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Abstract

We provide a new simple proof to the celebrated theorem of Poltoratskii concerning ratios

of Borel transforms of measures. That is, we show that for any complex Borel measure m on R
and any fAL1ðR; dmÞ; lime-0ðFfuðE þ ieÞ=FmðE þ ieÞÞ ¼ f ðEÞ a.e. w.r.t. msing; where msing is the
part of m which is singular with respect to Lebesgue measure and F denotes a Borel transform,

namely, Ff mðzÞ ¼
R
ðx � zÞ�1f ðxÞ dmðxÞ and FmðzÞ ¼

R
ðx � zÞ�1dmðxÞ:

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let m be a complex Borel measure on R: Given fAL1ðR; dmÞ; we denote by f m the
complex measure obtained by multiplying f and m; namely, ðf mÞðSÞ ¼

R
S

f ðxÞ dmðxÞ
for any Borel set SCR: We denote by msing the part of m which is singular with
respect to the Lebesgue measure on R: Given any complex measure n on R; we define
its Borel (a.k.a. Stieltjes or Borel–Stieltjes) transform, for zAC\R; by

FnðzÞ ¼
Z
R

dnðxÞ
x � z

: ð1:1Þ

FnðzÞ is a well-defined analytic function of z on C\R:
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The purpose of this paper is to provide a new simple proof to the following
theorem of Poltoratskii (essentially, Theorem 2.7 of [4]):

Theorem 1.1. For any complex valued Borel measure m on R and for any fAL1ðR; dmÞ;

lim
e-0

Ff mðE þ ieÞ
FmðE þ ieÞ ¼ f ðEÞ ð1:2Þ

for a.e. EAR with respect to msing:

Remarks. (1) Poltoratskii actually considers measures on the unit circle (rather
than on R). The transition between his setting and ours is elementary and
standard.
(2) Poltoratskii considers the general nontangential limits of approaching E: We

prefer to consider only the ‘‘radial’’ limits here (approaching E from above at an
angle of 90�; so that our e’s are positive) since we find them more transparent
and since this is what one usually cares about in applications to spectral theory.
Our proof is nevertheless fully valid for the more general nontangential limits (one
essentially just needs to replace the various limits of e-0 by some appropriate
notation for nontangential limits).
(3) It is easy to see that in Theorem 1.1 one cannot replace msing by m: This is

because Fm and Ff m have finite limits a.e. with respect to the absolutely continuous

part of m and finite limits of the form lime-0 Ff mðE þ ieÞ depend on values of f away

from the point E:
(4) Theorem 1.1 is obvious for the special case where msing is a pure point

measure, since one can easily see by dominated convergence that for every
EAR; lime-0 eFf mðE þ ieÞ ¼ if ðEÞmðfEgÞ and thus (1.2) clearly holds whenever E is

a point mass of m: The main point of the theorem is thus in showing that the result
also extends to the singular continuous part of m:

Poltoratskii’s proof of the above Theorem 1.1 is somewhat complicated, partly
since it is done in the framework of a theory that is also concerned with other
questions. In light of recent applications to the spectral theory of random operators
[2,3], there is natural interest in having a short self-contained proof that would be,
in particular, easily accessible to spectral analysts. The proof below aims to achieve
this goal.

2. Proof of Theorem 1.1

We first need to recall some well-known elementary facts.

Proposition 2.1. For any positive Borel measure m on R; msing is supported on

fE : lime-0 jFmðE þ ieÞj ¼ Ng:
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Proof. We have

jFmðE þ ieÞjXjIm FmðE þ ieÞj ¼
Z
R

e dmðxÞ
ðx � EÞ2 þ e2

X
mðE � e;E þ eÞ

2e
; ð2:1Þ

so the result follows from the theorem of de la Vallée Poussin [7] (also see Theorem
7.15 of [6]). &

Proposition 2.2. For any finite positive Borel measure m on R and for any real valued

fAL1ðR; dmÞ;

lim
e-0

Im Ff mðE þ ieÞ
Im FmðE þ ieÞ ¼ f ðEÞ ð2:2Þ

for a.e. EAR with respect to m: Moreover, for any two finite positive Borel measures

m; n on R;

lim
e-0

Im FnðE þ ieÞ
Im FmðE þ ieÞ ¼ 0 ð2:3Þ

for a.e. EAR with respect to the part of m that is singular with respect to n:

Proof. Since m is positive and f is real valued, we have

Im Ff mðE þ ieÞ ¼
Z
R

ef ðxÞ dmðxÞ
ðx � EÞ2 þ e2

(and similarly for Fm and Fn), namely, the imaginary parts of the Borel transforms

coincide with Poisson integrals of the corresponding measures. It is thus obvious that
(2.2) is equivalent to

lim sup
e-0

1

Im FmðE þ ieÞ

Z
R

eð f ðxÞ � f ðEÞÞ dmðxÞ
ðx � EÞ2 þ e2

¼ 0; ð2:4Þ

and that it holds a.e. w.r.t. m if f happens to be continuous. Since the continuous

functions are dense in L1ðR; dmÞ; we can always find a continuous g such thatR
j f � gj dm � jj f � gjj1 is arbitrarily small. Let h ¼ f � g; then by writing

f ¼ g þ h; we see that a.e. w.r.t. m; the upper limit in (2.4) is bounded by

lim sup
e-0

Im FjhjmðE þ ieÞ
Im FmðE þ ieÞ þ jhjðEÞ:

Defining the maximal function

MhðEÞ � sup
e40

ðjhjmÞðE � e;E þ eÞ
mðE � e;E þ eÞ
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and noting that e�1 Im FmðE þ ieÞ ¼
R 1=e2
0 dt mðE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�1 � e2

p
;E þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�1 � e2

p
Þ (and

similarly for jhjm), we see that MhðEÞXIm FjhjmðE þ ieÞ=Im FmðE þ ieÞ for any e40;
at any E: Thus, (2.4) would follow a.e. w.r.t. m if we can show that by making jjhjj1
small we can make MhðEÞ arbitrarily small outside sets of arbitrarily small measure
m: To see this, note that for any t40; each point of the set fE : MhðEÞ4tg is the
center of a closed interval I for which ðjhjmÞðIÞ4tmðIÞ: Therefore, for every
�NoaoboN; we can apply the Besicovitch covering theorem (see, e.g., Section
1.5.2 of [1]) to extract a countable covering of ½a; b�-fE :MhðEÞ4tg by such
intervals that has the form

SN
k¼1

S
N

j¼1 Ijk; where for each kAf1;y;Ng; the intervals
Ijk; j ¼ 1; 2;y; are disjoint, and where N is some universal integer. Thus,

mð½a; b�-fE :MhðEÞ4tgÞp
XN

k¼1

XN
j¼1

mðIjkÞo
XN

k¼1

XN
j¼1

ðjhjmÞðIjkÞ
t

pN
jjhjj1

t
;

and we obtain the desired result. Finally, given two finite positive Borel measures m; n
on R; we note that n ¼ f ðmþ nÞ for some fAL1ðR; dðmþ nÞÞ obeying f ðEÞ ¼ 0 a.e.
with respect to the part of m that is singular with respect to n: Since

Im FnðE þ ieÞ
Im FmðE þ ieÞ þ Im FnðE þ ieÞ ¼

Imf ðmþnÞðE þ ieÞ
Im FmþnðE þ ieÞ:

we thus see that (2.3) holds for the appropriate set of E’s. &

Remarks. (1) While Proposition 2.2 is very well known, we are not familiar with
a reference that really has its proof, which is why we included a full proof here.
We note, however, that this proof is just a variant of a proof of the more
commonly encountered fact that lime-0 ðð f mÞðE � e;E þ eÞ=mðE � e;E þ eÞÞ ¼ f ðEÞ
a.e. w.r.t. m:
(2) To prove Proposition 2.2 for the more general case of nontangential limits, see

the proof of Lemma 1.2 in [4]. Alternatively, one can also use Chapter 11 of [6], who
proves a variant of Proposition 2.2 for nontangential limits and the special case
where m is Lebesgue measure on the circle (but the case of a general m is similar).

We can now prove the main theorem:

Proof of Theorem 1.1. We first consider the case of a positive (finite) measure m and a
real valued fAL2ðR; dmÞ: Without loss, we assume that m is compactly supported
(this is just a convenience to avoid unbounded operators below). Let A be the

operator of multiplication by the parameter on L2ðR; dmÞ; namely, ðAgÞðxÞ ¼ xgðxÞ
for any gAL2ðR; dmÞ; let 1 denote the constant function 1ðxÞ ¼ 1 8xAR; and let

/�; �S denote the scalar product in L2ðR; dmÞ:We note that 1 is a cyclic vector for A

and that m is the spectral measure for 1 and A; namely, the unique Borel measure on

R obeying /1; gðAÞ1S ¼
R

gðxÞ dmðxÞ for any continuous function g on the spectrum

of A:
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We define the operator A1 on L2ðR; dmÞ by

A1 ¼ A þ/1; �S1; ð2:5Þ

and denote by m1 the spectral measure for 1 and A1: Since 1 is easily seen to be
also a cyclic vector for A1; it follows from the spectral theorem [5] that there

exists a unitary operator U : L2ðR; dmÞ-L2ðR; dm1Þ; so that UA1U
�1 is the

operator of multiplication by the parameter on L2ðR; dm1Þ and U1 ¼ 1: More-

over, since Uxn ¼ UAn1 ¼ UAU�1Uxn�1 ¼ xUxn�1 �/1; xn�1S1; one easily
sees (by induction on the degree) that U takes polynomials with real
coefficients to polynomials with real coefficients and thus it takes real valued
functions to real valued functions. In particular, Uf is a real valued element of

L2ðR; dm1Þ:
Note that we have the following equalities between Borel transforms and resolvent

matrix elements in L2ðR; dmÞ : FmðzÞ ¼ /1; ðA � zÞ�11S;Ff mðzÞ ¼ /1; ðA � zÞ�1fS;

and FðUf Þm1ðzÞ ¼ /1; ðA1 � zÞ�1fS: By the resolvent formula (namely, by the basic

operator formula A�1 � B�1 ¼ A�1ðB � AÞB�1Þ; we have for any two elements
h; gAL2ðR; dmÞ;

/g; ðA1 � zÞ�1hS ¼ /g; ðA � zÞ�1hS�/g; ðA � zÞ�11S/1; ðA1 � zÞ�1hS: ð2:6Þ

By setting g ¼ h ¼ 1 in (2.6), we have Fm1ðzÞ ¼ FmðzÞ � FmðzÞFm1ðzÞ from which

we get

Fm1ðzÞ ¼
FmðzÞ

1þ FmðzÞ
: ð2:7Þ

Eq. (2.7) is the central starting formula for developing the theory of rank one
perturbations [8]. In particular, we see from (2.7) and Proposition 2.1 that msing and
m1;sing are mutually singular and thus that msing is singular w.r.t. m1: From (2.7) we
also get

Im Fm1ðzÞ ¼
Im FmðzÞ

j1þ FmðzÞj2
: ð2:8Þ

Going back to (2.6) and setting g ¼ 1; h ¼ f ; we get

Ff mðzÞ ¼ ð1þ FmðzÞÞFðUf Þm1ðzÞ: ð2:9Þ

By taking imaginary parts of the two sides of (2.9) and dividing by Im FmðzÞ;
we have

Im Ff mðzÞ
Im FmðzÞ

¼ Re FðUf Þm1ðzÞ þ LðzÞ ð2:10Þ
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with

LðzÞ ¼ Reð1þ FmðzÞÞ
Im FmðzÞ

Im FðUf Þm1ðzÞ: ð2:11Þ

Applying the Cauchy–Schwartz inequality we get

jIm FðUf Þm1ðE þ ieÞj ¼
Z
R

eðUf ÞðxÞdm1ðxÞ
ðx � EÞ2 þ e2

�����
�����

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
R

edm1ðxÞ
ðx � EÞ2 þ e2

 ! Z
R

eðUf Þ2ðxÞdm1ðxÞ
ðx � EÞ2 þ e2

 !vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im Fm1ðE þ ieÞIm FðUf Þ2m1ðE þ ieÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im Fm1ðE þ ieÞIm FmðE þ ieÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im FðUf Þ2m1ðE þ ieÞ
Im FmðE þ ieÞ

s
; ð2:12Þ

where the last equality is just multiplying and dividing by Im FmðE þ ieÞ: Since msing
is singular w.r.t. m1; it is also singular w.r.t. ðUf Þ2m1 and we thus have by
Proposition 2.2,

lim
e-0

Im FðUf Þ2m1ðE þ ieÞ
Im FmðE þ ieÞ ¼ 0 ð2:13Þ

a.e. w.r.t. msing: Also, we see from (2.8) that

Im Fm1ðzÞIm FmðzÞ ¼
ðIm FmðzÞÞ2

j1þ FmðzÞj2
p1; ð2:14Þ

and thus (2.12) implies

lim
e-0

jIm FðUf Þm1ðE þ ieÞj ¼ 0 ð2:15Þ

a.e. w.r.t. msing: By using (2.12) and the equality in (2.14) to estimate jIm FðUf Þm1ðzÞj in
(2.11), we get

jLðE þ ieÞjp jReð1þ FmðE þ ieÞÞj
jIm FmðE þ ieÞj

jIm FmðE þ ieÞj
j1þ FmðE þ ieÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im FðUf Þ2m1ðE þ ieÞ
Im FmðE þ ieÞ

s

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im FðUf Þ2m1ðE þ ieÞ
Im FmðE þ ieÞ

s
; ð2:16Þ
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and we thus see from (2.13) that

lim
e-0

jLðE þ ieÞj ¼ 0 ð2:17Þ

a.e. w.r.t. msing: Combining (2.10), (2.15), and (2.17) with Proposition 2.2, now yields

lim
e-0

FðUf Þm1ðE þ ieÞ ¼ lim
e-0

Im Ff mðE þ ieÞ
Im FmðE þ ieÞ ¼ f ðEÞ ð2:18Þ

a.e. w.r.t. msing: Thus, by going back to (2.9), dividing the two sides by FmðzÞ; and
applying Proposition 2.1, we get

lim
e-0

FfuðE þ ieÞ
FmðE þ ieÞ ¼ lim

e-0

1

FmðE þ ieÞ þ 1
� �

FðUf Þm1ðE þ ieÞ ¼ f ðEÞ ð2:19Þ

a.e. w.r.t. msing:
This completes the proof for the special case of a positive m and a real valued

fAL2ðR; dmÞ: To complete the proof of the general case, we essentially just follow
Poltoratskii [4]: Given a positive fAL1ðR; dmÞ (m is still positive here), let

g ¼ 1=ð1þ f Þ and n ¼ ð1þ f Þm: Then gAL2ðR; dnÞ (in fact, g is bounded) and m is
absolutely continuous with respect to n: Thus, by (2.19),

lim
e-0

FmðE þ ieÞ
Fð1þf ÞmðE þ ieÞ ¼ lime-0

FgnðE þ ieÞ
FnðE þ ieÞ ¼ gðEÞ ¼ 1

1þ f ðEÞ ð2:20Þ

a.e. w.r.t. msing; and so we have by the linearity of the Borel transform,

lim
e-0

Ff mðE þ ieÞ
FmðE þ ieÞ ¼ lim

e-0

Fð1þf ÞmðE þ ieÞ
FmðE þ ieÞ � 1 ¼ f ðEÞ ð2:21Þ

a.e. w.r.t. msing: Since every complex valued fAL1ðR; dmÞ is a linear combination of
four positive functions in L1ðR; dmÞ; the linearity of the Borel transform immediately
implies the result for any such fAL1ðR; dmÞ: Finally, if m is complex valued, then we
have m ¼ gjmj where jmj is positive and gAL1ðR; djmjÞ with jgj ¼ 1; so

lim
e-0

Ff mðE þ ieÞ
FmðE þ ieÞ ¼ lim

e-0

FfgjmjðE þ ieÞ
FgjmjðE þ ieÞ ¼ lim

e-0

FfgjmjðE þ ieÞ
FjmjðE þ ieÞ

FjmjðE þ ieÞ
FgjmjðE þ ieÞ ¼ f ðEÞ ð2:22Þ

a.e. w.r.t. msing: This completes the proof. &
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