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Abstract� We investigate the dynamics of an N -level system linearly coupled to a field of mass-less bosons at positive tempera-

ture. Using complex deformation techniques, we develop time-dependent perturbation theory and study spectral properties of the total

Hamiltonian. We also calculate the lifetime of resonances to second order in the coupling.



1. Introduction

Let A be a quantum mechanical N -level system with energy operator HA on the Hilbert
space HA � CN . We denote by E1 � E2 � � � � � EM the eigenvalues of HA listed in
increasing order. We will colloquially refer to A as an atom or small system. Even though
we formulate our results for the N -level system A most of them will, in some sense, extend
to situations where HA is infinite dimensional and HA unbounded — see Remark 4 at the
end of Section 2 for more details.

Let B be an infinite heat bath. In this paper B will be an infinite free Bose gas at inverse
temperature � � 1�kT , without Bose-Einstein condensate. This system is described (see
e.g. [BR], [D1], [D2], [LP]) by a triple fHB ��B�HBg where HB is a Hilbert space, HB a
self-adjoint operator on HB , and �B a unit vector in HB . Let us denote by �(k) the energy
of a boson with momentum k � R3. Then the equilibrium momentum distribution of bosons
at inverse temperature � is given by Planck’s law

�(k) �
1

exp(��(k))� 1
�

The space HB carries a representation of Weyl’s algebra (CCR),

WB (f ) � exp(i�B(f ))� (1�1)

where the field operators �B (f ) satisfy, for (1 + ��1�2)f � L2(R3), the relation

(�B�WB (f )�B) � exp

�
�kfk

2

4
� 1

2

Z
R3
jf (k)j2�(k)d3k

�
� (1�2)

The action of HB is determined by the formula

exp(itHB)WB(f ) exp(�itHB) �WB (exp(it�)f )� (1�3)

We are interested in the physically realistic case of mass-less bosons: �(k) � jkj.
Let us suppose that the systems A and B, isolated at time t � 0, start interacting. One

expects the temperature of the small system to change. Since the heat reservoir is an infinite
system its temperature will remain constant, and thermal equilibrium is achieved when both
systems reach the same temperature 1��. Roughly speaking, this series of papers is devoted
to study this approach to thermal equilibrium.

A representation of CCR satisfying Properties (1.1)–(1.3) is usually constructed using
the abstract GNS construction. We prefer to work in an explicit representation due to Araki
and Woods [AW]. This representation is central in our approach.
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The configuration space of a single boson is R3 and its energy is �(k) � jkj (we will
always work in the momentum representation). The single particle Hilbert space is L2(R3).
LetHb be the symmetric Fock space constructed fromL2(R3), and denote by�b its vacuum.
Let ab(k) and a�b(k) be the usual annihilation and creation operators on Hb (see [RS2] for
definitions, note that a�b(f ) �

R
d3k a�b (k)f (k) is linear in f , while ab(f ) � [a�b(f )]� is

anti-linear). Define the energy operator by

Hb �

Z
R3
d3k �(k) a�b(k)ab(k)�

and the field operators by

�b(f ) �
1p
2

(ab(f ) + a�b(f ))�

In the Araki-Woods representation the triple fHB��B �HBg is given by

HB � Hb �Hb� �B � �b � �b� HB � Hb � I � I �Hb�

The annihilation and creation operators are

aB(f ) � ab((1 + �)1�2f )� I + I � a�b(�
1�2f )�

a�B(f ) � a�b((1 + �)1�2f )� I + I � ab(�
1�2f )�

and the field operators are given by

�B (f ) �
1p
2

(aB(f ) + a�B(f ))�

Notation. We write A instead of A� I or I �A, whenever the meaning is clear within the
context.

When the thermal bath is at zero-temperature, the following formalism is used to describe
the system A + B: The Hilbert space of the system is HA �Hb and its Hamiltonian is given
by eH� � HA � I + I �Hb + 	Q� �b(
) � HA + Hb + 	eHI � (1�4)

There Q is a self-adjoint operator on HA, 
 � L2(R3) and 	 � R. In the sequel we will
refer to 
 as the form factor and 	 as the friction constant. If ��1�2
 � L2(R3) then eHI
is infinitesimally small with respect to eH0 and the operator eH� is essentially self-adjoint
on HA � D(Hb). The particular choice of the interaction Hamiltonian eHI is motivated
by the dipole approximation in non-relativistic QED. The extensively studied spin-boson
Hamiltonian also has the form (1.4).



Fermi�s golden rule and dynamics at positive temperature 3

When the heat bath is at positive temperature, the Hilbert space of the joint system is
H � HA �HB and the generator of the dynamics is formally given by

H� � HA � I + I �HB + 	Q� �B(
) � HA + HB + 	HI � (1�5)

see [D1], [D2], [PU], [H] and [BR]. In Section 3 we will prove that, if ��1
 and �
 both
belong to L2(R3), the operator H� is essentially self-adjoint on HA � D(Hb) � D(Hb).
However, HI is not a relatively bounded perturbation of H0. Note that, at zero-temperature
(� � �), the operator H� decouples and acts trivially on the second Fock space. One
then recovers an effective Hamiltonian on HA � Hb which has the form (1.4). Thus the
zero-temperature model can be realized as a (strong resolvent) limit of positive temperature
models, as expected.

The goal of this paper is to develop time-dependent perturbation theory for the model
(1.5). In the remaining part of this section we briefly outline the physical content of the
theory. It will be further discussed in the third and fourth paper in the series.

Time-dependent perturbation theory was developed by Dirac in 1920’s [DI], and further
refined by Weisskopf and Wigner in [W]. For the other developments we refer the reader to
[HEI] and [SC]. Dirac used the theory to study emission and absorption of light by matter,
and to derive Einstein’s A–B law from the first principles of quantum mechanics. Weisskopf
and Wigner gave an improved solution of the equations of perturbation theory, computed
atomic radiative lifetimes, and showed how the theory accounts for the observed width of
the spectral lines.

The Hamiltonian H0 has the following spectrum:

�ac(H0) � R�

�sc(H0) � ��
�pp(H0) � fE1� � � � � EMg�

(1�6)

To simplify the discussion, suppose that the spectrum of HA is simple, and denote by
�1� � � � � �N its eigenvectors. Clearly�j � �j��B is the eigenfunction ofH0 corresponding
to the eigenvalue Ej , and

bj(t) � j(�j� exp(�itH�)�j)j2� (1�7)

is the survival probability of the state �j . The usual “textbook” derivation of radiative
lifetimes starts with the relation

bj(t) � exp(��j(	)t)� (1�8)

The inverse radiative lifetime �j(	) of the state�j is related to the width of the spectral lines
by the uncertainty relation for time and energy. Formal perturbation theory yields

�j (	) � 	2
�j + O(	3)� (1�9)
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where the coefficient �j is given by the expression

�j �

NX
k�1
k ��j

�jk� (1�10)

with
�jk � 


����k� Q�j���2 g� (Ej � Ek)� (1�11)

Here the weight g� is given, in term of the form factor 
, by the following formula

g� (s) �
s2

j1� exp(��s)j
Z

S2
j
(jsj�k)j2 d�(�k)� (1�12)

where the integral is over the unit sphere S2 in R3.

Second order perturbation theory accounts only for processes in which a single quanta
of radiation is either emitted or absorbed. It follows from Dirac’s theory that if E k � Ej
then 	2

�jk is the probability per unit time that an atom will emit a photon of frequency

� � (Ej � Ek)�2
, and make a transition j � k. If Ek � Ej then 	2
�jk is the probability

per unit time that an atom will absorb a photon of frequency � � (Ek �Ej )�2
, and make a
transition k � j. For historical reasons (see e.g. [H], page 52) the �j are often referred to as
Fermi’s Golden Rule. Note that, at zero-temperature, �jk � 0 if Ej � Ek. The coefficient

	2
�j is the total transition probability per unit time from the level j. Let now pj be the

probability that the small system is in the pure state j�jih�j j. If the system A + B is in
thermal equilibrium, detailed balance requires:

pj�j �
X
k ��j

pk�kj �

to hold for all j. A solution of the above system is

pj �
exp(��Ej)P
k

exp(��Ek)
�

Moreover this solution is unique, provided all �jk are positive [D2]. Therefore, an atom in
thermal equilibrium with the blackbody radiation is in its Gibbs state, as expected.

Time-dependent perturbation theory, as used in the above formal argument, resisted a
general mathematical formulation for over forty years. Among the partly successful work on
the subject, the most notable involve the master equation techniques [D1], [D2], [D3], [HA]
and [PR]. This method has been discussed in [JP] and will be further discussed in the latter
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papers in this series. Concerning the “usual” derivation of (1.8)–(1.12), note that Relation
(1.8) cannot hold at zero-temperature for all times since the spectrum of eH� is bounded from
below. Even at positive temperature it can hold only as an approximation and, to quote [SI],
“it is often discussed fact in the physics literature that the usual “textbook derivation” of the
time-dependent series is internally inconsistent and there is not universal agreement among
physicists concerning either the higher order terms in the series or the precise quantity which
is being approximated”.

The foundations of time-dependent perturbation theory for N -body, non-relativistic
quantum systems, as well as the precise mathematical definition of resonance, were given in
[SI]. We refer the reader to [SI] and [RS3] for a list of references concerning earlier work on
the subject. The notions introduced in [SI] have a natural extension to non-relativistic QED.
The time-dependent perturbation series is supposed to describe the fate of the eigenvalues of
H0 (which are embedded in the continuous spectrum), after the perturbation HI is “turned
on”. It is expected that these eigenvalues will “dissolve”: There are � � 0 and � � 0 such
that, for 0 � j	j � �, the operator H� has no eigenvalues in ]Ej � ��Ej + �[. Let � be a
contour enclosing the spectrum of H�. The formula

(�� exp(�itH�)�) �
I
�

exp(�itz)
�
�� (z �H�)�1

�

� dz

2
i
� (1�13)

relates the radiative lifetime of the state � to the poles of the function

R�(z) �
�
�� (z �H�)�1

�

�
� (1�14)

Following [SI], we now formulate the strategy for the analysis of the spectrum in the interval
]Ej � ��Ej + �[, and the rigorous derivation of Relation (1.8): If the form factor 
 is
sufficiently regular, there exists a dense subspace, E � H, on which the matrix elements
R�(z) have a meromorphic continuation from the upper half-plane onto the region O �

fz : jz � Ejj � �g. In O the functions R� are regular, except for a simple pole at a point
Ej (	), independent of the choice of � � E . If �j (	) � �2Im(Ej(	)) � 0, then H� has
purely absolutely continuous spectrum on ]Ej���Ej +�[. The resonance Ej(	) is expected
to be an analytic function of 	 for j	j � �. Finally, the first non-trivial coefficient in the
Taylor expansion of Ej(	) should have an imaginary part given by Equations (1.9)–(1.12).
One then can attempt to derive a formula for the decay of bj(t) using Relation (1.13). In first
approximation one should get Equation (1.8).

For the zero-temperature model with massive bosons, this program was carried in part in
[JP] and [OY]. However, the physically important case of mass-less bosons was beyond reach,
except in some special cases [A1], [A2]. The difficulty, usually called infrared catastrophe,
is related to the fact that there are vectors � in the domain of eH� which contain infinitely
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many soft photons, i.e., (�� N�) � �. For many years no method could be designed to
avoid this difficulty. Recently, V. Bach, J. Fröhlich and I.M. Sigal [BFS] have developed a
sophisticated renormalization algorithm to address this problem. We refer reader to [HS] for
an exposition of their results.

In this paper, the program presented above is carried out for the positive temperature
model defined by Equation (1.5).

Finally, we note that formal scattering theory relates (1.8)–(1.12) to experimental results
[M]. It is therefore important to develop a scattering theory for the model (1.5). The method
exposed here yields some partial understanding of the scattering processes: We plan to do a
perturbative analysis of the resonance scattering and to calculate the energy distribution of
photons emitted and absorbed in transitions. This will be the subject of the fourth paper in
the series [JP2]. The investigation of the long time behavior of the interacting systemA+B,
and in particular the study of the stability of the equilibrium states, is based on the fusion of
algebraic and spectral methods. This will be the content of a third paper[JP1].

Acknowledgments. We are grateful to I. M. Sigal for suggesting the problem to us, and to
V. Bach, R. Seiler, I. M. Sigal and H. Spohn for useful discussions. Part of this work has
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at University of Kentucky, Université de Paris VII and Technische Universität Berlin. At
various stages of this work, C.- A. P. was visiting the University of Toronto, and the Institute
for Mathematics and its Applications at the University of Minnesota. V. J. is grateful to
V. Ivrii and J. Edward for much friendly support, and to P. Hislop, S. de Bièvre, J. P. Gazeau,
R. Seiler and V. Bach for their hospitality. The research of the first author was supported in
part by NSERC under grant OGP 0007901 and by Deutsche Forschungsgemeinschaft SFB
288 Differentielgeometrie und Quantenphysik. The second author was supported by the
Fond National Suisse under grant 21–30607.
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2. Statement of Results

We will need the following condition on the form factor 
.

(H1) (� + ��1)
 � L2(R3).

We begin with a self-adjointness statement for the generator of the dynamics (1.5).

Proposition 2.1. If Hypothesis (H1) is satisfied, then H� is essentially self-adjoint on
HA �D(Hb)�D(Hb) for any 	 � R.

To state our results, we need some additional notation. IfH is a Hilbert space, we denote
by H2(��H) the Hardy class of H-valued functions on the strip

S(�) 	 fz : jIm(z)j � �g�
The Hilbert space H2(��H) consists of all functions, f :S(�) � H, which are analytic in
S(�) and satisfy

kfk2
H2(��H) 	 sup

jaj��

Z �

��
kf (x + ia)k2

Hdx ��� (2�1)

Given a function f on R3, we define a new function ef on R
 S2 by the formula

ef (s� �k) 	
�
�jsj1�2 f (jsj�k) if s � 0,
s1�2f (s�k) if s � 0.

(2�2)

With this notation, we can now formulate our central technical hypothesis:

(H2) There exists � � 0 such that e
 � H2(�� L2(S2))

The hypotheses (H1)–(H2) is satisfied, for example, by the function
(k) �
p
jkj exp(�jkj2).

We may assume, without loss of generality, that � � 2
�� (see Section 3 for details).

Here is our main result.

Theorem 2.2. Suppose that (H1)–(H2) are satisfied. Then there exist a dense subspace
E � H and, for each � �]0� �[, a constant �(�) � 0 such that for 	 �] � �(�)��(�)[ and
��� � E , the functions

z ��
�
�� (H� � z)�1

�

�
� (2�3)

have a meromorphic continuation from the upper half-plane onto the region

O 	 fz : Im(z) � ��g�
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The poles of the matrix elements (2.3) in O are independent of � and �. They are identical
to the eigenvalues of a quasi-energy operator �� on HA. This operator is analytic for
j	j � �(�), and has a power series representation of the form

�� � HA +
�X
n�1

	2n
�

(2n)�

The first non-trivial coefficient in this expansion satisfies

Pj Im(�(2))Pj � PjQg� (HA � Ej )QPj� (2�4)

where Pj is the orthogonal projection on the eigenspace of HA corresponding to the eigen-
value Ej , and g� is given in (1.12).

Remark 1. For any � � HA, one has � � �B � E .

Remark 2. Formula (2.4) is an obvious generalization of Equations (1.9)–(1.11) to de-
generate eigenvalues. By first order perturbation theory, the eigenvalues of the operator
�2Pj Im(�(2))Pj yield the coefficients of 	2 in the expansion of the inverse eigenlifetimes
of the eigenstates of energy Ej . In particular, if Ej non-degenerate, one easily gets the
following corollary.

Corollary 2.3. Suppose that (H1)–(H2) are satisfied, and let Ej be a simple eigenvalue of
HA. Then, for small 	, the quasi-energy operator �� has a unique simple eigenvalue Ej (	)
near Ej . This eigenvalue is analytic and satisfies

Ej (	) � Ej + 	2a(2)
j + O(	4)�

Im(a(2)
j ) � ��j�2�

where �j is given by Equations (1.9)–(1.12).

Theorem 2.2 and Proposition 4.1 in [CFKS] immediately yield the following

Corollary 2.4. Suppose that (H1)–(H2)are satisfied, and that the operatorsPj Im(�(2))Pj are
non-singular for 1 
 j 
M . Then there exists a constant � � 0 such that, for 	 �]����[
and 	 �� 0, the operator H� has purely absolutely continuous spectrum filling the real axis.

We now turn to the dynamical aspects of the system.

Theorem 2.5. Suppose that (H1)–(H2) are satisfied. Then there exist a dense subspace
E � H and, for each � �]0� �[, a constant �(�) � 0 with the following property: For
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j	j � �(�) there are two maps W�
� : E � HA such that, for any ��� � E , one has

(W�
� ��W

+
��) � (���) and�
�� exp(�itH�)�

�
�
�
W�
� �� exp(�i��t)W +

��
�

+ O(exp(��t))�

as t� +�.

Finally let the survival probabilities bj(t) be given by Equation (1.7).

Corollary 2.6. Assume that the hypotheses of Corollary 2.3 and Corollary 2.4 are satisfied,
and set �j (	) � �2Im(Ej(	)). Then there exist positive constants �, a and C such that, for
j	j � �, ��bj(t)� exp(��j(	)t)

�� 
 C 	2 exp(�a	2t)�

holds for t � 0.

Remark 1. It follows from our arguments that the constant�(�) in Theorem 2.2 behaves like
��3�2 as � � �. This forbids the use a limiting argument to analyze the zero-temperature
case.

Remark 2. Hypotheses (H1)–(H2) covers physically important examples in which 
(k) �p
jkj for small k. From the discussion in Section 3 one can deduce variants of (H2). For

example: If the measurable function h: R � C satisfies jh(s)j � 1, and if h(s)e
(s� �k) �
H2(�� L2(S2)), then all results hold. The configuration space of the bosons can be any Rd,
and the fact that�(k) � jkj is of no particular importance. Let �(k) � g(jkj) be a rotationally
invariant function. Assume that g(0) � 0 and that g(s) is a strictly increasing, unbounded,
differentiable function on R+. Denote by h its inverse. If the form factor 
 is real-valued,
and if


�(s� �k) 	 s

jsj3�2
h�(jsj)
(h(jsj)�k)�

belongs to H2(�� L2(S2)) for some � � 0, then all results hold.

Remark 3. All the results hold if the system B is an infinite free Fermi gas.

Remark 4. Our results have simple extensions to the case of infinite dimensional HA. In
fact, if we assume that

(i) HA is positive.
(ii) Q is bounded.

(iii) jIm (HA��Q�)j 
 C(�� (HA+1)1�2�) for some constantC and all� � D(HA).
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Then Proposition 2.1 holds with HA replaced by D(HA). Theorem 2.2 and Theorem 2.5
also hold in this case, except that �� is now an analytic family of type A, and may have
non-discrete spectrum. This means that the matrix elements of the resolvent ofH� may have
essential singularities in O. However, for any bounded region R, there exists a constant
�(��R) such that�� has purely discrete spectrum inR�O. In particular Corollary 2.3 holds
too. Corollary 2.4 also holds locally, i.e., H� has purely absolutely continuous spectrum in
R � R for j	j � �(R). But we can assert that H� has no singular continuous spectrum for
small 	. Finally if we make the following assumptions on the spectrum of HA,

(iv) The eigenvalues of HA have bounded multiplicity.
(v) d0 	 lim inf

j��
(Ej+1 � Ej) � 0.

Then one can choose the constant �(�) in Theorem 2.2 in such a way that �� has purely
discrete spectrum. The reader will find a few remarks scattered in the remaining parts of this
work to support these claims.

3. Preliminaries

The primary purpose of this section is the construction of a new representation of the bath
Hilbert space. As a first application of this representation, we will then prove Proposition
2.1.

We denote by F (H) the symmetric Fock space constructed on the Hilbert space H. For
the proof of the following well-known theorem we refer the reader to [BSZ].

Theorem 3.1. For any two Hilbert spaces H1 and H2, there exists a unitary mapping

U :F (H1)� F (H2)� F (H1 �H2)�

so that, for any two unitaries U1, U2, and any two vectors f , g, one has

U
�
�(U1)� �(U2)

�
U�1

� �(U1 � U2)�

U
�

exp (i�(f ))� exp (i�(g))
�
U�1

� exp (i�(f � g)) �

Furthermore, if� is the vacuum on F (H1 �H2), and�1, �2 are the vacua on F (H1), F (H2),
then

U (�1 � �2) � ��

It follows from this theorem that a unitary transformation

U :HB � F

�
L2(R3)� L2(R3)

�
� (3�1)
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exists, so that

U exp(itHB)U�1
� � (exp(it�)� exp(�it�)) �

UWB (f )U�1
� exp

�
i�
�

(1 + �)1�2f � �1�2	f
��

�
(3�2)

We now define a unitary map

V :L2(R3)� L2(R3) � L2(R
 S2� ds� d�)�

by the formula �
V (f � g)

�
(s� �k) 	

�
s g(jsj�k) if s � 0,
s f (s�k) if s � 0.

(3�3)

It is easy to show that

V
�

exp(it�)� exp(�it�)
�
V �1

� exp(its)�

V
�

(1 + �)1�2f � �1�2	f
�
� f� �

(3�4)

where

f� (s� �k) 	
	

s

1� exp(��s)

1�2 ef (s� �k)� (3�5)

with ef defined by Equation (2.2).

Remark. If ef � H2(�� L2(S2)) for some � � 2
�� then f� � H2(2
�� � �� L2(S2)) for

any 0 � � � 2
��, but f� �� H2(2
�� + �� L2(S2)) for any � � 0. Thus, without loss of
generality, we may assume in Hypothesis (H1) that � � 2
��.

Notation. In the sequel we will identify the spaces L2(R 
 S2), L2(R) � L2(S2) and
L2(R;L2(S2)), denoting all of them by Hs.

We now come to the central point of the construction. WithU and V given by Equations
(3.1) and (3.3), we define the unitary map

bU � I � �(V )U :H � bH 	 HA � F (Hs) �

From Equations (3.2) (3.4), one easily infers that the following relations are satisfied

bH0 	 HA + d�(s) � bUH0bU�1�bHI 	 Q� �(
� ) � bUHI
bU�1�

(3�6)
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Here 
� is obtained from the original form factor 
 by the transformations (2.2) and (3.5).
Furthermore, if we denote by � the vacuum in F (Hs), then

� � � � bU �� ��B� �
holds for any � � HA. To complete our new picture, we shall now construct a self-adjoint
generator for the dynamics of the coupled system. This is the purpose of the following
lemma.

Lemma 3.2. If 	 � R and (jsj + jsj�1�2)
� � Hs, then the operator

bH� 	 bH0 + 	bHI � (3�7)

is essentially self-adjoint on any core of d�(jsj).

For the proof, we need the following well-known results [GJ, Proposition 1.2.3],

Proposition 3.3. Let �(k) be a positive, measurable function on some measure space M .

Denote by F the subspace of finite particle vectors of the Fock space F
�
L2(M )

�
, and by

N 	 d�(1) the number operator.

(i) Assume f � L2(M ), then for any � � F ,

ka#(f )�k 
 kfk k(N + I)1�2
�k�

where a#(f ) represents either a(f ) or a�(f ).

(ii) Assume (1 + ��1�2)f � L2(M ), then for any � � F ,

ka#(f )�k 
 k(1 + ��1�2)fk k(d�(�) + I)1�2
�k�

In particular the field operator �(f ) is infinitesimally small with respect to d�(�).

Proof of Lemma 3.2. We invoke Nelson’s commutator theorem (in the form of Theorem
X.37 in [RS2]). Let bN � I + d�(jsj). We must show that there is a constant d � 0, such that
the following estimates hold for any � � D(d�(jsj)):

kbH��k 
 d kbN�k�
j( bH��� bN�)� ( bN�� bH��)j 
 d k bN1�2

�k2�
(3�8)

Since i[ bN��(
�)] � �(ijsj
�), Inequalities (3.8) follow from Proposition 3.3, and the
obvious fact that d�(s) is bounded with respect to d�(jsj).
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Proof of Proposition 2.1. We start by observing that Hypothesis (H1) implies that
(jsj + jsj�1�2)
� � Hs. Therefore the conclusion of Lemma 3.2 holds. Let us define an
auxiliary self-adjoint operator M on H by the formula

exp (iMt) 	 � (exp(i�t))� � (exp(i�t)) �

Using the fundamental property of U (Theorem 3.1) and Definition (3.3) of V , one shows
that

M � bU�1d�(jsj)bU�
It follows from Equation (3.6) and Lemma 3.2 thatH� �

bU�1 bH�
bU is essentially self-adjoint

on any core of M . The fact that HA �D(Hb) � D(Hb) is such a core is well known (see
[RS1], Theorem VIII.33).

Remark. Setting bN � I+HA+d�(jsj), the proofs of Lemma 3.2 and Proposition 2.1 extend
to the situation where HA is unbounded, provided one makes the following assumptions:

(i) HA � 0.

(ii) Q is bounded with respect to H
1�2
A .

(iii) jIm (HA��Q�)j 
 C(�� (HA+1)1�2�) for some constantC and all� � D(HA).

Of course one also has to replace HA with D(HA) in Proposition 2.1, and d�(jsj) with
HA + d�(jsj) in Lemma 3.2.

Let us summarize the results of this section in

Theorem 3.4. There exists a unitary mapping bU :H � bH, such thatbUH�
bU�1

� bH��

In the sequel we shall identify H with bH and H� with bH�, and always work in the new
representation. We would like to add a few comments concerning the above construction.

The simplest and most widely used complex-deformation technique is based on the
Aguilar-Combes theory and the group of dilation operators: [AC], [BC], [RS3] and [SI].
The investigation of the zero-temperature model has been, so far, based on the second-
quantization of the dilation group. This approach has been used in [OY], [JP], as well as in
a recent work of Bach, Fröhlich and Sigal [BFS]. In the mass-less case the infrared problem
reflects itself in the fact that the eigenvalues fEjg are not uncovered by a dilation of the

Hamiltonian eH0: Regular perturbation theory does not apply directly. Since eHI is not a
relatively compact perturbation of eH0, it is difficult to analyze the spectrum of eH� near Ej ,
and to show that the matrix elements (1.14) have a meromorphic continuation across the
continuous spectrum.
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The resolution of the problem in the positive temperature case is based on the replacement
of dilation analyticity with translation analyticity. The latter one originated in the study of
resonances of an atom in a homogeneous electric field (see [AH] and [HE] for an example).
The formal connection between the two problems becomes transparent in Equation (3.6). The
complex deformation shifts the essential spectrum into the lower half-plane, and uncovers the
eigenvalues fEjg. However, the domain of the Hamiltonian is modified by the deformation,
and the bulk of the technical work below will center around the resolution of this difficulty.

4. Spectral Deformations and Fermi’s Golden Rule

Throughout this section we assume that Hypotheses (H1)–(H2) hold. For a � R, let u(a) be
the unitary translation group on Hs,�

u(a)f
�

(s) � fa(s) 	 f (s + a)� (4�1)

Denote by U (a) � �(u(a)) the second quantization of u(a). One easily shows that

U (a)�(f )U (�a) � �(f a)�

U (a)d�(s)U (�a) � d�(s) + aN�

where N 	 d�(1) is the number operator on F (Hs). Thus, under a second quantized
translation, the operator H� transforms according to

H�(a) 	 U (a)H�U (�a) � HA + d�(s) + 	Q� �(
a�) + aN�

Remark that if f � H2(��H), Equation (4.1) defines a map from S(�) to L2(R) � H. The
first lemma in this section states some basic properties of such complex translations.

Lemma 4.1. Let 0 � �� � �, then the following holds:

(i) If f belongs to H2(��H) then its derivative f � belongs to H2(���H). Furthermore, one
has the bound

kf �kH2(���H) 

1

� � �� kfkH2(��H)�

(ii) If f belongs to H 2(��H) then the map

S(�)� L2(R)�H
a �� fa

is analytic, and dfa

da � f �a.
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(iii) If a� b � S(� �) then, for any f � H2(��H), one has the bound

kfa � fbkL2(R)�H 

ja� bj
� � �� kfkH2(��H)�

Proof. Unless explicitly mentioned, all norms will refer to the space L2(R) � H. We first
prove (i). Since, by definition, f � H2(��H) implies that the function f :S(�) � H is
analytic, we only have to prove the bound on the derivative f �. Denote by �f � L2(R� dr)�H
the Fourier transform of f � L2(R� ds)�H, then the norm (2.1) can be expressed as

kfkH2(��H) � sup
jaj��

���exp(ar)�f
��� �

Therefore we have

kf �kH2(���H) � sup
jaj���

���r exp(ar)�f
���


 sup
r	R

��r exp
��(�� ��)jrj��� sup

jaj���

���exp
�
ar + (� � ��)jrj� �f��� �

and an explicit calculation leads to the desired inequality:

kf �kH2(���H) 

1

e(� � ��) sup
jaj��

���exp(jarj)�f
��� 
 p

2
e

1
� � �� kfkH2(��H)�

Using the same notation, we now prove (ii). Assume that jIm(a)j � � � � �. Then, for small
h � C, ���fa+h � fa � hf �a

��� � ���exp(iar) (exp(ihr)� 1� ihr) �f
���


 sup
r	R

��exp
��Im(a)r� � �jrj� (exp(ihr)� 1� ihr)

�� ���exp(��jrj)�f
��� �

and another simple calculation gives���fa+h � fa � hf �a
��� 
 o(h) kfkH2(��H)� (4�2)

as h� 0, which is the desired estimate. To prove (iii) remark that, as a consequence of (ii),
we have

fa � fb � (b� a)
Z 1

0
f �a+t(b�a)

dt�

Therefore (i) gives���fa � fb
��� 
 jb� aj sup

0
t
1

���f �a+t(b�a)
��� 
 jb� aj kf �kH2(���H) 


jb� aj
� � �� kfkH2(��H)�
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as required.

Let now a � S(�) be complex, and define

HI (a) 	 Q� 1p
2

�
a(
a�) + a�(
a� )

�
�

H�(a) 	 HA + d�(s) + 	HI (a) + aN�
(4�3)

These operators are well defined on the dense subspace

D � D(N ) �D(d�(s))�

One easily checks that, as an operator on D, H�(a) satisfies the relation

H�(a)� � H��(	a)� (4�4)

Therefore, H�(a) is closable for each (	� a) � C
S(�). We use the same symbol to denote
its closure. The following proposition summarizes some simple facts about the family of
closed operators fH0(a) : a � Cg.

Proposition 4.2. Assume that a � C, then the following holds:

(i) For any � � D one has

kH0(a)�k2
� kH0(Re(a))�k2 + jIm(a)j2kN�k2�

(ii) If Ima �� 0, then H0(a) is a normal operator satisfying

D(H0(a)) � D�
H0(a)� � H0(	a)�

(iii) The spectrum of H0(a) is given by

�(H0(a)) � fna + t :n � 1� 2� � � � ; t � Rg � �(HA)�

Proof. Remark that, on the sector N � n, the operator H0(a) reduces to the normal operator

H
(n)
0 (a) 	 HA + s1 + � � � + sn + na�

A simple calculation immediately yields Identity (i). From this identity one easily shows
that, if Im(a) �� 0,

D �

n
� � f�(n)g :�(n) � D(H (n)

0 (a));
P

nkH(n)
0 (a)�(n)k2 ��

o
�
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and it follows that H0(a) is a closed normal operator on D. The last assertion in (ii) , and
(iii) both follow from corresponding statements about H (n)

0 (a).

The next result provides us with the necessary control of the interaction HI (a).

Lemma 4.3. Let a � S(�), and Im(a) �� 0. Then the interaction HI (a) is infinitesimally
small with respect to H0(a).

Proof. By Cauchy-Schwarz inequality,

kQ� a#(f )�k2 
 kQ2
�k ka#(f )�a#(f )�k�

Applying a well-known trick we obtain, for any � � 0,

kQ� a#(f )�k 
 1
2�
kQ2

�k +
�

2
ka#(f )�a#(f )�k�

By Proposition 3.3, we further get

kQ� a#(f )�k 
 1
2�
kQ2

�k +
�

2
kfk2k(N + 2)�k�

Finally, since Im(a) �� 0, the first statement of Proposition 4.2 and Equation (4.3) lead to

kHI (a)�k 
 �kH0(a)�k + C	k�k�
for appropriate C	 � 0.

Let us introduce the strips

S�(�) � fz : 0 � �Im(z) � �g�
We are now ready to prove some basic properties of the deformed operator H�(a).

Proposition 4.4. Assume that (	� a) � C
S�(�), then:

(i) The following identities hold,

D(H�(a)) � D�
H�(a)� � H�(a)�

(ii) The spectrum of H�(a) satisfies

�(H�(a)) � fz : Im(z) 
 D(	� a)g�
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where D(	� a) is given by

D(	� a) 	 1
2

	 jRe(	)j
� � jIm(a)j jIm(a)j1�2 + jIm(	)j jIm(a)j�1�2


2
kQk2 k
�k2

H2(�)�

Furthermore, if Im(z) � D(	� a), one has the bound����H�(a)� z
��1

��� 
 1
Im(z)�D(	� a)

�

(iii) The map
(	� a) �� H�(a)

from C 
S�(�) to the closed operators on H, is an analytic family of type A in each
variable separately.

Remark. A similar statement holds for (	� a) � C
S+(�).

To prove Proposition 4.4, we need the following simple facts (see e.g., [K] Chapter V,
Section 3.2): If T is a closed operator on a Hilbert space H, the convex set


(T ) � f(�� T�) : � � D(T )� k�k � 1g�

is called numerical range of T . Let us denote byN(T ) the closure of this set.

Lemma 4.5. Let T be a closed operator on a Hilbert space H, such that D(T ) � D(T �).
Then

�(T ) � N(T )�

and, for z � C nN(T ), one has the bound���(T � z)�1
��� 
 1

dist (z�N(T ))
� (4�5)

Proof. Let � � D(T ) be a unit vector, then Cauchy-Schwarz inequality implies

k(T � z)�k � jz � (�� T�)j � (4�6)

It follows that T � z is one-to-one if z �� N(T ). Arguing similarly we see that (T � z)� is
one-to-one if z �� N(T �). Since N(T �) � N(T ), we conclude that T � z has a bounded,
everywhere defined inverse for z �� N(T ). Estimate (4.5) follows from Inequality (4.6).
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Proof of Proposition 4.4. The first assertion is a simple consequence of Lemma 4.3. To
establish the second assertion, we set

bD(	� a) 	 sup Im
�
N(H�(a))

�
� (4�7)

The assertion will follow from Lemma 4.5, provided we can show that bD(	� a) 
 D(	� a).
To this end we first observe that, since real translations are unitary, we can choose a � �i�
with 0 � � � �. Then a simple calculation shows that

Im
�
H�(a)

�
� ��N + �Q� �(g)� (4�8)

where

�g 	 1
2i

�
	
a� � 		
�a�

�
� kgk � 1�

Denote by P the orthogonal projection on g, and set P� � 1�P . By construction, we have
N � d�(P )� d�(P�) � a�(g)a(g)�N�, and (4.8) splits into a direct sum

Im
�
H�(a)

�
� ��

�	
a�(g)a(g)� �

�
Q� �(g)



� N�

�
�

In the above formula, we recognize the sum of a (shifted) harmonic oscillator and a number
operator. Completing the square in the first term, and performing a unitary transformation,
we can rewrite

Im
�
H�(a)

�
� �� I �

�
N0 �N�� +

�2

2�
Q2 � I�

where N0 is a simple harmonic oscillator. Therefore we have

�
�
Im
�
H�(a)

��
�



��n +

�2

2�
q2 :n � 0� 1� � � � ; q � �(Q)

�
�

which, by Definition (4.7), means

bD(	� a) 
 �2

2�
kQk2�

We conclude by estimating � with the help of Lemma 4.1. To prove the last assertion, we
first claim that, for fixed 	 � C and � � D, the vector valued function a �� H�(a)� is
analytic. In fact, with

�H�(a)
�a

	 N + 	Q� 1p
2

�
a
�

��

�a
�

+ a�
�

��

a
��

�
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Proposition 3.3 (i) implies����H�(a + h)��H�(a)�� h
�H�(a)
�a

�

���� � O
�
k
a+h

� � 
a� � h
�a�k
�
�

By Lemma 4.1 (ii), the right hand side of the last inequality is o(h), proving the claim. Since
Strong analyticity in 	 for fixed a is obvious, type A analyticity now follows from the first
two assertions of the proposition.

Remark. If we replace D by D(N ) � D(HA + d�(s)), the proof of Proposition 4.2 extends
to unbounded HA. The same remark holds for the proof of Lemma 4.3 and Proposition 4.4
provided Q is bounded.

We now further investigate the spectrum of H�(a). We will denote by P(�) the open
half-plane fz : Im(z) � �g.

Theorem 4.6. There exists a constant� � 0 such that, for (	� a) � C
S�(�), the following
statements hold:

(i) If
j	j � � jIm(a)j� (4�9)

then the spectrum of the operatorH�(a) in the half-plane P(Im(a)+ j�j
�

) is purely discrete
and independent of a.

(ii) If

j	j � 1
4
� jIm(a)j�

then the spectral projection P�(a) associated to the spectrum of H�(a) in P(Im(a) + j�j
�

)
is analytic in 	 and satisfies the bound

kP�(a)� P0(a)k � 3	
�jIm(a)j �

Proof. Remark that, by Proposition 4.2 and Lemma 4.3, the resolvent formula

�
H�(a)� z

��1
�
�
H0(a)� z

��1
�

1 + 	HI (a)
�
H0(a)� z

��1
��1

� (4�10)

holds for small 	, as long as z belongs to a cone of the form fz : 0 � c1 � jzj � c2 Im(z)g.
We organize the proof of Theorem 4.6 in two steps: First we will extend the domain of
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validity of Formula (4.10) by refining our estimate on the productH I (a)(H0(a)�z)�1. Then
we will invoke analytic perturbation theory to control the spectrum.

Applying Proposition 3.3 (i), we get���HI (a)
�
H0(a)� z

��1
��� 
 p

2 kQk k
�kH2(�)

���(N + 1)1�2 �H0(a)� z
��1

��� �
Since N and H0(a) are commuting normal operators, it is rather easy to compute the norm
of T � (N + 1)1�2(H0(a)� z)�1. On the sector N � 0, the operator T reduces to

T (0)
�
�
HA � z

��1
�

and therefore,

kT (0)k � 1
dist(z� �(HA))

� (4�11)

On the other hand if z � E + i� and a � � � i�, the sector N � n � 0 reduces T to

T (n)
�

p
n + 1

(HA + s1 + � � � + sn + n� �E)� i (�n + �)
�

It follows that

kT (n)k �
p
n + 1

j�n + �j � (4�12)

Since kTk � supn�0 kT (n)k, Equations (4.11) and (4.12) lead, after an elementary analysis,
to the bound

kTk 

���

p
2

dist(z�
(H0(a))) if�� � � � 3�;
1

2
p
�(���)

if � � 3�.
(4�13)

If we set

� 	 1
2 kQk k
�kH2(�)

�

G(a� �) 	 �
z : Im(z) � Im(a); dist

�
z� �(H0(a))

�
� �

�
�

one easily verifies that, for � � jIm(a)j, the bound (4.13) implies

sup
z	G(a�	)

���	HI (a)
�
H0(a)� z

��1
��� 
 j	j

� �
� (4�14)

Consequently, if j	j � � �, the identity (4.10) holds on G(a� �). Moreover the following
estimate holds for N � 0

sup
z	G(a�	)

�������z �H�(a)
��1�

N�1X
j�0

�
z �H0(a)

��1
�
	HI (a)

�
z �H0(a)

��1
�j������
 1

�

�
�
�	

�N
1�

�
�
�	

��
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It follows that any z in the set

P(Im(a)) n �(HA) �
�
	
0

G(a� �)�

is in the resolvent set of H�(a) for small 	. Therefore, the discrete spectrum of H0(a) is
stable, and analytic perturbation theory applies. The first statement of Theorem 4.6 follows,
except for the independence of the eigenvalues on the parameter a. Fix (	0� a0) satisfying
(4.9). Since H�0

(a) is an analytic family in a, its discrete eigenvalues are (branches of)
analytic functions with at most algebraic singularities in a neighborhood of a0. On the
other hand, H�0

(a0) and H�0
(a) are unitarily equivalent if a� a0 is real. Thus the discrete

eigenvalues are independent of a.

To prove the second statement, assume that 2� � jIm(a)j and j	j � ��. Let �� be the
contours defined by fz : Im(z) � �Im(a)�2g, and set � 	 �+ � ��. We formally define

P�(a) �
I
�

dz

2
i

�
z �H�(a)

��1
� (4�15)

We shall prove below that, as a weak integral, and after extraction of explicit zeroth and first
order terms, the above integral becomes absolutely convergent. Therefore, P�(a) is analytic
and, by a standard argument, is the spectral projection of H�(a) corresponding to the part of
its spectrum contained in the strip bounded by �+ and ��. Iterating the resolvent identity we
get

P�(a) � P0 + 	�(1)(a) + 	2
�

(2)
� (a)� (4�16)

where

P0 	 P0(a) � I � � (�� � )�
�

(1)(a) 	
I
�

dz

2
i

�
H0(a)� z

��1
HI (a)

�
H0(a)� z

��1
�

�
(2)
� (a) 	 �

I
�

dz

2
i

�
H0(a)� z

��1
HI (a)

�
H�(a)� z

��1
HI (a)

�
H0(a)� z

��1
�

An explicit calculation shows that �(1)(a) can be written as

�
(1)(a) �

1
i

Z �

��
exp(��jtj)�t dt� (4�17)

where

�t 	
�
P0 exp(iH0t)HI (a) exp(�iH0t) for t � 0,
exp(iH0t)HI (a) exp(�iH0t)P0 for t � 0.
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Another simple calculation yields

k�tk � 2�3�2
�
�1�

Thus we conclude from Equation (4.17) that���	�(1)(a)
��� 
 j	j

��
� (4�18)

To estimate �(2)
� (a), we proceed as follows: By Cauchy-Schwarz inequality we have, for

any ��� � H,�������(2)
� (a)�

���� 
 sup
z	�

���HI (a)
�
H�(a)� z

��1
HI (a)

��� �(�) �(�)� (4�19)

where

�(�)2 	
Z
�

djzj
2


����H0(a)� z
��1

�

���2
�

By the spectral theorem (recall that H0(a) is normal), this quantity is easily seen to be
bounded by

�(�) 

s

2
�
k�k� (4�20)

We now deal with the supremum in Expression (4.19). We start by the simpler case 	 � 0.
There we can apply the method which leads to Inequality (4.14). Leaving the details to the
reader, we quote the resulting bound

sup
z	�

���HI (a)
�
H0(a)� z

��1
HI (a)

��� 
 2

�2 �
� (4�21)

Using the resolvent formula (4.10), a simple calculation shows that

HI (a)
�
H�(a)� z

��1
HI (a) ��

1� 	HI (a)
�
H0(a)� z

��1
��1

HI (a)
�
H0(a)� z

��1
HI (a)�

Therefore, Inequalities (4.14) and (4.21) yield

sup
z	�

���HI (a)
�
H�(a)� z

��1
HI (a)

��� 
 2

�2 �

	
1�

	 j	j
��



�1
�

Optimizing the last expression over �, and combining it with the estimate (4.20) gives the
desired bound ���	2

�
(2)
� (a)

��� 
 	2j	j
��


2 	
1�

	
2j	j
��



�1
� (4�22)
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Putting together (4.18) and (4.22), we finally get

kP�(a)� P0(a)k 
 x

	
1 + 2x
1� 2x



�

with x 	 j	j��� � 1�2, from which the required inequality follows easily.

Remark. In the case of unbounded HA and bounded Q, the above argument shows that the
spectrum of H�(a) decomposes into a first part �0 � fz : jIm(z)j 
 j	j��g, and a second
part in fz : Im(z) 
 Im(a) + j	j��g. Statement (ii) of Theorem 4.6 still holds in this case.
However �0 need not be purely discrete. In general we can only assert that, given any
bounded region R, there exists a �(a�R) such that the spectrum in �0 � R is discrete for
j	j � �(a�R). On the other hand, if we assume that the spectrum of HA is well separated

d0 	 lim inf
j��

(Ej+1 �Ej ) � 0�

and has bounded multiplicity, then one easily shows that �0 is discrete provided j	j �
� min(jIm(a)j� d0).

The previous result allows us to apply reduction theory to the discrete spectrum of
resonances, and to construct the quasi-energy operator by transforming Ran(P�(a)) back to
HA with a linear isomorphism S�(a). We follow here the developments of [HP]. If

j	j � � jIm(a)j�4� (4�23)

Theorem 4.6 implies that
kP�(a)� P0k � 1�

It immediately follows that the maps

P0 : Ran(P�(a)) � HA�

P�(a) :HA � Ran(P�(a))�

are isomorphisms. Consequently, setting

T� 	 P0P�(a)P0� (4�24)

one easily checks that the operator

S�(a) 	 T
�1�2
� P0P�(a)�

from Ran(P�(a)) to HA has inverse

S�(a)�1 	 P�(a)P0T
�1�2
� �
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We use the isomorphism S�(a) to transport the reduced operator P�(a)H�(a)P�(a) back in
the space HA. A simple calculation yields

�� 	 S�(a)P�(a)H�(a)P�(a)S�(a)�1
� T

�1�2
� M�T

�1�2
� � (4�25)

with
M� 	 P0P�(a)H�(a)P�(a)P0� (4�26)

Finally we remark that since U (a)P0 � P0U (a) � P0 for any a � C, the operators T� and
M� are independent of a as long as Condition (4.23) holds.

The following lemma explores some properties of the quasi-energy (4.25).

Proposition 4.7. The quasi-energy operator depends analytically on 	 for j	j � � jIm(a)j�4.
It has a Taylor series of the form

�� � HA +
�X
n�1

�
(2n)	2n�

The first non-trivial coefficient in this expansion is

�
(2) 	 �1

2

X
j

�
Qh�(Ej �HA)QPj + PjQh� (Ej �HA)Q

�
�

where the function h� (z), analytic in P(��), is given for Im(z) � 0 by the formula

h� (z) 	
Z

R
S2

j
� (s� �k)j2
s� z

ds d�(�k)�

Proof. The analyticity of T� follows from its definition (4.24) and Theorem 4.6 (ii). By the

same result, kT� � Ik � 1 holds for j	j � � jIm(a)j�4. Therefore T
�1�2
� is also analytic.

The Taylor series of T� is obtained by inserting the Neumann series for the resolvent of
H�(a) in Equation (4.15). In this way we obtain

T� � I +
�X
n�1

T (n)	n�

with coefficients given by

T (n) 	
I
�

dz

2
i

�
z �HA

��1
P0HI (a)

��
z �H0(a)

��1
HI (a)

�n�1
P0
�
z �HA

��1
�
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In a completely similar way we can write

M� � HA +
�X
n�1

M (n)	n�

with the following coefficients

M (n) 	
I
�

dz

2
i
z
�
z �HA

��1
P0HI (a)

��
z �H0(a)

��1
HI (a)

�n�1
P0
�
z �HA

��1
�

The fact that odd powers of 	 drop out of this expansions is an easy consequence of photon
number conservation (recall that P0 projects on the zero photon subspace). By Definition
(4.25), the first non-trivial coefficient in the Taylor series of �� is

�
(2)
�M (2) � 1

2

�
T (2)HA + HAT

(2)
�
�

An explicit calculation gives

�
(2)
�

1
2

I
�

dz

2
i

�
K(z)

�
z �HA

��1 +
�
z �HA

��1
K(z)

�
� (4�27)

where
K(z) 	 P0HI (a)

�
z �H0(a)

��1
HI (A)P0�

Remark that the resolvent in K(z) is restricted to the one-photon sector, therefore K(z) is
analytic in P(Im(a)). Another explicit calculation shows that, for Im(z) � 0,

K(z) � �1
2
Qh� (z �HA)Q�

Therefore, applying the Cauchy integral formula to Equation (4.27) gives

�
(2)
� �1

2

X
j

Qh� (Ej �HA)QPj + PjQh� (Ej �HA)Q�

as required.

Remark 1. In the case of unbounded HA and bounded Q, the quasi-energy is an analytic
family of type A with domain D(HA). In fact one can show that the commutator [HA� T�]
is bounded. It follows easily that �� �HA is bounded and analytic.

Remark 2. The above argument also yields an expression for the Lamb shifts of the energy
level Ej .
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Now that we have got some understanding of the family fH�(a) j a � S�(�)g, we shall
relate it to the physical operator H�. This is the content of the next result.

Lemma 4.8. For 	 � R and Im(z) sufficiently large, we have

s� lim
Im(a)�0

�
H�(a)� z

��1
�
�
H�(Rea)� z

��1
�

Proof. Clearly we may assume Re(a) � 0. Note that, by Proposition 4.4 (ii), the resolvent
of H�(a) is uniformly bounded as Im(a) � 0 when 	 � R. Therefore, it suffices to show
strong convergence on a dense subspace. We will prove that

lim
Im(a)�0

�����H�(a)� z
��1 � �H� � z

��1
�

(N + 1)�1
��� � 0�

As usual, we denote by F � F (Hs) the subspace of finite particle vectors. We define

D0 	
��
H�(a)� z

�
� :� � HA � (F �D(d�(jsj)))� �

which is a dense subspace by Proposition 4.4 and the remark which follows it. Since
HA� (F �D(d�(jsj))) is a core of d�(jsj), it is also a core of H� by Lemma 3.2. It follows
that, for � � D0,

L(a)� 	 �
H�(a)� z

��1
�� �H� � z

��1
�

�
�
H� � z

��1 �
H� �H�(a)

� �
H�(a)� z

��1
�

�
�
H� � z

��1
	
	Q� 1p

2

�
a(
� � 
�a� ) + a�(
� � 
a�)

�
� aN


�
H�(a)� z

��1
��

Since D0 is dense, the above formula extends by continuity to arbitrary �. By Proposition
3.3 (i) and Lemma 4.1 (iii), we further have

kL(a)(N + 1)�1k
 jaj
Im(z)

�
1 +

p
2j	j kQk k
�kH2(�)

� � jIm(a)j

����(N + 1)
�
H�(a)� z

��1(N + 1)�1
��� �

We end the proof by showing that (N + 1)
�
H�(a)� z

��1 (N + 1)�1 is uniformly bounded
as Im(a) � 0. Indeed, a simple calculation shows that

(N + 1)H�(a) (N + 1)�1
� H�(a) + 	Q� 1p

2

�
a�(
a� )� a(
�a�)

�
(N + 1)�1�

which, by Proposition 3.3, is a uniformly bounded perturbation of H�(a).
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Remark. If HA is unbounded and Q bounded, we only need to replaceHA by D(HA) in the
definition of D0, and the above proof still holds.

Let E � F (Hs) be the set of entire vectors for the group U (a). We recall that E
consists of all � � F (Hs) such that the vector-valued function U (a)� has an entire analytic
extension. Define E � HA�E. It follows from the Paley-Wiener theorem that E is a dense
set of vectors in H.

Proof of Theorem 2.2. For ��� � E , 	 � R and Im(z) sufficiently large, the function

a �� f (a) 	
�
U (	a)��

�
H�(a)� z

��1
U (a)�

�
�

is analytic in S�(�). Since it is obviously independent of Re(a), f is actually constant on
S�(�). Let us show that f is continuous onS�(�) � R. Indeed,

f (a)� f (0) �
�
��
��
H�(a)� z

��1 � �H� � z
��1

�
�

�
+
�
U (	a)��

�
H�(a)� z

��1 (U (a)� I)�
�

+
�

(U (	a)� I)��
�
H�(a)� z

��1
�

�
�

The first term vanishes as Im(a) � 0 by Lemma 4.8. The two other terms also tend to zero in
this limit since � and � are entire vectors for translations, and (H�(a)� z)�1 is uniformly
bounded. Therefore, f (a) � f (0) holds onS�(�) � R. Since by Theorem 4.6 the function

z ��
�
U (	a)��

�
H�(a)� z

��1
U (a)�

�
�

is meromorphic on P(Im(a) + j	j��), it does provide the required extension. The properties
of this extension follow from Theorem 4.6 and Proposition 4.7. In particular the expression
for Im(�(2)) is obtained using the well known formula

Im

	
1

x� io



� i
�(x)�

in the definition of h� (z).

Remark. Here again we did not use the fact that HA is bounded. Of course the constructed
extension will only be meromorphic if the spectrum of �� is discrete.

Proof of Theorem 2.5. Let ��� � E , and define

f (t) 	 �
�� exp(�iH�t)�

�
�
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Then for Im(z) � 0, the Fourier-Laplace transform

bf (z) 	
Z �

0
f (t) exp(izt)dt �

1
i

�
��
�
H� � z

��1
�

�
�

is well defined. For any � � 0, the inverse relation

f (t) �
Z �

��
bf (E + i�) exp(�i(E + i�)t)

dE

2

� (4�28)

holds for t � 0. Now let us set a � �i� with 0 � � � �, and assume that 4� � jIm(a)j,
and j	j � ��. As in the proof of Theorem 2.2, bf (z) has an extension to the lower half-plane
given by bf (z) �

1
i

�
U (	a)��

�
H�(a)� z

��1
U (a)�

�
�

By the resolvent identity and estimates (4.20) (4.14), bf belongs to the Hardy class of the strip
fz :�� + � � Im(z) � ��g. It follows that we can rewrite the inversion formula (4.28) as

f (t) �
I
�

bf (z) exp(�izt) dz
2


+
Z �

��
bf (E � i(�� ��)) exp(�i(E � i(�� ��))t)dE

2

�

where the contour � is as in the proof of Theorem 4.6, and �� � �. The first term in the
above expression is easily identified as

fd(t) �
�
U (	a)�� S�(a)�1 exp(�i��t)S�(a)U (a)�

�
�

whereas the second term is of the order exp(�(�� ���)t) for ��� � ��. The proof is complete.
To prove Corollary 2.6 we only need the additional observation that, if �j (	� a) denote the
eigenvector of H�(a) associated to the eigenvalue Ej (	), then�

�i(	� a)��j(0� a)
�
� �i�j + O(	2)�

Remark. The above proof does not use the fact that HA is bounded.
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