows from (7.135). O

7.2 Holder continuity

This section is devoted to the proof of the following theorem:

Theorem 7.14 Assume that Hypotheses A and S(v) hold with v > 1. Let n € N,
0<0<1,and p> 3 besuchthat v>p+31=1+n+0. Let 0 < Ay < (vV2||sa|) .
Then, for |A| < Ay, the function

Cy 22 (S7) H (1™ — H™) 1Sy~ (7.141)

extends by continuity to C, and is of the class C™?(C.) uniformly in \.
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The rest of this section is devoted to the proof of Theorem 7.14. We will freely use
the results and notation of Section 7.1. In particular, we drop superscripts vV until the
end of this section. We fix Ay > 0, Cy > 0 and ¢ such that Relations (7.119) and (7.120)
hold. All the results in the sequel will hold for real A such that |A| < A;, uniformly in A.

For any € > 0, the function

C, 3z G2),

is analytic and
OLG(2) = (=D'1G(2).

It follows from Lemma 7.4 that for any [ and m the mixed derivatives
2L G(2)
exists on C; x Ry, and that they are linear combinations of the terms
GL(2)HM™IGR(2) ... G (2) H™ G+ (7)), (7.142)

where [’s and my’s are positive integers such that

k k+1
>omj=m, Y lLi=l+k+1 (7.143)
j=1 j=1

We proceed to study in some detail these mixed derivatives.
Lemma 7.15 Assume that Hypothesis S(v) holds with v > 1 and let pn > . Then,

SUP.cc, H<5>;g (lorGuz)) N3 | < cestm,

(7.144)

1_

sup,cc, N7 (910mGe(2)) (S)z4] < cemztom.

Proof. We will prove the first relation. A similar argument yields the second. We write

. . . . . 1
9.0 Ge(z) as a linear combinations of the terms (7.142). After inserting (S) % and Nz,
we estimate the norm of each term by

_ 1 1 1 _ _1 m _1 1 1
{S)HGe(2)NE|||[N2Ge(2) N2 || NT2 HIMIN T2 ||| N2 G (2) N2 || ...
L INTG(2)NE||*|N 2 H™) N 3|||| N2G(2) Nz ||*+1. (7.145)
It follows from Lemmas 7.9 and 7.11 that
_ 1 -1 1 L1 1
[(S)chG(2)N2|| < Cp e 2 ||F p(2)]| < Cge2C3,

(7.146)
INFG(NH| <yt
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Furthermore, for m; > 1,
INTEHINT3|| < ey e, (7.147)

where
Cmy = Oy + 2/ sup [£751€0) (1) [}sa (7.148)
t

Combining these estimates and using (7.143) we bound (7.145) with
O e

Summing over the terms (7.142) we derive the Relation (7.144). O

Lemma 7.16 Assume that Hypothesis S(v) holds with v > 1 and let p > . Let k =
kl + k2. Then
sup |(S)oh 5% (001 Ge(2) KGe(2)) S*(S) 1 | < Cetom bz, (7.149)

ZGCJ,_

Proof. Note that
8;82”6?6(27)1(56?E (2)

is a linear combination of terms
(0207 Ge(2)) (0FKo) (0207 Ge(2)),

where | = [ + 1y, m = my + my + k. After inserting () # and (S)_/ , we bound the
norms of these terms by

(7.150)

€,02 .

H<S>;51 (a;lzla?“Ge(z)) N2

INT2OE KN 2| N3 (9207 G(2)) (S)ofs

We estimate

IN“FOERNE| < e ([ls*®) (es)al| + |50 (~es)al ) (7.151)
< 2|\| sup, [tFrn®) (1)[]|s a||e 1 .

Note that since 0 ¢ supp 7, the constant sup, |t*~“n*)(¢)| is finite. Combining the estimate
(7.151) with Lemma 7.15, we obtain

sup [[(S) 4 (0101 Ge(2) KGe(2)) (S) il < Certom=2tv, (7.152)
zeC4
Next note that we can find Schwartz functions +;, 7; such that p; = v;7;, for i = 1, 2.
Clearly
(S)ep = VileS)(S)eh 1=1,2.

Yi?
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Therefore, we can estimate the left-hand side of (7.149) by

1 (e9)S™ || [(S) o2 (BLr Ge(2) K Ge(2)) (S):4, | 1552 32(eS) -
Thus, Relation (7.149) follows from (7.152) and the estimates
19:(€S)S*i|| - < €M supy [thF(t)], i=1,2. (7.153)

O

Lemma 7.17 Assume that Hypothesis S(v) holds with v > 1. Let p > 1, k > 2p,
k= k‘l + kQ. Then,

sup [|04(S)" SF1 G (2)S*(S)71 || < Cehtmatn, (7.154)

€,01 €,02
zeCy p p

Proof. We use the splitting po = 7375, as in the proof of the previous lemma. If k; > ko,
then k£, > p and we use the estimates

1(S) e

€,01

Sh|l < e Brrtsup, [t (2],
15%292(eS)]| - < €72 sup, [t*292(t)]
10LG(2)(S)tull < Celo,

€,72

where we used Lemma 7.15 in the last estimate. If k; < ks, one interchanges the roles of
ky and ko and argues similarly. O

We recall that for any operator A,
SA =S, 4],

is the quadratic form defined on D(S)ND(A). If A is bounded, one can define the multiple
commutators SP A for any positive integer p as quadratic forms on D(SP).
In the following lemma it will be convenient to use the following function:

€, v <0,
w(v,e): =4 1+log(l+et), v=0, (7.155)
1, v>0.

Let us note the following properties of this function:
[lw(v, r)dr < Cw(v +1,¢),
(7.156)
w(@—1,€) =¢ Yle), 0<O<1,

where the function fy(e) was defined in (2.34).
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Lemma 7.18 Assume that Hypothesis S(v) holds with v > 1 and let p > L. Then, for
some constants Cy and Cy,

sup,cc, 10:08 (S)cfGe(2)(S)c ]

(7.157)
<Ciw(—k—1—3+p,€) +Cow(—k—1—1+v,e).
Proof. Note that
k
0c (S)ep Ge(2)(S)eps
is the sum of the terms
(5(S)ct) (92Ge(2)) (aF(S)2h) . (7.158)
where ky + ko + k3 = k. From the formula
0.G.(2) = SG(2) + G (2) K. G(2),
(recall Lemma 7.5) one easily shows by induction that
OG.(2) =SPG(2)+ Y SPIG(2)K.G(2), (7.159)

p+r+1=ks

as a quadratic form on D(S*).
Using (7.118) and the identity 0 (S) % = S¥(S)_*
combination of the terms

%), We can write (7.158) as a linear
€,p\"1

(), Hany Skt G (2 )S]2+k3<5>65(k3)7 (7.160)
where j; + jo = ko, and of the terms
<S>Ep(kl)skl+ll (arG ( )KEGE(Z)) Sl2+k3<s>€5(k3), (7161)

where [} + I, + 7 + 1 = ky. After applying 9! to terms (7.160) and (7.161) we estimate
them with the help of Lemmas 7.17 and 7.16. This yields (7.157) if £ > 2.
Next note that (7.142), (7.146) and (7.147) yield that for any & and [ there is a constant
C' such that
sup [|005(S), 4G (2)(S) 4] < O

2€C4,e=1

Therefore, if Relation (7.157) holds for k£ + 1, integrating the function

7 0,07 H(S) 5 G (2)(S)7)

TP

over [e,1] and using (7.156) we derive that Relation (7.157) also holds for k. The proof
of Lemma 7.18 is complete. O
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We are now ready to finish
Proof of Theorem 7.14. Assume that p(0) = 1. Let m =0,...,n. We have

10.07(S) 1 Ge(2)(S) ]| < Cewo(=1+6+n —m,e). (7.162)

Since —1 < —1 + 0 + n — m, the right hand side of (7.162) is integrable around 0. This
implies the uniform convergence of

liﬁl@?(S);ng(z’XSY“ m=0,...,n.

€07

Hence, by the well known calculus lemma we can interchange the order of the limit and
the differentiation in the following formula:
0z(S)™(z — H)7H(S)™ = 02 limyo(S) 1 Ge(2)(S)7

=l 07(S) 4G (2)(5)

p )

I3
p
I3
P

where in the first step we used (7.139).
It follows from Lemma 7.18 that for some constant C,

SUp,ec, ||658i8§(S>;§Gf(z)(5);g|| < Cuw(=1+0,¢) =Ce Yple), k+1<1.
Therefore, the function
[0,1[xC > (6,2) = 07(S) . Ge(2)(S)
satisfies all the conditions of Proposition 2.3. It follows that the function
Cy 22— 0MS) "(z—H) 1 S) ™" (7.163)

is in the class C%?(C,). Therefore the function (7.163) with n = 0 satisfies the conditions
of Proposition 2.4. The proof of Theorem 7.14 is complete. O

—H
€07

7.3 Properties of w(z)

In this section we prove Theorem 6.1. Let us first state a version of Theorem 7.14 for the
free operator. Setting A = 0 in Theorem 7.14 we derive

Theorem 7.19 Letne N, 0<0<1,v= % +n+ 6. Then, the function
C. 2z (S7) V(217 — HYY) 1Sy (7.164)
extends by continuity to C, and is in the class C™?(C).
Proof of Theorem 6.1. Note that if Hypothesis S(v) holds then the operators
p(a)™(S™) and  (S7)p(a)",
are bounded and their norms are less than or equal to ||(s)”al||/v/2. Since
w(z) = (@) T(ST) ((ST) (17 — HY)HST) ) (ST (@)™, (7.165)

we derive the result from Theorem 7.19. O
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7.4 Comparison with the free resolvent

In this section we estimate the difference of the free and the full resolvent on the radiation
sector.

Theorem 7.20 Assume that Hypotheses A and S(v) hold with v > 1. Let p = v — §
and 0 < Ay < (vV/2||sal|)~t. Then

sup (ST (217 = H) = (217 = Hy) T (ST) | < o
(\2)€[—A1,A1]xCy
(7.166)

For notational simplicity, in the sequel we drop the superscripts vv. It follows from
Theorem 7.14 that it suffices to take in (7.166) supremum over z € C,. We choose again
A1 > 0, Cp > 0 and ¢ such that Relations (7.119) and (7.120) hold. All the results in the
sequel will hold for real A such that [\| < A;.

In what follows we will denote by the same letter C' various constants which depend
only on the constants introduced in the previous section, but do not depend on A. The
values of these constants may change from estimate to estimate.

Lemma 7.21 Assume that Hypotheses A and S(v) hold with v > 1. Let i > 1. Then

sup [|07(S) 5, (Ge(2) = Grre(2)(S)h, | < CIAJe™

zeC4

Proof. Using
GE(Z) - Gfr,e(z) = )‘Ge(z)‘/;Gfr e(z)

we can write
<S>e 01 (aln(G ( ) - Gfr,E(Z))) <S>E_,/ljz

as a linear combination the terms

(S)oh Ge(2) HIMG(2) -+ Ge(2) HI™ DG (2)

€,01

(7.167)
X)‘Vemk)Gfrf( )Hfﬁzk“ Gfre( ) "Gfre( )H ) Gfre( )(S);;;g,

fr,e
where Z§:1 mj =m, mj > 1 for j # k and my, > 0.. Using
INT2HIINTZ | < Ce™, INTEHZINTE| < Cel T, omy > 1,
INTZVIINT3|| < Ce™ ) my >0,

() Ge(2)NE|| < Ce 2, ||[NZGg (2)(S). 1| < Ce 2,
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IN?G.(2)NZ|| < Ce™',  |IN3Gpo(2)N2|| < Ce™,
we see that (7.167) can be estimated by |A|e=™~!. This shows

sup ()24, (0(Gu(2) = Gia2)) ()

2€Cy

< C|Ae ™ (7.168)

Next we note that

)

is a linear combination of the terms
SE(S) By (022 (Gel2) = Gire(2)))(S) iy S™, (7.169)

where k; + ko + k3 = k. Then we write p(ki) = %%, ¢ = 1,2 for some Schwartz functions
v and we rewrite (7.169) as

31(e5)S4 () 2, (02 (Gol2) — G ())(S): 4" eS). (7.170)
Now (7.168) combined with (7.153) yields the statement. O

We are now ready to finish
Proof of Theorem 7.20. Let n be the integer such that n +1 > v, and let p be a fixed
Schwartz function such that p(0) = 1. We will use the shorthand

R(e) = (S)c,Ge(2)(S)cp

€p”

It follows from Lemma 7.18 and the choice of n and p that

sup ||0"R(e)|| < Ce ™ M, (7.171)
ZEC+
Furthermore, it follows from Theorem 7.14 and Taylor’s formula that for any € > 0
RO) = 3 (—1) S b () + A [ (e~ rytorRin)ar
= ke (n—1)!'Jo " '

(This formula is derived using Taylor’s expansion of the function R(e — ¢) in the variable
d and then taking J 1 €.) Setting A = 0, we get a similar expansion for Ry (0):

Bo(0) = S (- 1)F S 0 Re(e) + =" [ (e —ry=ar Rerar.

P ke (n—1)!Jo

It follows from (7.171) that the error terms in both expansions are estimated by C'e” !

Combining this estimate with Lemma 7.21 we derive that
IR(0) = R (0)| < S35 llOF(R(e) = Reule))|| + Ce! (7.172)
< C(Me ! +e7h).

This estimate is optimized for e = (|A|/v — 1)'/¥. Substituting this value into (7.172) we
complete the proof of Theorem 7.20. O
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8 Proofs of the main theorems

Throughout this chapter we assume that Hypotheses A and S(v) hold with v > 1 and
thatnEN,0<9§1andu>%satisfyl/ZujL%:l—i—nqLG.

Notation. In this and the next section we adopt the following shorthand. Let I be an
interval, Q@ C C, Qx I 5 (z,\) — A,(z) an operator-valued function, and f()) a positive
function on I. We will write Ay(z) = O(f())) for z € Q if there exist constant C' such
that ¥(z,A) € Q@ x I, [|[Ax(2)]] < Cf(N). As customary, we will suppress the variable A in
the operator-valued functions, and write A(z) for A,(z), etc.

8.1 Proof of Limiting Absorption Principle away from o(K)

In this section we prove Theorem 6.2. We fix A; > 0 such that A; < (v/2[|sal|)~".
In what follows we assume that |A\| < A;. Recall that the self-energy W, (2) and the
resonance function G, (z) are defined by (3.48).

Lemma 8.1 The function Cy > z — W, (2) extends by continuity to C, and is of the
class C™(C,) uniformly in \. Furthermore, there exist 3, such that

sup A72||[W, (2)|| < B (8.173)
where the supremum is taken over |\| < A, and 2z € C,.

Proof. Since

W (2) = Np(a) 7V (S™)* (<5W>7“(2’1W — HW)*(SW)*“) (S™) ()™,
the result follows from Theorem 7.14. O

An immediate consequence of the previous lemma is that for 2 € C,, G,(2) is a
well-defined closed operator with domain D(K).

Lemma 8.2 The operators G,(z) are invertible for z in C, \ B(c(K), 2p;) and the
function G1(2) is of the class C™ of this set.

Proof. Since G,(z) = 21V — K — W,(z), the estimate (8.173) and Proposition 2.8 yield
that G(z) is invertible and
IG(2)]l = O(A ). (8.174)

for 2 € C; \ B(c(K), ?B;). The regularity properties of G, (z) are inferred by induction
from the identity

G (2) = GTM(2) = GTH (=) (22 — 20) 1Y = (Wo(22) = Wi (1)) G (22),  (8.175)
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and Lemma 8.1. O

Proof of Theorem 6.2. The theorem follows from Theorem 7.14 and Lemma 8.2 after
sandwiching the Feshbach formula

(z—H)™' =1V -HV)"!
o o 3 o o (8.176)
_|_(1vv + (Z].VV _ HVV)*IHVV)G;I(Z)(HVV(Z]_VV _ va)fl + ]_Vv)7

with (S)# and after inserting (S) #(S)* in front of (after) H" (H'Y). (Note that
(S)+ =17 @ (57)7+) O

In the next two sections, similar elementary arguments based on the insertion of various
powers of (S) at appropriate places will be skipped.

8.2 Proof of Limiting Absorption Principle around k € o(K)

In this section we prove Theorem 6.3. We introduce new splittings of the Hilbert space
H, _
H=HoH =H o HEOH", (8.177)
where B _
H* := Ranpy,, H":=Ran(1—p), HE:=H NH".
In our argument we will apply several times the Feshbach formula with respect to these

decompositions. To that end we introduce some additional notation. The matrix form of
the operator H with respect to the decomposition H = H* @ H* is denoted by

Hkk  frkk
The operator HF* acts on HE & HY, and its matrix form is denoted by
T HEE kv
kk
H™ = l g [ ] . (8.179)

(Arguing as in the beginning of Chapter 6 one easily shows that these matrix represen-
tations are well-defined and that the formalism and results of Chapter 3 can be applied.)
We employ the same notation for other operators. Note that p, = 1¥¥. Note also that

H"™ = g% H* = g (8.180)

For z € C, we set
Wi(z2) := H¥ (21VY — HV) "1 H'E,

(8.181)
Gi(z) == 21k — HEE VW (2).
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Note that if W, (z) and G(z) are the usual self-energy and resonance function, then

Wilz) =Wk (z),  Gi(z) = G (2). (8.182)

In the next lemma we assume that |A| < Aj.
Lemma 8.3 The function W(z) belongs to C™%(C,) uniformly in X\ and we have

sup A% [[Wy(2)[| < B, (8.183)
where the supremum is taken over |\| < Ay and z € C,.

Proof. We apply Lemma 8.1 and (8.182). O

Let 6; > 0 be such that
0 < dist(k,o(K) \ {k}).

We choose A, > 0 such that
Ay < A4, BiAZ < 8. (8.184)
Until the end of this section we assume that |A| < A.

Lemma 8.4 The operators Gi(z) are invertible for = € C, N B(k,d;) and the function
Gﬁ_l(z) is in the class C™Y of this set uniformly in \.

Proof. The invertibility of G(z) follows from Proposition 2.8, Lemma 8.3 and the choice
of Ay. The regularity properties of G;(z) follow by induction from Lemma 8.3 and an
identity similar to (8.176). O

For z € C, we set
Wi(z) = HFF(z1FF — HFF)—L kK
(8.185)
Gr(z) = 21k — HEE T (2).
Lemma 8.5 The function

C. 3z (S)H(z1FF — HFF)=1(g)=n (8.186)

extends by continuity to C, N B(k,d,) and is in the class C™ of this set uniformly in .
The same result holds for the function Wy (z).

67



Proof. The Feshbach formula yields that for z € C,
(Zlﬁ _ HE)—l — (zlw . HW)—l

+(15E 4 (217 — HY) " HYE) G (2) (1 + HE (217 — HY) 7).
- (8.187)
We derive the result sandwiching this identity with (S)# and invoking the previous
lemma and Theorem 7.14. O

We will now make use of the Feshbach formula with respect to the decomposition
H = H* ® H*. Note that in the notation we have adopted, w**(z) = prw(2)py. In the
sequel we set k := (¥ — 1)/v. Recall that in (6.96) we defined

wy == wr*(k 4 10).
Lemma 8.6 There is a constant 3, such that if 2 € C, N B(k,\*B), then
sup [A|72F Wi (2) — N2wy|| < B, (8.188)
where the supremum is taken over 2 € C N B(k,\2B), |\ < As.
Proof. It follows from (8.187) that

Wi(z) = H¥ (217 — HT) ' H™*
o S (8.189)
+Hkk(zlvv - va)levEGﬁ—l(z)Hﬁv(zlvv - va)lekk‘

Since 8;A2 < §;, Lemma 8.4 yields that for = € C, N B(k, \2/3;) the second term on the
right-hand side is O(A\*). It follows from Theorem 7.20 that the first term equals

HkE(le_ HW)AHEIC — HkE(le_ Hf\;_v)leEk +O(|)\|2+n)_

Recall that in (2.34) we defined the function ¢y(7). We extend the definition of this
function for # € [0, oo[ as follows:

70, 0<0<1,
lo(T) :==< 7(1L+1In(1+771) 0=1,
T, 6> 1.

Then, by Theorem 7.19,
H™® (217 — HY) " HP = N2t (2) = Nwf* + R(2),

where

IR(z)[| < 1A%, _
< O,

(|2 — &)
(B1A?) < Cs| AP,

M

1
2
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where we used 2v — 1 > k and 2 > « in the last step. O

The operator wy, is dissipative and by the assumption,
T = a(wk) NR C Udisc(wk).
Therefore, Propositions 3.3 and 3.4 can be applied. Let

¢i= sup (2 = ) Lot (o), (8.190)
Z€C+

(which is the constant ¢ in Proposition 3.3 applied to wy). In addition to (8.184), in the
sequel we assume that A, satisfies
ByAie < 1. (8.191)

Lemma 8.7 The operator Gi(z) is invertible for
2€ Cyn (Blk, A1) \ Bk + Xy, |APT82))
and the function G, (2) is in the class C™" of this set.

Proof. It follows from the definition of G(z) and Lemma 8.6 that if = € C, NB(k, A\24,),

then
Gr(z) = (2 — k)1 — W, (2)

= (2 — k)1* — X2w, + R(2) (8.192)
= X2 (A 2z = k)1 — w + A 2R(2))
where ||R(2)|| < B2 A\|*T%. If ¢ is defined by (8.190), then ||A\"?R(z)||c < 1 and
sup dist(o(A72%k + wg) N R, A722) > | A" e,

where the supremum is taken over 2 € C,; \ B(k + \2Ty, |A\|?*%3,). Therefore, it follows
from Proposition 3.4 that G(z) is invertible for

2 € Cyn (Blk, X?81) \ Bk + Xy, |\ 52)) .

The regularity properties of G, *(z) are inferred from Lemma 8.5 and an identity similar
to (8.176). O

Proof of Theorem 6.3. Since (ii) = (i), we have only to prove (ii). We choose A such
that (8.184) and (8.191) hold. The Feshbach formula yields

(v — H)™' = (1% — g~
_|_(1klc + (Zlﬁ . HH)_IHE’C)GEI(Z)(IM + HkE(zlﬁ . Hﬁ)—l)_

Sandwiching this formula with (S)~#, we derive (ii) from Lemmas 8.5 and 8.7. O
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8.3 Proof of Limiting Absorption Principle around % + \>m

In this section we prove Theorem 6.4. We will freely use the notation and the results of
the previous section. We will indicate the place in our argument where we require that
Hypothesis S(v) with v > 2 holds.

In addition to (8.177) we introduce the following splittings of the Hilbert space #:

H=H"OH" =H™ & H™ D H,

where

H™ := Ranpy,, H™ :=Ran(l — pp,.), HZ:=H NH™

Note that by the definition of pi,,, H™ C H*, so the above splittings are well-defined.
Note also that B B ~
H™ = {F™ = g™, {"T = {7 = g (8.193)

For these splittings we adopt the notation analogous to (8.178) and (8.179).
For z € C. N B(k,d;) we set

W (2) 1= HZF(21FF — fFF) =1 fkm,
Gp(2) = z1mm — gmm — W, (z).
Note that if Wy (z) and G (z) are given by (8.185) then
Wi(2) = W (2), Gu(2) = Gy (2). (8.194)
We assume that |A| < As.
Lemma 8.8 Assume that z € C, N B(k,\?B,). Then
HE (17 — gL O(Ap+),
o (8.195)
H™k(21kk — R =LERm - — O(|\]2HF).

Moreover, we have
sup |A| 7" Win(2) — Nwp™ || < Ba, (8.196)

where the supremum is taken over z € C, N B(k, ?B;), |\ < As.

Proof. To prove (8.195) we use wy" = (pk — Prn)WkPkm = 0 and Lemma 8.6. (8.196)
follows from Relation (8.194) and Lemma 8.6. O

Let
§y < dist ({m}, o(wg) \ {m}).

We introduce Az > 0 such that
As < Ay, BaA§ < s. (8.197)

From now on we assume that |[\| < As.

70



Lemma 8.9 For z € C. N B(k,\?3;) N B(k + X2m, A\>**3y) the operators Gp(z) are
invertible and the function GE(Z) is in the class C™Y of this set. Furthermore,

J .
d—.G*(z) =0N¥?, j=0,...,n. (8.198)

dev 2

Proof. Clearly,
Gu(z) = (z—k)122 — W,,(2)
= (7 — k)1mm — \2qp " 4 RIL(2)
=N (N2 (z — k)1m2 — ) 4+ NT2RM ()
where R(z) = Wi(2) — A?wy, is the same as in (8.192). By Lemma 8.6,
IR (2) || < [[R(2)]] < Baf A,
if 2 € C; N B(k,\?B3;). Moreover,

Wi Loz r (W) = Welg@w,)\R(Wk)-
Therefore,
c= sup [[(z = w™) 7 L mmy g (wp™)|
ZGCJ,_
is the same as in (8.190). Thus, we can apply Proposition 3.4, which implies that G,,(2)
is invertible and satisfies the bound (8.198) with j = 0.

The regularity properties of G','(z) are inferred from the formula analogous to (8.176)
and Lemma 8.5. The bound (8.198) for j = 0 and induction yield (8.198) for all j. O

For z € C; we set
W(2) := H™™(z1™™ — gmm)—1 gmm
Gm(z) = 21™" — H™ — W, (2).
Lemma 8.10 The function
C. 2z (S) #(z1™™ — H™) (),

extends by continuity to = € C, N Bk, \2B1) N B(k 4+ \m, \>*%3,) and is in the class
C™0 of this set. The same result holds for the function Wy, (2).
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Proof. The Feshbach formula yields
(Zlm . HW)—l — (Zlﬁ _ HE)—l
(1 4 (21FF — R U RGO () (212 R (2 1FR — RS

and the result follows from Lemmas 8.6 and 8.8. O

Lemma 8.11 ASﬂJ,me that Hypothesis S(v) holds with v > 2. There exist a constant 7y
such that for z € C, N B(k, \28,) N B(k + A\2m, A2 3,)

i

< | AP (8.199)

Proof. It follows from the Feshbach formula that
Wo(z) = H™ (21 — [ =1 fmm
o _ _ _ _ B (8.200)
_|_Hmm(zlkk _ Hkk)lekail (Z)Hmk (Zlkk _ Hkk)lemm.

The derivative of the first term in (8.200) is O()\?) by Lemma 8.8. When we differentiate
the second term and the derivative hits (215% — H*)~1 then we get by Lemmas 8.8, 8.9
and (8.198)

O(N)OAH)O(IA) = O(IAI**7).

When the derivative hits G;'(2), then we get by the same lemmas and (8.198)
O(IAFONHO(A) = O(IAI™).

Then we use 26 <2+ k. O

We are now ready to finish
Proof of Theorem 6.4. Let v be given by (8.199). Recall that so far A3 has to satisfy
(8.197). We demand in addition that

AR < 1/7. (8.201)
Assumption (8.201) and Lemma 8.11 imply that

sup  ||W (z +i0)]| < 1.
z€O(k,m)

Thus, the conditions of Corollary 3.13 are satisfied on the interval ©(k, m) with respect
to the decomposition H = H™ & H™. By Corollary 3.13,

dim lgzk,m) < dimH™ = dim py ..
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This completes the proof of Part (i).

Since (iii) = (ii), it remains to prove (iii). First note that, by Lemma 8.10, ©(k,m) N
opp(H™™) = (). Therefore, by Proposition 3.7 and Theorem 3.8, o,,(H) N ©(k, m) coin-
cides with {x € O(k,m) : 0 € o(G(x +10))}. Let € > 0. Since G,,(z) is a continuous
function and C; N B(k, A\2B;) N B(k + A\*m, 20?1%) \ B(o,,(H), €) is compact,

G, () < C.

on this set. A formula analogous to (8.176) and Lemma 8.10 yield that G,!(z) € C™Y of
this set.
The Feshbach formula yields that for z € C,,

(z— H)' = (z1m" - g™m)~1
+(1mm + (Zlm _ Hm)_lem)G;ll(z)(lmm +Hmm(zlm _ HW)_I).

Sandwiching this formula with (S)#, we derive (iii) from Lemma 8.10 and the regularity
properties of G, !(z) proven above. The proof of Theorem 6.4 is complete. O
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