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Abstract. Weinvestigate the dynamicsof a 2-level atom (or spin %) coupled to amass-less bosonic field at positive temperature. We
provethat, at small coupling, the combined quantum system approachesthermal equilibrium. Moreover we establish that this approachis

exponentialy fastintime. Wefirst reducethe questionto aspectral problemfor the Liouvillean, aself-adjoint operator naturally associated
with the system. To compute this operator, we invoke Tomita-Takesaki theory. Oncethisis donewe use complex deformation techniques

to study its spectrum. The corresponding zero temperature model is al so reviewed and compared.



1. Introduction

In this paper we consider the dissipative dynamics of a quantum mechanical 2-level system
— the spin — characterized by its two eigenstates of energy e+ = £1. More specifically
we investigate the long time behavior of the dynamics of a spin % allowed to interact with
a large reservoir. The reservoir is an infinitely extended gas of free, mass-less bosons at
positive temperature without Bose-Einstein condensate. We provethat, for sufficiently small
coupling, the interacting spin-boson system has strong ergodic properties. In particular it
approaches thermal equilibrium exponentialy fast. Moreover, the equilibrium state is the
unique KMS state of the joint system at the temperature of the heat bath.

The spin-boson system isa simple, yet physically acceptable model for avariety of phe-
nomena related to dissipative quantum tunneling. The literature on the subject is enormous.
Let us only mention the review article [LCD] as an excellent introduction to the physical
aspects of themodel. Also[A1],[A2], [AM], [FNV],[D1],[D2], [HS1], [HS2], [MA], [PU],
[SD], [SDLL], [RO1], [ROZ2] is anon-exhaustive list of related mathematical investigations.

The present work is largely based on results previously obtained by the authorsin [JP1].
There we have developed perturbative tools suitable for the study of quantum systems with
discrete, possibly infinite, set of energy levels {¢;}, linearly coupled to a free heat bath at
positive temperature. Unfortunately, the general discussion of such systems tends to be
technical. For this reason we prefer to restrict ourselves here to a simple model, allowing us
to give a more transparent exposition of the underlying ideas. The adaptation of these ideas
to more general models will be presented in a subsequent paper [JP2]. For the interested
reader, we also present a detailed comparison between our positive temperature model and
the more familiar zero temperature spin-boson model. Most of the questions answered in
this paper are still open problems at zero temperature.

Our argument splits in three conceptually distinct parts: First we formulate an appro-
priate generalization of Koopman's Lemma to dynamical systems arising from quantum
mechanics. This allows us to reduce ergodic properties of the system to spectral problems
for a distinguished self-adjoint operator: The Liouvillean. This operator is defined in ab-
stract terms, and we must invoke Tomita-Takesaki’s theory to actually compute it. Once
the Liouvillean is known, we apply complex deformation techniques to obtain the relevant
spectral informations. On thetechnical level, one of the main difficultiesisthe identification
of the Liouvillean. The required results of Tomita-Takesaki theory are readily available in
the literature. The final step of the proof boils down to an application of the resultsin [JP1].
An analysis of resonances reveals the basic mechanism of thermal relaxation. In particular,
Einstein’'s A-B law emerges as Fermi’ s Golden Rule for the resonances of the Liouvillean.
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2. Themodd

In this section we define the spin-boson model. We first introduce the isolated spin and the
free reservoir, and discuss their thermal equilibrium states. Recall that a state of a quantum
system is a normalized positive linear functional S on its algebra of observables. A vector
stateis a state of theform S(A) = (¥, A¥), for some unit vector ¥. More generally, a state
S is caled normal if there exists a density matrix p, a positive trace class operator of unit
trace, such that S(A) = Tr(pA).

The Hilbert space of the isolated spin is $; = C2. Denoting by o, oy and o the usual
Pauli matrices, we may choose its Hamiltonianto be s = .. The eigenenergies of the spin
are e+ = +1, and we denote the corresponding eigenstates by 1. Finaly, observables of
the spin areelementsof M», thealgebraof all complex 2 x 2matrices. Atinversetemperature
3, the equilibrium state of the spin is the normal state defined by the Gibbs Ansatz

sl = Z_lﬁ Tr <exp(—6h5) A), (2.1)

S

where 7 ? is a normalization factor. The zero-temperature equilibrium state is obtained in
thelimit 5 T oco: It isthe vector state corresponding to the ground state of # s

S (A) = (-, Ap-). (22)

At vanishing density, the Hilbert space of the free reservoir is the symmetric Fock space
constructed over Z.2(R3), which we denote by $;, (wework in the momentum representation,
thus elements of L2(R3) are always functions of the momentum k of an individual boson).
Since the bosons are non-interacting, the dynamics of the reservoir is completely determined
by the energy w (k) of asingle boson with momentumk € R3. Thisdynamicsisimplemented
by the strongly continuous unitary group

exp (ihyt) = T (exp(iwt)),

which, by definition, acts on the V-particle subspace of §); asthe N-fold tensor product of
the one-boson propagator exp(:wt). Interms of the usual creation and annihilation operators
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a*(k), a(k), the Hamiltonian % is given by the familiar formula

hy = dl'(w) = / w(k)a*(k)a(k) d%.
R
In the sequel we restrict ourselves to the physically important case
w(k) = |k].

However, our method easily accommodates other dispersion laws, as long as the bosons
remain mass-less. In this case h;, has a simple eigenvalue O corresponding to the Fock
vacuum €2, the remaining part of its spectrum is absolutely continuous and fills the positive
real axis. The observables of the reservoir are the field operators

3(f) = (k) +a* (k) F(k) d%,

\f
1
AR
which satisfy the canonical commutation relations (CCR). A mathematically more convenient

set of observablesis provided by the Weyl system

W(f) = exp(ie(f))
where ¢(f) isthe self-adjoint (Segal) field operator defined by

©(f) = (a(k) = a*()) J () d%.

p(f) = (TR +a* (k) /() d%,

\f

for f € L%(R3). The operators W (f) are unitary on ), and satisfy adisguised form of CCR:
The Weyl relation

W(fOW(f2) = exp (—ilm(f1, f2)/2) W(f1+ f2). (2.3)

The dynamics of the reservoir induces a Bogoliubov transformation

exp (ihyt) W(f) exp (—ihyt) = W(exp(—iwt)f),
of the Weyl system.

It is awell known fact that thermal equilibrium states of extended systems arise in the
thermodynamic limit, starting with a system restricted to a finite box A ¢ R3. For such
a confined system, the grand canonical ensemble yields a well defined state. Equilibrium
states of the extended system are constructed as weak-+ limits of these states as A | R3. At
positive temperature, the equilibrium states obtained in this way have a positive density i.e.,
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an infinite number of particles: They do not fit in the original Fock space (in more technical
terms they are not normal). For practical purposes however, it is convenient to restore the
familiar Hilbert space framework. This can be achieved by an appropriate choice of the
representation of CCR. Let us briefly review some facts about such representations.

Let ® C L?(RS) be a dense subspace. Weyl's algebra over © is the C*— agebra
generated by the set {W(f) : f € ©}. A representation (H, ) of this algebra is called
regular if the functions

R A= m(W(AS),

are strongly continuous for each f € . By Stone' s theorem, regularity is equivalent to the
existence of a self-adjoint operator - (f) such that

T (W) = exp(ir o= (/)

for A € R. One then refers to the ¢ (f) as the field operators of the representation. A
representation is called cyclic if for some Q € H theset {= (W(f)Q: f € D} istota in
‘H. To each cyclic representation (H, =, 2) of Weyl’ s algebra, we can associate a generating
functional defined by

D3 =, 7W()Q).

Generating functionals of regular, cyclic representations have been characterized by Araki

and Segal:

Theorem 2.1. A maps:® — C isthegenerating functional of aregular, cyclic representation
of Weyl’s algebra over ® if and only if the following conditions are satisfied:

(i) s(0) =1
(ii) Foreach f € ® themappingR > X — s(\f) is continuous.

(iii) For each finite subset { f1, f2,..., fn} C ®,andany z1,...,z, € C one has

n

> s(fi - fj)exp (—ilm(fi, £))/2) zizj = 0.

i.j=1
Furthermore, this representation is unique, up to unitary equivalence.
At zero chemical potential (which is appropriate for mass-less particles), and in the

absence of condensate, the thermodynamic limit |eads to the following generating functional
for theinfinite free Bose gas (see for example [BR2], [LP] or [CA])

P =ep(-5 [ @r2002a%). 2.4
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for f in the dense subspace ©;,. C L2(R3) of functions with compactly supported Fourier
transform (i.e., localized in the position representation). In Equation (2.4), the function
p(k) is the equilibrium momentum distribution of the bosons, and is related to their energy
according to Planck’ sradiation law

1
exp(Fw(k)) — 1

The energy density of the boson gas is strictly positive, and satisfies the Stefan-Boltzmann
relation

p(k) =

(2.5)

/ w(k)p(k) d% o< B4, (2.6)

Let us denote by A;,. the Weyl algebra over ©;,.. Since we are dealing with a system at
positive density, thisis a natural minimal set of observables. By Theorem 2.1, the above
functional (2.4) corresponds to aregular, cyclic representation (H, 7, ¥p) of Aj,.. This
representation has been explicitly constructed by Araki and Woods (see[AW1], [BR2], [CH]
or [LP]), and can described as follows: H,, is the space of all Hilbert-Schmidt operators on
$;, equipped with the inner product

(X,Y) = Tr(X*Y). 2.7)

The representant of 1/ (f) acts according to

(WX = W (@2 7) xw (o2 7).
forany X € H;. Finally the cyclic vector is the projection on the Fock vacuum
¥y = Qp (0, 0).
One easily verifies that the state
S = (T, 7y (A) ),

reproduces the functional (2.4), and that the free dynamics has a unitary implementation in
the space H;,

T (€Xp(ihyt) A exp(—ihyt)) = exp(iHyt) py (A) exp(—i Hyt). (2.8)
The generator of this group can be explicitly written as
Hb:X!—> [hb,X] . (29)

In the sequel, we will always work in the Araki-Woods representation. Consequently we
shall give to the representants ;. (4) the status of observables of the boson gas at positive
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temperature. For reasons which will soon become clear, it is convenient to consider also
the von Neumann algebra generated by these representants. Recall that a C*— algebra of
operators on a Hilbert space §) is avon Neumann algebraif it is closed in the weak operator
topology. Let B be a set of bounded operators on $. We denote by B’ its commutant
i.e., the set of bounded operators commuting with all elements of B. If B is closed under
hermitean conjugation, B’ isavon Neumann algebra. Moreover the double commutant B” is
the smallest von Neumann algebra containing B (see [BR1] or [SA]). We define the algebra
of observables of the reservoir at positive temperature by

My = 7 (Aioe) - (2.10)

Remark 1. Themap ® ® ¥ — ®(¥,-) provides an isomorphism between ), ® $; and
‘H;. In the sequel we shall identify this two spaces without further mention. For example,
the formulae
Hb:hb(X)]—](X)hb,
rar WU =W (@ )Y27) @ W (p727).
directly follow from Equation (2.9) under thisidentification.

In Equation (2.4), the limit 5 T oo yields the generating functional
®(f) = 1 K)%d% ) = (@ Q0
¥(N=ep (g [0 ) = (2. W ().

which extends to arbitrary f € L2(R3). Thus, as expected, we recover the origina Fock
space representation and, here again, the zero-temperature equilibrium state is the vector
state associated with the ground state of the system. In this limiting case the density of the
gas vanishes (see (2.5) and (2.6)), and a natural set of observables is the full Weyl algebra
A over L2(R3). Note that this C*— algebraisirreduciblei.e., A" = £(5;) the space of all
bounded linear operators on £);.

We are now ready to define the spin-boson model. At zerotemperature, the Hilbert space
of thejoint system is
H=Hs ® Ny,

and its free Hamiltonianis
ho=hs @ I +1® hy,.

The coupling of the two subsystems is achieved by addition of an interaction term, namely

hy =hotAgQ® p(a), (2.11)
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where ) isareal constant, ¢ = o, and o« € L2(R3). If
(L+w Y?a e LARY), (2.12)

then, by standard estimates (see [ GJ1], Section 1.2), the interactionterm ¢ ® ¢(«) isinfinites-
imally small with respect to /. Thus the operator defined by Equation (2.11) is essentially
self-adjointon $Hs® D(h;). For simplicity wewill also denoteby 4 y itsself-adjoint extension.
The dynamics of the model is given by

7oA exp(ihpt) A exp(—iht).

Generally, the algebra M, ® A is not invariant under 7). Even worse, 7, isnot continuous
in the natural topology of this algebra. To obtain a decent dynamics we must extend
the set of observables to the enveloping von Neumann algebra which, by the last remark
of the previous paragraph, is £(5)). Since the function ¢ — 7} (A) is continuous in the
weak operator topology, Hypothesis (2.12) ensures that the spin-boson model definesa W *-
dynamical system (£($), 7)) for any A € R. Under the stronger condition

(L+w Ha e LARD), (2.13)
the spectrum of the spin-boson Hamiltonian (2.11) is given by
o(hy) = [e—(A), oo,

and e_()) is asimple eigenvalue (see e.g. [SP]). We denote the associated normalized
eigenvector by ¥,. The equilibrium state of the spin-boson system at zero temperature is,
by definition, the vector-state defined by

SE\XD(A) = (‘I’/\, A‘Il/\) . (214)

Although very natural, this definition is ultimately justified by the fact that, on M> ® A;,..,
the state S7° isthe weakx-limitas 3 T oo, of the thermal equilibrium states Sf to be defined
below (see [SP)).

At positive temperature, the Hilbert space of the joint system is $5; ® H;, and its free
dynamicsis generated by the Hamiltonian

Hy=hs @1 +1® M.

Denoting by ¢, (f) the field operators of the Araki-Woods representation, we define the
Hamiltonian of the interacting system by

HA = HO + )\q ® S‘QAW(O[)‘ (215)
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From the physical point of view, thisis just arephrasing of Definition (2.11) in a different
representation. However, in amore mathematical perspective, the existence of an intertwin-
ing relation of the type (2.8) between (2.11) and (2.15) is a difficult question which, in our
opinion, requires some information on the thermodynamiclimit A T R 3 (seefor examplethe
discussion in Section 5.2.5 of [BR2] or Section V.1.4 of [HA]). Sincethis problemisof little
physical relevance we will not pay more attention to it and accept (2.15) as a definition of
the model at positive temperature.

In [JP1] we proved that H )y is essentially self-adjoint on $5 ® D(h;) ® D(h;) for any
A € R, provided
(w+w Ha € LAR3).

Again we shall use the same symbol to denote its self-adjoint extension. Note that in this
case theinteraction ¢ ® ¢, (o) isnot Hp-bounded. Under the above assumption, it is well
known that

i A s exp(i H \t) A exp(—iH \t),

maps the von Neumann algebra
M= My @My = (Ma® 7y ('AIOC))H )

into itself (see [FNV] or [SP] for example, but also Section 6). Since on the other hand the
functiont — r§ (A) isweakly continuous (infact it is continuousin the o-strong * topol ogy),
the spin-boson model at positive temperature also defines a W*- dynamical system (901, 7).
Thermal equilibrium states of such systems are characterized by the KM S condition.

Definition 2.2. Let (D1, 7) be aW™*- dynamical system, and 3 > 0. A state S on9t isa
(7, B)-KMS stateif it satisfies:
(i) Sisnormal.
(i) Forany A, B € N thereexists afunction I' 4 (<), analytic in the strip
{z:0<Im(z) < 3},
continuous on its closure, and satisfying the KM S boundary conditions

Fq p(t) = S(ATY(B)),
Fqp(t+i8) = S(r'(B)A),

fort € R.

In Section 6, we shall prove
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Proposition 2.3. Forany A € R and 3 > O, there exists aunique (ry, 3)-KMS state Sf on
m.

Remark 2. Inthe sequel werefer to ) as the friction constant, and to « as the form factor.

3. Reaults
According to the previous section we shall, from now on, assume that
(H1) Theform factor o in Equations (2.11) and (2.15) satisfies
(w+wha € LARY).

For technical reasons related to the use of complex deformation techniquesin [JP1], we also
need a regularity assumption on the form factor «. To state this hypothesis we need some
additional notation. If  isaHilbert space, we denoteby H2(8, ) the Hardy class of h-valued
functions on the strip

S ={z:|Im(2)| < é}.

The Hilbert space H2(8, h) consists of all analytic functions f: G(8) — b satisfying

HfHHZ((S,h) = |S?JIO6/ || f(x +ia)||§d:1; < 0o.
a|< — 00

Let S? denote the unit spherein R3. Given afunction f on R3, we define a new function f
on R x S? by the formula

Foo iy = { —1s[Y2F(slk) ifs <o,
USA { sY2f(sk)  ifs>0. 1)

Our central technical hypothesisis:
(H2) ThereexistsO < 6 < 2r /3 such that
& € H?(8, L%(SD).

Finally wemust assume that the spin effectively couplesto thereservoir at Bohr’ sfrequency
Aw = e+ —e_| =2,

(H3) /32 la(2k)[2 do (k) > 0,
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where do isthe surface measure on S2. Conditions (H1)—(H3) are satisfied, for example, by
the function a(k) = +/[k| exp(—|k|2). More general conditions will be discussed in [JP2].

We are now ready to formulate the problem of return to equilibrium. Our discussion is
motivated by the work of Robinson ([RO1], [RO2]).

Definition 3.1. The spin-boson system at zero temperature has the property of return to
equilibrium if
lim S <%§(A)> = S°(A), 3.2)
|t|—o0

for any normal stateS andany A € M> ® Aj,,..

Definition 3.2. The spin-boson system at positive temperature has the property of return to
equilibrium if
lim S <T§ (A)> = sP), (3.3)
|t|—o0

for any normal stateS and A € 1.

We remark that, whenever Relation (3.2) or (3.3) holds, one would also like to know the
rate at which the limit is achieved.

In the zero-temperature case, the question of return to equilibrium is still an open and,
we believe, an outstanding problem of mathematical physics. We will discuss this problem
and related difficulties below. For additional informations we refer the reader to [HE], [SC]
and [HS1].

L et usnow state themain result of thispaper which, inview of thedifficultiesencountered
in the zero-temperature case, comes perhaps as a surprise.

Theorem 3.3. Suppose that Hypotheses (H1)—(H3) hold. Then, for 3 > O, there exists a
constant A(3) > 0, depending only on the form factor «, and such that the spin-boson system
has the property of return to equilibrium for any real A satisfying0 < |A| < A(5).

Remark 1. Animmediate consequence of this theorem is that, for any density matrix p on
the space $Hs ® Hp and any X € Mo, we have
. . Tr(exp(—pFhs) X)
lim lim Tr{pri(X®1I)) = :
fim tim T (Y 8 1) = e i)
For arelated discussion in the framework of master equations, see [D1] and [D3], Equation
5.13.
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Remark 2. We can recover the zero-temperature model in the limit 3 T co. Indeed, the
partia trace of any normal state S of the positive temperature model over the third space in
95 ® H, ® H, isanormal state S of the zero temperature model. In fact any such state can
be obtained in thisway. Moreover one can show that for any normal state S,

lim Y (X ® 1y (W) = 552 (X @ W(f)),

lim s <T§(X ® 74y (W ( f)))) =S (%i(X ® W(f))) ,

hold for arbitrary X € M, and f € ©,,.. However this limit is quite singular, and our
argument can’'t avoid the constant A(3) of Theorem 3.3tovanishas 5 T oo. Thus, our result
does not yield any new information concerning the zero-temperature spin-boson system.

Theorem 3.4. Supposethat Hypotheses (H1)—(H3) hold and let A(3) beasin Theorem 3.3.
There exist a norm dense set of normal states Ny and a strongly dense x-algebra?tg C I
so that, for |A| < A(3),S € Ngand A € Mg, one has

‘5 <T§(A)> . Sf(A)‘ —0 <e—70)ltl> : (3.4)
as |t| — oo. The function~()) is strictly positive for 0 < || < A(8), and satisfies

=2 [ [ lo(@h) 2o ) + 001,

th3
as) — 0.

Remark 3. ~(\) isthe negative imaginary part of the complex resonance of the Liouvillean
whichis closest to the real axis (see Section 6 for details).

Remark 4. Forany X € My, wehave X ® I € 9.

The proofs will be presented in Sections 6. We now turn to the promised discussion of
the mechanisms behind thermal relaxation. We discuss first the zero-temperature model. In
this case the relevant physical processis radiative decay. The spin “radiates’ its energy into
the“frozen” gas. Asthisenergy propagatestowardsinfinity, theinteracting system dissipates
to its lowest energy state: The ground state. We discuss this process in some detail in the

sequel.

The spectrum of the uncoupled Hamiltonian 4 is given by
oac(ho) = [—1, oo,
osc(ho) =0,

Upp(ho) = {-1,+1},
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and the eigenvectors associated to the eigenvaluesey = +1arev 4 ® Q. Asthecouplingis
“switched on”, the eigenvalue e = —1 moves along the real axis to a new location e_ ().
It remains simple, merely experiencing what is called the Lamb shift. The fate of the other
eigenvalue is quite different since it is embedded in the continuous spectrum. We expect
e+ = 1to turn into aresonance in the following sense: Therearee > 0, » > 0 and adense
set of vectors € € § such that, for |\| < e and ¥ € £, the functions

Ry(z) = (qx (hy — z)—qu> :

have a meromorphic continuation from the upper half-plane onto the region O = {z :
|z — 1] < n}. The functions Ry, should be regular in O except for asimple pole at ¢ +()),
which is independent on the choice of .

The above scenario is still a conjecture. Nevertheless, there exists a well developed
formal method, going under the name time-dependent perturbation theory, which has been
used since the 20’ s to compute the coefficients in the formal Taylor expansion of ¢+()) (see
[DI], [HE] and [SC]). The imaginary part of the first non-trivial term in this expansion is
generally known as Fermi’ s Golden Rule. For the model (2.11), this method yields

e+(N) = 1+ 2324 + 0%,
—Im(@?®) =T = 4 /52 la(2h)|2 do (k).

The quantity 2A2I'3° is, in second order perturbation theory, the probability per unit time for
the spin to make a transition »+ — ¢_ while emitting a boson of frequency v = Aw/2r
into the reservoir. The corresponding spectral lineis not infinitely sharp: By the uncertainty
relation between time and energy, itswidth is A\2T'%° (see [WW] and [HE] for more details).

If there is aresonance near e+ = 1 in the above sense, and if for some ¢y > 0 one has
Im(e+())) < O0for 0 < |A| < g, then the spectrum of /) intheinterval 11— 5,1+ [ is
purely absolutely continuousaslongas 0 < |A| < g. Infact we expect more, namely

Uac(hA) = [e—(A), oo,
osc(hy) = 0, (3.5
Upp(hA) = {e-(N)},
the eigenvalue e_(\) being simple. From this and the fact that
S5° <A %§(3)> = (A", exp (i(hy — c—(\)) BY,) .

an elementary property of absolutely continuous spectrum ([RS3], Section 3, Lemma 2),
would imply the mixing property of the spin-boson system at zero-temperature:

lim S5° <A %§(3)> = S(A)S(B). (3.6)

|t =00
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for any observables A, B € M> ® A;,.. One easily shows that (3.2) implies (3.6), but the
oppositeisnot true: At zero-temperature, mixingisstrictly weaker than returnto equilibrium.
We shall see in Section 4 that the situation is different at positive temperature.

In our opinion, the first step towards a proof of return to equilibrium at zero temperature
should be a derivation of (3.5), or at least of the mixing property (3.6). However, in view of
the previous discussion, we believe that the question of return to equilibrium cannot be, in
any natural way, mapped into a spectral problem, and that a new ideais needed.

Important advances in this direction have been recently madein [HS1], [HS2]. In[HS1],
Hubner and Spohn devel op scattering theory for themodel. Motivated by physical arguments
they construct an unbounded identification operator

J.D— 9,
with domain D C $), such that for & € D thelimits

0F® = s— limexp (i(hy — e—(\)t) Jexp (—ihyt) ®,
{—Fo0
exist. The wave operators obtained in this way extend to isometries Q+: $;, — . They
enjoy the usua intertwining property. Moreover if the normal state S is chosen so that the
eigenvectors of the associated density matrix belongs to Ran(Q*), then Relation (3.2) holds
ast — Foo. Return to equilibrium thus reduces to asymptotic compl eteness:

Ran(™) = Ran(2™) = 9. (3.7)

This is a stronger property than return to equilibrium. Nevertheless, besides of its own
independent interest, scattering theory appears to be a most natural and elegant way to
approach this kind of questions. Needles to say, asymptotic completeness is very hard
to prove: Similar scattering problems in mathematical physics, for example spin-wave
scattering for Heisenberg model or Haag-Ruelle theory of quantum field scattering (see e.g
[RS3]), await aresolution since decades. The only model for which Relation (3.7) is known
to hold isthe exactly solvable model of a harmonic oscillator linearly coupled to afree Bose
field [A1].

We would also like to mention the work [HS2], where Mourre theory is adapted to a
spin-boson model with massive bosons at zero temperature. It would be very interesting to
extend these results to the mass-less model discussed here.

When thiswork was finished, we learned that Bach, Frolich and Sigal announced aresult
which, specialized to the model (2.11), yields (3.5) under some technical assumptions on «,
e.g. dilation analyticity ([BFS]). In addition, their results in essence justify the resonance
picture sketched above.
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In the remaining part of this section we briefly discuss the physical processes at positive
temperature. To emphasize the physical content of the model, we shall use its atom-photon
interpretation (see e.g., [CDG]). The operator H has the following spectrum:

oac(Ho) = R,
osc(Ho) =0,
Upp(HO) = {-1,+1}.
Unlike in the zero-temperature case, we expect both eigenvalues to turn into resonances as

a result of the coupling. This was rigorously established by the authors in [JP1], where
Theorem 2.2 trandates into the following statement.

Theorem 3.5. Suppose that Hypotheses (H1)—(H3) hold. Then there exists a dense
subspace £ C $Hs ® Hy, and, for0 < n < ¢, aconstant A(ny) > 0 such that if |A\| < A(n) and
® U c &, the functions

2 (@, (H)y — )" tw), (3.8)

have a meromorphic continuation from the upper half-plane onto the region
O={z:Im(z) > —n}.

On O, the functions (3.8) are analytic except for two simple poles located at F1-(\). The
functions E+()\) are analytic for |\| < A(n). Furthermore the first coefficient in the Taylor
expansion

E+(0) = +1+a@22+

isgiven by

exp(+3) N
e / [, lotaly 2o,

~ (e 1V(2
1° — Re(a@y = +1py[  EPEAs/2) |als, b
+ =RelL) =55V @ [0/2] 2-s

where PV stands for Cauchy’s principal value.

I‘i = —Im(af)) =27

ds do(k),

As an immediate consequence we obtain that, for small non-zero A

UaC(H/\) =R,
osc(H)) = 0,
opp(Hy) = 0.

Moreover we remark that the imaginary part of £ (\) isrelated to the radiative lifetime of
the corresponding atomic state >+ by Cauchy integral formula (see [JP1] for details). In
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second order perturbation theory, only processes in which a single photon is either emitted
or absorbed are taken into account. In this framework, the coefficients Fi have a smple
physical interpretation: ZAZFf is the probability per unit time that the two-level atom will
emit a photon of frequency v = Aw/27 = 1/7 and make atransition ¢+ — _. Similarly
2X2r7 isthe probability per unit unit time that the atom will absorb a photon of frequency
v and make the reverse transition ¢y — >+. Again, the emission and absorption lines have
afinitewidth given by A", . Note that

limT? =0,
Aloo

lim TY = 7%°,
6TOO + +

as expected: At zero temperature only the emission process must be taken into account.

Let now p+ bethe probability for the atom to be in the state >4, then we must have
p—+pyr =1 (3.9
If the entire system isin thermal equilibrium, detailed balance further requires
pelf = p 17, (3.10)

The only solution of the system (3.9)—(3.10) is the canonical Gibbs distribution associated
to the Hamiltonian /5 i.e.,

by — exp(+3)
exp(p) + exp(—73)’

as expected. The general form of the coefficients Fi has been postulated by Einstein ([E],
see also [PA] and [P]) in 1917, and is known as Einstein’'s A-B law. To calculate these
coefficients, Dirac ([ DI1]) devel oped the af orementioned time-dependent perturbation theory.
The notion of resonances discussed above emerged in the early seventies (JAC], [BC], [SI1],
[HO], [R$4]) inthe context of /V-body non-relativistic quantum mechanics, as an attempt to
find a mathematically satisfactory foundation for time-dependent perturbation theory.

The spectral analysis of H) is only afirst step towards the understanding of the long
time behavior of the spin-boson model, and the proof of (3.3) requires a new ingredient.
Fortunately we can avoid scattering theory by exploiting therich algebrai c structure associated
with the positive temperature model. In the next section we show how this structure can be
used to transform the question into a spectral problem.
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4. Quantum Koopmanism

In classical mechanics, the spectral characterization of dynamics is based on Koopman's
lemma: Let (M, i, ) beaclassical dynamical systemi.e., M ameasurespace, i aprobability
measure on M andR > ¢ — ! ameasurable group of measure preserving transformations
of M. Assume also that the Hilbert space L2(M, dy) is separable. Then

LA(M,dp) 3 [ — fog!, (4.2)

defines a strongly continuous unitary group. Thus a classical dynamical system has an
associated self-adjoint operator: The generator I, of the group (4.1). It turns out that the
spectrum of Koopman's operator . carries important informations on the behavior of the
dynamical system (see [CFS] for more details). Note that if ¢ is the Hamiltonian flow
associated with the Hamilton function £, and if we denote the Poisson bracket by {-, -}, then
L isjust theusual Liouville operator: f — {h, [}.

Our aim is to extend this framework to quantum mechanics. Let 9t be a von Neumann
algebra. Recall that a state S on 91 is faithful if S(A*A) = Oimplies A = 0. We shal
cal (9, S, ) a quantum dynamical systemif R 5 t — 7! is a weakly continuous group
of automorphisms of 91, and S a faithful normal r-invariant state. We further denote by
(H, =, £2) the canonical cyclic representation of 91 (see [BR1], Section 2.3.3) associated to
S. Thetwo conditions

7(r'(A)) = exp(i Lt) 7 (A) exp(—iLt),

4.2
L =0, “2

uniquely determineaself-adjoint operator . ontheHilbert space’®. Wecall L the Liouvillean
of the system since, as we shall see below, it reducesto the ordinary Liouville operator in the
classical Hamiltonian case (see [RO1], where L is called equilibrium Hamiltonian). Note
that the second condition in (4.2) is crucia: Many operators satisfy the first condition. In
fact if Lg issuch an operator, sois Lo + V for any self-adjoint V' € =(91)’.

Aswe shall see shortly, the Liouvillean is the appropriate generalization of Koopman’'s
operator. To formulate our result we need some definitions.

Definition 4.1. Let (M, S, 7) be a quantum dynamical system, and denote by N the set of
normal states on .

(i) (M, S,)isergodicif, forany A ¢ Mand S’ ¢ N, one has

. 1 (T, B
TleOO f/_TS (71 (A)) dt = S(A).
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(if) Itisweakly mixing if, for any A, B € 9, one has

. 1 [T 2
lim = /_ i ‘S(Tt(A)B) —S(A)SB)| d=o.

(iif) Itismixingif, forany A, B € 9, one has

Jim S((A)B) = S(4) S(B).

(iv) It returnsto equilibriumif, forany A ¢ M and S’ € N, one has

Jim S'(71(A)) = S(A).

At this point, it is instructive to reconsider a classical dynamical system (M, u, ).
One easily shows that M = L>°(M,du), S(f) = [ fdu and 71(f) = f o ¢! define a
(commutative) quantum dynamical system for which Definition 4.1 reduces to the familiar
one ([CFS]). Moreover the corresponding cyclic representation can be constructed in the
following way: H = L2(M,du), =(f) = f (as multiplication operator) and 2 = 1. The
Liouvillean L isidentical to the original Koopman operator of (M, 1, ). This motivatesthe
following result.

Theorem 4.2. Let (M, S, 7) be a quantum dynamical system, (H, =, Q) its cyclic represen-
tation and L its Liouvillean. Denote also by Py, the orthogonal projection of ‘H along the
cyclic vector 2. Then,

(i) (<M, S,r)isergodicif andonly if O isasimple eigenvalue of L.

(if) Itisweakly mixingif and only if L has purely continuous spectrum, except for thesimple
eigenvalueO.
(iif) Itismixing if and only if
w — lim exp(—:Lt) = Pq. (4.3
t—00

(iv) It returnsto equilibrium if and only if it is mixing.

Proof. We start with some basic facts (see [BR1], Sections 2.3.1, 2.4.4 and 2.5.1). Let N
be a von Neumann algebra on a Hilbert space §). A vector ¥ € § is called cyclic for 91
if NP isdensein ). Itis called separating for 91 if A € 91 and A¥ = 0 implies A = 0.
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A vector is separating for 01 if and only if it is cyclic for M’. A representation  of 91 is
called faithful if it is a x-isomorphism between 91 and 1(91). A representation 5 is faithful
if and only if n(A) = Oimplies A = 0. A representation is faithful if and only if it satisfies
In(A)|| = ||A]| forany A € 9. Findly if 5 is afaithful representation of 91 in the Hilbert
space H, then a state S on 91 is normal if and only if there exists a density matrix p on 'H
such that S(A) = Tr(p n(A)).

The proof of Theorem 4.2 isbased on the following argument: The cyclic representation
7 inherits the faithfulness of S, therefore © is not only cyclic but also separating for = (907).
It follows that both 7(91)Q and 7 (971)'Q are dense in H. Let us denote by A the set of
vector states arising from vectorsin «(97)'Q2. The set of finite convex linear combinations of
elements of N isnorm densein A, thus we can replace A/ by N in Definition 4.1. Now,
for S’ € N, there exists an operator C' € 7(9)’ such that

S'(r'(A)) = §(4) = (CQ, 7 (r'(A)C) — (2, 7(A)Q)
= (Q, 7 (r1(A)C*CQ) — (2, 7 (A)Q)(Q, C*C Q) (4.4)
= (7(AM)Q, exp(—i L1)(I — Pa)CCQ),

forany A € M. Inthe same way we can write

S(r'(A)B) — S(A)S(B) = (@, 7 (7 '(A)B)Q) — (Q, 7(A)Q)(Q, 7(B)Q)

. (4.5)
= (7(AM)Q, exp(—i Lt)(I — Po)(B)),

forany A, B € 9. Von Neumann’'s ergodic theorem (see [CFS] for example) applied to
(4.4) and the density of 7(9)Q and =(9M)'Q yield a proof of (i). In a completely similar
way, RAGE theorem (see [RS3], Theorem X1.115) applied to (4.5) and the density of 7 (9)t)Q2
prove (ii). By (4.5), assertion (iii) is an immediate consequence of the density of = (97)S2.
Finally, using (iii), we reduce the proof of assertion (iv) to the equivalence of return to
equilibrium with (4.3). Thisfollowsdirectly from (4.4), the density of =(91)Q and =(91)'Q,
and athe fact that an arbitrary P € =(91)’ isalinear combination of positive operators.

Corollary 4.3. If the Liouvillean L. of a quantum dynamical system has purely absolutely
continuous spectrum, except for the simple eigenvalue O, then this system is mixing.

Proof. This follows from assertion (iii) of Theorem 4.2 and an application of Riemann-
Lebesgue’ s Lemma to the spectral measures of L (see [RS3], Section X1.3, Lemma 2).
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Remark 1. Let (91, 7) be a W* dynamica system. Any (7, 3)-KMS state SP isfaithful,
normal and 7-invariant (see [BR2], Section 5.3.1). It follows that (91, S”, ) is a quantum
dynamica system. This contrasts with the zero temperature case: At zero temperature an
equilibrium state (ground state) generally fails to be faithful. The loss of faithfulnessin
the limit 3 T oo is the source of one of the previously mentioned difficulties in the zero
temperature spin-boson model: Thereis no Koopman Lemma at zero temperature, hence no
spectral characterization of the dynamics. This is not a quantum phenomenon, the problem
already exists at the classical level.

5. Modular Theory

In this section we restrict ourselves to quantum dynamical systems of the form (901, Sh, 7),
where S? isa(r, 5)-KMSstate. We show how Tomita-Takesaki’ stheory relatesthe Liouvil-
lean of the system to its modular structure, and how thisfact naturally |eads to multiplicative
and additive perturbation theory of the Liouvillean. We start with a brief review of the basic
construction leading to modular theory. For a more detailed exposition from the standpoint
of mathematical physics we refer the reader to [AR1] and [BR1],[BR2].

Let 91 be avon Neumann algebra on a Hilbert space £, and ¥ € $) a separating cyclic

vector. The formulae
SA® = A*®  for AeM,

FBU = B*U for BeW,

define two anti-linear operators S and £ with dense domains 91¥ and 91" ¥ respectively.
Since one easily sees that

(5.1)

ScF*,  FcS* (5.2)

the two operators S and £’ are closable, and we denote their closure with the same symbol.
Let us write the polar decomposition of S as

S =JAY2 (5.3)

where J isanti-unitary and A self-adjoint and positive. It turnsout that ./ isisan involution:
J2 = J. Itisthe modular conjugation of the pair (91, ¥), while A is its modular operator.
The fundamental theorem of Tomita and Takesaki states that

JU =0, JNJ =N, (5.4

A =0, AUNATH =9, (5.5)

foralt e R.
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To make the connection with the quantum dynamical system (901, S7. 7) note that,
according to the previous section, the canonical cyclic representation (H, =, 2) associated
with 87 is faithful. Thus € is a separating cyclic vector for 7(90), and we can apply the
above construction to the pair (+(977), 2). By aslight abuse of language, we shall say that the
operators ./ and A obtained in this way are the modular conjugation and modular operator
of the system (9, S°, 7). It follows from Tomita-Takesaki’ s theorem that the formula

(A = Jr(A) J,

defines an anti-linear representation of M1 on the commutant = (9)’. We shall see that this
dual representation ([AW], [HHW]) plays afundamental role in our problem. Another deep
conseguence of Tomita-Takesaki’s theorem is that

V(A) = 7r_1<Ait w(A)A‘“),

defines a group of automorphisms of 9t. Takesaki’s theorem further asserts that y is the
unique o-weakly continuous group of automorphisms of 9t admitting S asaKMS state at
inverse temperature —1. One easily conclude that

K=
which we summarize in the next result.
Proposition 5.1. Let (9, S”,7) be a quantum dynamical system, and (H, =, Q) its cyclic

representation. Assumethat S° isa(r, 3)-KMSstate. Then the Liouvillean L of the system
is related to its modular operator A by the formula

A = exp(—4L).
The modular structure enjoys very simple covariance properties under unitary transfor-

mation (inner automorphisms). In particular the spectrum of the Liouvillean is invariant
under such transformation.

Lemma 5.2. Let (M, S, 7) be aquantum dynamical system, (H, =, Q) its cyclic representa-
tion, L itsLiouvillean and J its modular conjugation. FurthermoreletVV be aunitary element
of M, and denote by ~ the associated inner automorphism of 9, i.e.,

7(A) = VAV,
forany A € 9. ToV we associate the unitary operator

U=r(V) Fﬁ(V),
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onH. Then (M, S o v,v Lo 7 o ~) isaquantum dynamical system.
(i) Itscyclic representation is given by (H, =, U2).
(ii) ItsLiouvillean isU LU *.
(iii) Its modular conjugation isagain .J.
The proof of thisLemmais asimple application of Tomita-Takesaki’ s theorem, and will
be omitted. We end this section with a powerful result which describes how the modular
structureis altered by a small perturbation of the dynamics. It isan immediate rephrasing of

awell known theorem of Araki [AR2] (see dso [BR2], Theorem 5.4.4 and the remarks after
it).

Theorem 5.3. Let (M, S”. 7) be a quantum dynamica system, (H, x, ) its cyclic repre-

sentation, L its Liouvillean, and .J its modular conjugation. Assume that S” is the unique
(7, B)-KMS state of Mt. Then, for any self-adjoint V' € 9N, the formula

()= 77t (expli (L + (1)) 7(4) exp(—i (L + 7 (V) )
defines aW*- dynamical system on9t. Furthermore,
(i) @ € D(exp(—B(L +=(V))/2)), and the vector state S|, associated with

_ (=B (L+x(V)/2)9
V= exp(=3 (L +7(V))/2)9]

is the unique (ry, 5)-KMS state of ON.
(ii) The cyclic representation of the perturbed system (901, s Ty ) IS(H, 7, Qy).
(iii) ItsLiowvilleanisLy = L +x(V) — =5(V).

(iv) Its modular conjugation isagain J.

We are now fully equipped to proceed with the proof of our main result.
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6. Proofsof Theorem 3.3 and Theorem 3.4

Asawarm up, let us describe in details the modular structure of the isolated spin at inverse

temperature 3. Recall that the observable algebrais s = M». Sinceit isafactor (i.e., its
center M N, istrivid), the Gi bbsstatesf givenin Equation (2.1) istheunique KM S state
of the system (see [BR2], Theorem 5.3.29). We denote by (Hs, 75, ¥5) the corresponding
canonical cyclic representation of 2ts which, according to the GNS construction, can be
realized in the following way: The Hilbert spaceis

Hs = Mp,
with the familiar inner product
(X,Y) = Tr(X*Y). (6.1)
The representant 75(A) acts by left multiplicationi.e., forany A € s and X € H,
7s(A): X — AX.

The unit vector 1

N

isobviously cyclic and separating for 7 5(915), and satisfies

v, = exp(—p3hs/2),

SE(A) = (¥, 7(4) W),
Thus there is a unique self-adjoint operator . on H such that
s <exp(ith5) A exp(—ith5)> — exp(itLs) ws(A) exp(—itLs),

for A € M, and
LSQS — O

One easily checks that the operator defined by
Ls: X — [hs, X,

has the required properties, and therefore is the Liouvillean of the system. It follows from
Proposition 5.1 that the modular operator of the pair (7 s(905), ) is given by

As = exp(—pLs): X — exp(—Bhs) X exp(Bhs).
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Going back to the definitions (5.1), (5.3), its modular conjugation is immediately identified
as
Js: X — X*,
from which we conclude that
Th(A): X = X A*,

Along the same line we shall now describe the modular structure of the isolated boson
gas at inverse temperature 3. Recall that the algebra of observablesis M = 7, (A,..)”,

where,,,, isthe Araki-Woods representation corresponding to the equilibrium state S bﬁ . By
construction, the cyclic representation of the reservoir at thermal equilibriumis (H, 73, ¥p),
where

7 (A) = A.

As in the case of the isolated spin, it is straightforward to identify the Liouvillean as the
operator on ‘H,;, defined by
Ly X v [hy, X].

Note that, in this case, the Liouvillean is identical with the original Hamiltonian H;. Pro-
ceeding as before we can write down the modular operator of the pair (7 ;(91;), ¥;),

Ay = exp(—pBLp): X — exp(—5hy) X exp(Bhy).
Using Definitions (5.1) and (5.3), we see that the modular conjugation ./, is characterized by
Jy op(=Bhu /W (VItpf) 19)0@IW (Vo) exp(3h/2) =
w(viear) 1eyeiw (ver)

Since exp(—3hy,/2) = T'(exp(—Sw/2)), awell known property of second quantized contrac-
tions (see[SI2], Section 1.4) gives

exp(— 3y /2) W (/) 9 = exp (—%1 (1, (1—e) f)) W (exp(—f/f) 2. (62)
If f € D(exp(Bw/2)), it follows from this formulathat W (f) 2 € D(exp(3h ,/2)), and
exp(Bhy/2) W(f) Q = exp (% (1 (™ -1) f>> W (exp(Bw/2)f) Q. (6.3)
Inserting (6.2) and (6.3) in the above characterization of .J, leadsto

W (Very1eneiw (visor) =w (vires) 1oyeiw (vor)
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from which it becomes apparent that
Jy X — X*,
The dual representation is given by
THA) X > (AXF)T

in particular

7 WO X = W (072 7) X W (@ p27)
From this, a ssimple calcul ation shows that

Ty (W (VIF p ) 7w (W (/0 H)): X s WX,

7 (T V(Y D)) 7y (W (VT 0 D) X = XW ().

and since M}, = rg(i)ﬁb), the irreducibility of the Fock representation allows us to conclude
that M, v M, = L(H,,). Hence we recover thewell known facts that 91, isafactor and that

Sbﬁ is the the unique KM S state of the isolated boson gas at inverse temperature /3.

We can now describe the modular structure of the combined spin-boson system. In the
absence of interaction i.e., when A = 0, the state

si=8/®s),

is the unique (mg, 5)-KMS state on 91 = My ® M. The quantum dynamical system
(o, Sg , 7o) has acanonical cyclic representation (H, =, ¥) defined by

H="H;®H,,
T =Tz & T,
Wﬁzﬂ'E(X)ﬂ'g,
U=V, V¥,

The vector ¥ iscyclic and separating for 7 (1), and the corresponding modular operator and
modular conjugation are given by

A=A® A,
J=Js® Jp.

Finally the Liouvilleanis
Lo=Ls®I+1® L.



ErGoDICc PROPERTIES 25

To obtain the modular structure of the coupled system, we would like to follow the
perturbative approach of Theorem 5.3. Thisisnot directly possible, dueto the unboundedness
of the coupling term ¢ ® ¢, ;- (o). However, the following twist avoids this complication:
Define

Vi=exp(idg® ¢,y (ia/w)).

One easily checks that Hypotheses (H1)-(H2) imply o/w € D(w=Y/2), from which we can
conclude that V, € 91. Let us denote by ~, the corresponding inner automorphism of 9.
Using Weyl’ srelation (2.3), an explicit calculation shows that

[ -1 {
Y =72 &) 07

where
€4(A) = exp(i(Ho + Ty)t) A exp(—i(Ho + T))t),

and 7', isthe self-adjoint element of 9t given by
Th=m0@:1)—0.Q1.

Since ¢{y = 19, we know from the previous paragraphs that (90, Sg ,€p) IS a quantum
dynamical system, and that Sg isthe unique (£g, 5)-KMS state. One further checks that

m(€\(A)) = exp(i(Lo + (T)))1) w(A) exp(—i(Lo + 7 (Ty))1),

implements the dynamics in the cyclic representation. At this point we are ready to apply
Theorem 5.3, which shows that ¢, defines a quantum dynamical system with unique KMS
state ainverse temperature 3. The Liouvillean of this system is given by

Ly = Lo+r(Ty) — (1Y)

Applying now Lemma 5.2, we conclude that 7, aso has a unique KMS state s? , and that
the Liouvillean of (I, SY, ) is given by

Ly =t e (VHrEVH).
This formulacan be explicitly evaluated to obtain
Ly = Lo+ Ms(q) ® () = AMri(g) ® 1 (), 6.4)

where c,oﬁw denotesthe field operator of the dual Araki-Woods representation 71'2 i.e,

m W) = oxp (=i (1))
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For calculational purposes, let us develop amore explicit formula. Using the tensor product
realizations Hs = $Hs ® Hs and Hy, = H, ® $Hy, we can write

Ly=Ls@I+I1Q L+ Mg® ) ® g ()~ M ® ) ® ¢ (a)
with

Ls=hs @1 -1 hs,
LbEhb(X)]—](X)hb,

and

oaw (@) = o((L+ p)Y20) @ 1+ 1 ® o(p*?a),

ph (@) = o(pY %) @ T+ 1 @ o((1+p)Y?a).

We summarize the above discussion in

Theorem 6.1. Let (H,x,Q) be the cyclic representation of the non-interacting spin-boson
system (901, Sg , 7o) @ inverse temperature 3 < oco. Forany A € R there exists a cyclic and

separating vector \Ilf € H such that
s2(4) = <‘Il§,7r(A)‘Il§> :

isthe unique (7, 5)-KMS state of 9. Furthermore the Liouvillean of the interacting spin-
boson system is given by Equation (6.4).

The Theorem 4.2 reformulatesthe problem of return to equilibrium as a spectral problem
for the operator L ). Note that g has the following spectrum:

oac(Lo) = R,

osc(Lo) = 0,

UPP(LO) - {_27 07 2}
Clearly, +-2 are simple eigenvalues with eigenvectors '+ ® ¢+ ® ¥, while 0 is twofold
degenerate eigenvalue with eigenvectors v+ ® v+ ® ¥;,. When the interaction term is
“switched on”, one naturally expects all this eigenvalues to “turn into resonances’, except

for O which must remain a simple eigenvalue. The precise way in which the degenerate
eigenvalue 0 splitsinto resonance and eigenvalue is the content of Einstein’s A-B law.

The method developed in [JP1] for the analysis of the spectrum of the operator H ),
immediately appliesto . Thereasonisthefollowing: The fundamental tool in [JP1] isthe
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representation of H; as the Fock space over L2(R x S2, ds do). In this representation, the
interaction termin H , isgiven by ([JP1], Theorem 3.1 and Equation 3.6)
Hy = q® ¢(ap),
where ¢ isthe Segal field operator of the corresponding Fock representation of CCR, and
_ s vz 20¢ 122
ag = (W) a € H2(8, LA(SY),

as a consequence of Hypothesis (H2). A simple calculation shows that the corresponding
termin L) is
Lr=(q®1)® ¢lap) — (I ® q) ® ¢(exp(—pBs/2)ap),

which clearly enjoys similar analyticity properties.
Recall that Fi and Hi were defined in Theorem 3.5. We further set

¥ =17 +17
=1 —1”.

Then a simple adaptation of Theorem 2.2 and Proposition 4.7 in [JP1] gives

Theorem 6.2. Suppose that Hypotheses (H1)-(H2) are satisfied. Then there exists a dense
subspace& C 'H and, for eachn €]0, ¢[, aconstant A(n) > 0 suchthat for A €] — A(n), A(n)[
and®, ¥ c &, the functions

2 (8, (Ly — 2)"1w), (6.5)

have a meromorphic continuation from the upper half plane onto the region
O={z:1Im(z) > —n}.

The poles of matrix elements (6.5) in© areindependent of ® and V. They areidentical to the
eigenvalues of aquasi-ener gy operator ¥, on’Hs. This operator is analytic for |\| < A(n),
with a power expansion of the form

o0
Sy=He+ ) A2nen),
n=1

The matrix @) can be explicitly computed and, denoting by Py, the eigenprojectionsof H.,
we have
Px@p,, = (inﬁ . @'rﬁ), (6.6)
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for the simple eigenvalues, and
—2ir? 21’ e
2mhe? ¥ ) ’
for the degenerate one. Note that the eigenvalues of the matrix (6.7) are0 and — 4’7 .

Pox@py = ( (6.7)

An immediate consequence of the above result and of Proposition 4.1 in [CFKS] is that
there is a constant A(3) > 0 such that for 0 < |A| < A(S) the spectrum of L, is purely
absolutely continuous, except for the simple eigenvalue 0. The proof of Theorem 2.3 is
completed by invoking Theorem 4.2 and Corollary 4.3.

Remark 1. We note that the matrix £(@ is intimately related to the generator of the
Markovian dynamics that arises in the van Hove limit A — 0, ¢ = A—27. This generator is
usually derived from Pauli’s master equation (see for example [D1], [D2], [D3] or [M]). It
turns out that, in the representation we work in, — £ is identical to this generator. The
relation between Pauli’s master equation and the method developed in this paper will be
discussed in more detail in [JP2].

We now sketch the proof of Theorem 3.4. We will only consider the limit ¢ T +oo,
a similar argument can be used for ¢ | —co. We invoke the dynamical consequence of
Theorem 6.21i.e., Theorem 2.5in [JP1].

Theorem 6.3. Suppose that Hypotheses (H1)-(H2) are satisfied. Then there exists a dense
subspace £ C ‘H and, for eachn €]0,¢[, a constant A(n) > 0 with the following property:
For |\| < n there are two maps WAi:E — Hs such that for any ®, ¥ € &, one has

(Wi @, Wiv) = (@, %) and
(@, exp(—itL))¥) = (W, @, exp(—iZ\t)W3 ¥) + O(exp(—nt)),

ast — +oo.

If U() denote the group of translations introduced in Section 4 of [JP1], then £ can be
chosen to be the set of vectors which are analytic for U/ (6) in the strip &(¢).

We define the set of states A and the algebratg as follows. Let
Ao = {X @ 7wy (W() 1 | € H2(5, LH(SY)}, (6.8)

denote by K/’o the set of vector states associated with vectors in rﬁ(AO)\Ilf and set 9710 =
7(Ag). We define A as the set of finite convex linear combinations of states in N and
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Mo as the linear span of 97?0. Clearly Mg and 91g enjoy the properties stated in Theorem
3.4. Note also that it is sufficient to prove (3.4) for S € Ngand A € M. Let () bethe
negative imaginary part of the complex eigenvalue of %, closest to the real axis. Then it
clearly satisfies the properties stated in the theorem. By Equation (4.4) and Theorem 6.3 the
proof of Theorem 3.4 reduces to showing that the vectors w(A)\Ilf and wﬁ(A)\Ilf belong to
the set £ for A € Ag. In the representation of H;, as the Fock space over L2(R x S2, ds do)
used in [JP1], we have that

P(X 8 (V) = 708 W (o5 7).

f _ At 5
P @ 7 W) = i) 0w (oot ).
Therefore, from our assumption on f in Definition (6.8), Theorem 3.4 will follow from

\Ilf € &. Using the notation of [JP1], this can be established as follows. Let L) (—:6) be the

deformed Liouvillean defined as in Section 4 of [JP1]. By Theorem 4.6 in [JP1], thereisa

constant A > O,s;othatfor'ﬁ—| << band®, @ € & onehas

(@, ¥)(W7, 9") = (U(i0)@, Q\(~if)U (~i0)2"), (6.9)

where (), (—:0) isthe spectral projection of thedeformed Liouvillean L y (—:6) corresponding
to the eigenvalue zero. Let now & = U(—:0)®g and ' = U(:0)®q with &g an analytic
vector for () in the strip &(26). Then &, &' ¢ £, and from Equation (6.9) we conclude
that

(U)o, ¥)| (¥}, U(0)@0)| = (@, Q1 (~i0)®0)| < C 5Pl

Thus for |X—| < 6§ < 6 wehave
) € D(U(—i6)) N D(U(i0)),

and therefore U (H)Wf isanalyticin &(6). This completesthe proof of Theorem 3.4.
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