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2 V. Jakšić, Y. Pautrat, C.-A. Pillet

1 Introduction
In classical probability, the Lévy-Cramér continuity theorem is a standard tool for proving convergence in distri-
bution of a family of random variables. To recall its statement, let T denote either N or R, T ≡ T∪{∞}, and let
x·y be the standard inner product of two vectors x, y ∈ Rn. Suppose that, for each t ∈ T,At = (A

(1)
t , . . . , A

(n)
t )

is a Rn-valued random variable on the probability space (Ωt,Ft,Pt) and denote by Et the expectation with re-
spect to Pt. The Lévy-Cramér continuity theorem asserts that if

lim
t→∞

Et(eiα·At) = E∞(eiα·A∞), (1)

for all α ∈ Rn, thenAt converges toA∞ in distribution, i.e., for every bounded continuous function f : Rn → R

lim
t→∞

Et(f(At)) = E∞(f(A∞)). (2)

More generally, let D(f) be the set of discontinuity points of a function f . Then (2) holds for every bounded
Borel function f such that

P∞([A∞ ∈ D(f)]) = 0,

see Theorem 29.2 in [Bi].
We are interested in non-commutative analogues of these results. To discuss such generalizations we need to

briefly recall some basic notions of non-commutative probability theory. We refer to [Mey] or [Maa] for a more
detailed introduction and to [BR1] for the theory of von Neumann algebras.

We start with an algebraic reformulation of classical (commutative) probability theory. A bounded, real-
valued random variable A on the probability space (Ω,F ,P) can be identified with a real element of the set
M ≡ L∞(Ω,F ,P) of equivalence classes of essentially bounded F-measurable functions on Ω. An event
E ∈ F (or rather, an equivalence class under the equivalence A ∼ B ⇔ P(A∆B) = 0) can be identified with
the random variable 1lE ∈ M, which satisfies 1l2E = 1lE = 1lE ; conversely, any element A ∈ M satisfying
A2 = Ā = A is the equivalence class of the indicator function of some set E ∈ F . Denoting by E the
expectation associated with P, the law of a random variable A is defined as the unique probability measure µ on
R such that E(f(A)) =

R
f(x) dµ(x) for all bounded measurable functions f : R→ R.

Note that L∞(Ω,F ,P) is a commutative von Neumann algebra. Its elements can be interpreted as bounded
multiplication operators on the Hilbert space L2(Ω,F ,P). In non-commutative probability theory M becomes
a general von Neumann algebra (weakly closed ∗-subalgebras of B(H), the algebra of bounded linear operators
on some Hilbert space H). In this extended framework, a random variable is an element A ∈ M satisfying
A = A∗, i.e., a selfadjoint operator of H. An event is an element A ∈ M satisfying A2 = A∗ = A, i.e.,
the orthogonal projection on a closed subspace of H. The role of the expectation is played by a normal state
ω on M, i.e., a positive linear functional on M (ω(B∗B) ≥ 0 for all B ∈ M) which is continuous under
monotone convergence and normalized by the condition ω(I) = 1. The law of A in the state ω is the unique
measure ωA on R such that ω(f(A)) =

R
f(x) dωA(x). The existence of such a measure follows from the von

Neumann spectral theorem (see Theorem VIII.6 in [RS]): there exists a projection valued spectral measure ξA on
R, with support on the spectrum SpA of A, such that (u,Au) =

R
SpA

x d(u, ξA(x)u) for all u ∈ H. For every
bounded Borel function f and u ∈ H one has (u, f(A)u) =

R
SpA

f(x) d(u, ξA(x)u). In particular, ω ◦ ξA is
a probability measure,

ω(f(A)) =

Z
SpA

f(x) d(ω ◦ ξA)(x), (3)

and so ωA = ω ◦ ξA is the law of A. Clearly, suppωA ⊂ SpA. If ω is faithful, then suppωA = SpA;
otherwise this may not be the case. Note that the framework thus defined extends the classical one: as already
remarked, the space L∞(Ω,F ,P), acting by multiplication on the Hilbert space L2(Ω,F ,P), is a von Neumann
subalgebra of B(H).

As long as one considers the law of one single random variable at a time, non-commutative probability
reduces to classical probability. For example, within the framework of classical probability one can discuss the
convergence in distribution of a sequence of non-commuting random variables in a given state. The novel aspects
of non-commutative probability emerge only when one considers simultaneously two (or more) non-commuting
random variables A,B ∈ M. Then, it is in general impossible to define a joint law for A and B: there is no
measure µ on R2 such that

ω(f(A)g(B)) =

Z
f(x)g(y) dµ(x, y),
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for all bounded continuous functions f and g. In particular there is no measure µ such that

ω(eiαAeiβB) =

Z
eiαxeiβy dµ(x, y),

for all α, β ∈ R. For this reason, quantities such as

ω(eiα1A
(1)
· · · eiαnA

(n)
),

which we call quasi-characteristic functions in accordance with [CH], do not have a direct probabilistic inter-
pretation. In particular, an assumption analogous to (1),

lim
t→∞

ωt(e
iα1A

(1)
t · · · eiαnA

(n)
t ) = ω∞(eiα1A

(1)
∞ · · · eiαnA

(n)
∞ ), (4)

where A(i)
t are non-commuting self-adjoint elements of some von Neumann algebra Mt, cannot be interpreted

as a convergence of measures because, in general, neither the finite t quantities, nor their limit, are characteristic
functions of probability measures. Assumptions such as (4) were often considered in the non-commutative
probability literature, but their rigorous implications were rarely studied (the only two exceptions we are aware
of are [CH] and its extension [CGH], and [Kup], see subsection 4.2). Instead, it was generally considered
that such a convergence was a good indication of the relevance of the limiting structure (M∞, ω∞) (another
commonly used approach with similar motivations uses moments, see in particular [GvW], [AB]).

Assuming that (4) holds (see Assumption (A) below for the precise formulation of our main condition), we
shall prove in this paper that the relation

lim
t→∞

ωt(f1(A
(1)
t ) · · · fn(A

(n)
t )) = ω∞(f1(A(1)

∞ ) · · · fn(A(n)
∞ )) (5)

holds for all continuous functions f1, . . . , fn. As in the classical case, an extension to discontinuous functions
exists, but under assumptions stronger than those one might naively expect. Although in the non commutative
probability the relation (5) has no bona fide measure theoretic interpretation, it is relevant in the theory of re-
peated measurement of quantum systems (see [Dav]). From the mathematical point of view, we consider the
implications of the type (4)⇒ (5) a natural non-commutative extension of the classical Lévy-Cramér continuity
theorem.

The paper is organized as follows. Our main results are stated in section 2 and the proofs are given in Section
3. Section 4 is devoted to discussion of our results including examples, applications and comparison with the
literature.

Acknowledgment. A part of this work has been done during Y.P.’s visit to McGill University funded by NSERC.
The research of V.J. was partly supported by NSERC.

2 Non-commutative Lévy-Cramér continuity theorems
Recall that T denotes either N or R and T ≡ T ∪ {∞}. For any t ∈ T let

(i) Mt be a von Neumann algebra acting on a Hilbert spaceHt;
(ii) ωt be a normal state on Mt;

(iii) A(1)
t , . . . , A

(n)
t be (possibly unbounded) selfadjoint operators onHt which are affiliated to Mt, i.e., such

that eiαA
(j)
t ∈Mt for all α ∈ R.

C denotes the set of real bounded continuous functions on R,M the set of Borel probability measures on R and
B the set of real bounded Borel functions on R. For f ∈ B and µ ∈ M, D(f) denotes the set of discontinuity
points of f (D(f) is Borel, see e.g., Theorem 25.7 in [Bi]) and µ(f) denotes

R
fdµ. Finally, ω(j)

t denotes the
law of A(j)

t in the state ωt, i.e., the unique element ofM satisfying

ω
(j)
t (f) = ωt(f(A

(j)
t )),

for all f ∈ C.
Our central assumption is:
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Assumption (A) For all α ∈ Rm, j1, . . . , jm ∈ {1, . . . , n} with m ≥ 1, one has

lim
t→∞

ωt

„
eiα1A

(j1)
t · · · eiαmA

(jm)
t

«
= ω∞

„
eiα1A

(j1)
∞ · · · eiαmA

(jm)
∞

«
.

2.1 Statement of the results
Our first result is the following non-commutative version of the Lévy-Cramér continuity theorem.

Theorem 1 Under Assumption (A),

lim
t→∞

ωt
“
f1(A

(1)
t ) · · · fn(A

(n)
t )
”

= ω∞
“
f1(A(1)

∞ ) · · · fn(A(n)
∞ )
”
, (6)

holds for all f1, . . . , fn ∈ C.

This result can be extended to bounded Borel functions as follows.

Theorem 2 Under Assumption (A) there exists a family S = (Sj)j∈{1,...,n} of subsets ofM such that

lim
t→∞

ωt
“
f1(A

(1)
t ) · · · fn(A

(n)
t )
”

= ω∞
“
f1(A(1)

∞ ) · · · fn(A(n)
∞ )
”
, (7)

holds if, for all j ∈ {1, . . . , n}, fj ∈ B and σ(D(fj)) = 0 for every σ ∈ Sj .

We shall say that a family S = (Sj)j∈{1,...,n} of subsets ofM is admissible if (7) holds under the conditions
of Theorem 2.
Remarks. 1. In general, the choice of S is not unique and the subsets Sj ⊂M for different j can not be chosen
independently of one another. Explicit examples of admissible families are given in Subsection 2.2.
2. We will see that possible choices for S imply a strengthening of the continuity assumption with respect to
the classical Lévy-Cramér theorem. This strengthening is necessary and due to the non commutativity of the
problem at hand. We illustrate this in subsection 4.1.

In the case where ω∞ is faithful on the algebra M∞, Lemma 7 below shows that Sj = {ω(j)
∞ } defines an

admissible family. Theorem 2 then yields an optimal non-commutative extension of the classical Lévy-Cramér
theorem.

Corollary 3 If Assumption (A) holds and ω∞ is faithful on M∞ then (7) holds for f1, . . . , fn ∈ B satisfying
ω

(j)
∞ (D(fj)) = 0 for every j ∈ {1, . . . , n}.

2.2 Admissible families
In this subsection we introduce possible choices of admissible families. We then discuss the special case where
ω∞ is faithful. Note that if ω is a normal state on the von Neumann algebra M then, for any unitary U ∈ M,
the formula ωU ( · ) ≡ ω(U∗( · )U) defines a normal state on M. In particular, for t ∈ T, j ∈ {1, . . . , n} and
α1, . . . , αn ∈ R we can define the following normal states on Mt,

ω−jt(α1, . . . , αj−1; · ) ≡ ωt
„

eiα1A
(1)
t · · · eiαj−1A

(j−1)
t ( · )e−iαj−1A

(j−1)
t · · · e−iα1A

(1)
t

«
,

ω+
jt(αj+1, . . . , αn; · ) ≡ ωt

„
e−iαnA

(n)
t · · · e−iαj+1A

(j+1)
t ( · )eiαj+1A

(j+1)
t · · · eiαnA

(n)
t

«
.

Definition 4 By Equ. (3), the maps

α 7→ ω−jt

„
α1, . . . , αj−1; eiαA

(j)
t

«
,

α 7→ ω+
jt

„
αj+1, . . . , αn; eiαA

(j)
t

«
,

are characteristic functions of probability laws that we denote by σ−jt(α1, . . . , αj−1; · ) and σ+
jt(αj+1, . . . , αn; · )

respectively.
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Note in particular that σ−1t = ω
(1)
t and σ+

nt = ω
(n)
t . We define

S−j ≡ {σ
−
j∞(α1, . . . , αj−1) |α1, . . . , αj−1 ∈ R},

S+
j ≡ {σ

+
j∞(αj+1, . . . , αn) |αj+1, . . . , αn ∈ R}, (8)

for j ∈ {1, . . . , n}.
We can now define possible choices of admissible families.

Theorem 5 For any J ∈ {0, . . . , n} the family (Sj)j∈{1,...,n} defined by

Sj ≡

8<: S−j if j ≤ J,

S+
j if j > J.

(9)

is admissible.

The reason for the multiplicity of choices of admissible families will become clear in Subsection 3.2.
The following continuity properties of the maps t 7→ σ±jt are an easy consequences of the classical Lévy-

Cramér continuity theorem.

Lemma 6 Fix j ∈ {1, . . . , n} and let g ∈ B. If

σ(D(g)) = 0 for every σ ∈ S−j , (10)

then
lim
t→∞

σ−jt(α1, . . . , αj−1; g) = σ−j∞(α1, . . . , αj−1; g), (11)

for every α1, . . . , αj−1 ∈ R. Similarly, if

σ(D(g)) = 0 for every σ ∈ S+
j , (12)

then
lim
t→∞

σ+
jt(αj+1, . . . , αn; g) = σ+

j∞(αj+1, . . . , αn; g), (13)

for every αj+1, . . . , αn ∈ R. Finally, if
ω(j)
∞ (D(g)) = 0, (14)

then
lim
t→∞

ω
(j)
t (g) = ω(j)

∞ (g). (15)

Note that ω(j)
∞ ∈ S−j ∩S

+
j and so (14) is a weaker assumption than (10) or (12). The following lemma shows

that they are equivalent in the case where ω∞ is faithful.

Lemma 7 If ω∞ is faithful on M∞, then for all j ∈ {1, . . . , n}, any σ ∈ S+
j ∪ S

−
j is equivalent to ω(j)

∞ (i.e.,

σ and ω(j)
∞ are mutually absolutely continuous).

Lemmas 6 and 7 are proven in Subsections 3.3 and 3.4. Theorems 2 and 5 are proven in Subsection 3.2.

3 Proofs
We will first prove Theorem 1 for a restricted class of bounded continuous functions. The result will then be
extended to bounded Borel functions using an approximation procedure and Lemma 6.
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3.1 Approximation of bounded Borel functions
Let F ⊂ C denote the set of functions of the form

f(a) =

Z
R
f̂(α) eiaα dα,

where f̂ ∈ L1(R).

Lemma 8 The conclusion (6) of Theorem 1 holds for any f1, . . . , fn ∈ F .

Proof. For any j ∈ {1, . . . , n}, t ∈ T and u, v ∈ Ht it follows from the functional calculus that

(u, fj(A
(j)
t )v) =

Z
f̂j(α)(u, eiαA

(j)
t v) dα.

The σ-weak continuity of ωt thus allows us to conclude that

ωt(Bfj(A
(j)
t )C) =

Z
f̂j(α)ωt(BeiαA

(j)
t C) dα,

for any B,C ∈Mt. Invoking Fubini’s theorem, one easily concludes that

ωt
“
f1(A

(1)
t ) · · · fn(A

(n)
t )
”

=

Z
f̂1(α1) · · · f̂n(αn)ωt

„
eiα1A

(1)
t · · · eiαnA

(n)
t

«
dα1 · · ·dαn,

for any t ∈ T. The claim then follows from Assumption (A) and Lebesgue’s dominated convergence theorem.�

Lemma 9 For any f ∈ B such that supa∈R |f(a)| ≤ R there exists a sequence (fk)k∈N in F such that

sup
k∈N,a∈R

|fk(a)| ≤ R,

and
lim
k
fk(a) = f(a),

for all a ∈ R \ D(f).

Proof. For k ∈ N set

f̂k(α) = e−α
2/2(k+1)

Z +k

−k
f(a) e−iaα da

2π
,

and notice that |f̂k(α)| ≤ e−α
2/2(k+1)kR/π ∈ L1(R). The Fourier transform of f̂k can be written as

fk(a) =

Z
R

1l[−1,1]

„
a

k
+

b

k3/2

«
f

„
a+

b

k

«
dν(b),

where ν is the centered Gaussian measure of variance 1. It immediately follows that supa∈R |fk(a)| ≤ R. For
a ∈ R \ D(f), Lebesgue’s dominated convergence theorem and the fact that limk f(a + b/k) = f(a) for all
b ∈ R imply limk fk(a) = f(a). �

3.2 Proof of Theorems 2 and 5
Let f1, . . . , fn ∈ B and set R ≡ maxj(1 + supa∈R |fj(a)|). Fix J ∈ {0, . . . , n} and define Sj according to
(9). Denote by (fj,k)k∈N ⊂ F the approximating sequence for fj given by Lemma 9. Writing

∆t ≡ ωt
“
f1(A

(1)
t ) · · · fn(A

(n)
t )
”
− ω∞

“
f1(A(1)

∞ ) · · · fn(A(n)
∞ )
”

= ωt
“
f1(A

(1)
t ) · · · fn(A

(n)
t )− f1,k1(A

(1)
t ) · · · fn,kn(A

(n)
t )
”

+ ωt
“
f1,k1(A

(1)
t ) · · · fn,kn(A

(n)
t )
”
− ω∞

“
f1,k1(A(1)

∞ ) · · · fn,kn(A(n)
∞ )
”

+ ω∞
“
f1,k1(A(1)

∞ ) · · · fn,kn(A(n)
∞ )− f1(A(1)

∞ ) · · · fn(A(n)
∞ )
”
,
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and applying Lemma 8 we get

lim sup
t→∞

|∆t| ≤ lim sup
t→∞

˛̨̨
ωt
“
f1(A

(1)
t ) · · · fn(A

(n)
t )− f1,k1(A

(1)
t ) · · · fn,kn(A

(n)
t )
”˛̨̨

+
˛̨̨
ω∞

“
f1(A(1)

∞ ) · · · fn(A(n)
∞ )− f1,k1(A(1)

∞ ) · · · fn,kn(A(n)
∞ )
”˛̨̨
,

for any k1, . . . , kn ∈ N. To study the right hand side of this inequality we fix s ∈ T, set Fj ≡ fj(A
(j)
s ),

Gj ≡ fj,kj (A
(j)
s ) and proceed with the algebraic identity

F1 · · ·Fn −G1 · · ·Gn =

JX
j=1

G1 · · ·Gj−1(Fj −Gj)Fj+1 · · ·Fn

+

nX
j=J+1

G1 · · ·GJFJ+1 · · ·Fj−1(Fj −Gj)Gj+1 · · ·Gn. (16)

The terms of the first sum on the right hand side of this identity can be estimated as follows. Starting from the
Fourier representation (see the proof of Lemma 8)

ωs(G1 · · ·Gj−1(Fj −Gj)Fj+1 · · ·Fn)

=

Z
f̂1,k1(α1) · · · f̂j−1,kj−1(αj−1)ωs

„
eiα1A

(1)
s · · · eiαj−1A

(j−1)
s (Fj −Gj)Fj+1 . . . Fn

«
dα1 · · ·dαj−1,

and invoking the Cauchy-Schwarz inequality for ωs we can write, using Definition 4,˛̨̨̨
ωs

„
eiα1A

(1)
s · · · eiαj−1A

(j−1)
s (Fj −Gj) Fj+1 . . . Fn

«˛̨̨̨2
≤ ωs(F ∗n · · ·F ∗j+1Fj+1 · · ·Fn)1/2ω−js(α1, . . . , αj−1; (Fj −Gj)2)1/2

≤ R2(n−j)σ−js

“
α1, . . . , αj−1;

˛̨
fj − fj,kj

˛̨2”
,

from which we obtain

|ωs(G1 · · ·Gj−1(Fj −Gj)Fj+1 · · ·Fn)|

≤ Rn
Z
|f̂1,k1(α1)| · · · |f̂j−1,kj−1(αj−1)|σ−js

“
α1, . . . , αj−1;

˛̨
fj − fj,kj

˛̨2”1/2

dα1 · · ·dαj−1. (17)

Furthermore, Lemma 6 and the dominated convergence theorem allow us to conclude that

lim sup
t→∞

|ωt(G1 · · ·Gj−1(Fj −Gj)Fj+1 · · ·Fn)|

≤ Rn
Z
|f̂1,k1(α1)| · · · |f̂j−1,kj−1(αj−1)|σ−j∞

“
α1, . . . , αj−1;

˛̨
fj − fj,kj

˛̨2”1/2

dα1 · · ·dαj−1.

(18)

The terms of the second sum on the right hand side of (16) can be handled in a similar way, leading to the
estimates

|ωs(G1 · · ·GJFJ+1 · · ·Fj−1(Fj −Gj)Gj+1 · · ·Gn)|

≤ Rn
Z
|f̂j+1,kj+1(αj+1)| · · · |f̂n,kn(αn)|σ+

js

“
αj+1, . . . , αn;

˛̨
fj − fj,kj

˛̨2”1/2

dαj+1 · · ·dαn, (19)

and

lim sup
t→∞

|ωt(G1 · · ·GJFJ+1 · · ·Fj−1(Fj −Gj)Gj+1 · · ·Gn)|

≤ Rn
Z
|f̂j+1,kj+1(αj+1)| · · · |f̂n,kn(αn)|σ+

j∞

“
αj+1, . . . , αn;

˛̨
fj − fj,kj

˛̨2”1/2

dαj+1 · · ·dαn.

(20)



8 V. Jakšić, Y. Pautrat, C.-A. Pillet

Combining estimates (17), (18), (19) and (20) with identity (16) leads to

lim sup
t→∞

|∆t| ≤ 2RnD(k1, . . . , kn), (21)

for any k1, . . . , kn ∈ N, where

D(k1, . . . , kn) =

JX
j=1

Z
|f̂1,k1(α1)| · · · |f̂j−1,kj−1(αj−1)|σ−j∞

“
α1, . . . , αj−1;

˛̨
fj − fj,kj

˛̨2”1/2

dα1 · · ·dαj−1

+

nX
j=J+1

Z
|f̂j+1,kj+1(αj+1)| · · · |f̂n,kn(αn)|σ+

j∞

“
αj+1, . . . , αn;

˛̨
fj − fj,kj

˛̨2”1/2

dαj+1 · · ·dαn.

By Lemma 9 and our assumptions, limk |fj − fj,k| = 0 holds σ−j∞(α1, . . . , αj−1; · ) almost everywhere for all
j ∈ {1, . . . , J} and α1, . . . , αj−1 ∈ R. It follows from the dominated convergence theorem that

lim
k
σ−j∞

`
α1, . . . , αj−1; |fj − fj,k|2

´
= 0.

In a similar way one shows that

lim
k
σ+
j∞
`
αj+1, . . . , αn; |fj − fj,k|2

´
= 0,

for all j ∈ {J + 1, . . . , n} and αj+1, . . . , αn ∈ R. Applying once again the dominated convergence theorem
one concludes that

lim
k

Z
|f̂1,k1(α1)| · · · |f̂j−1,kj−1(αj−1)|σ−j∞

`
α1, . . . , αj−1; |fj − fj,k|2

´1/2
dα1 · · ·dαj−1 = 0, (22)

for all j ∈ {1, . . . , J} and k1, . . . , kj−1 ∈ N, while

lim
k

Z
|f̂j+1,kj+1(αj+1)| · · · |f̂n,kn(αn)|σ+

j∞
`
αj+1, . . . , αn; |fj − fj,k|2

´1/2
dαj+1 · · ·dαn = 0, (23)

for all j ∈ {J + 1, . . . , n} and kJ+1, . . . , kn ∈ N. The result now follows from (21) and the fact that

lim
kn

lim
kn−1

· · · lim
kJ+1

lim
k1

lim
k2
· · · lim

kJ
D(k1, . . . , kn) = 0,

a direct consequence of (22) and (23). �

3.3 Proof of Lemma 6
By Definition 4 we have

σ−jt(α1, . . . , αj−1; g) = ω−jt(α1, . . . , αj−1; g(A
(j)
t )),

for g ∈ B and Assumption (A) translates into

lim
t→∞

Z
R

eiαx σ−jt(α1, . . . , αj−1; dx) =

Z
R

eiαx σ−j∞(α1, . . . , αj−1; dx).

The classical Lévy-Cramér continuity theorem readily implies that

lim
t→∞

Z
R
g(x)σ−jt(α1, . . . , αj−1; dx) =

Z
R
g(x)σ−j∞(α1, . . . , αj−1; dx),

for any g ∈ B such that σ−j∞(α1, . . . , αj−1;D(g)) = 0. This proves (11). Completely similar arguments prove
(13) and (15). �
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3.4 Proof of Lemma 7
Let j ∈ {1, . . . , n}, σ ∈ S−j ∪ S

+
j and E ⊂ R a Borel set. Denoting P = 1lE(A

(j)
∞ ), there exists a unitary

U ∈ M∞ such that σ(E) = ω∞(U∗PU). Since both operators P and U∗PU are positive, the faithfulness of
ω∞ implies that

σ(E) = 0 ⇔ U∗PU = 0

⇔ P = 0

⇔ ω∞(P ) = 0

⇔ ω(j)
∞ (E) = 0,

and so σ and ω(j)
∞ are equivalent measures. �

4 Applications and discussion
4.1 A simple application
We first recall some standard results of non-commutative probability theory refering the reader to [Bia] or [Mey]
for proofs. We consider an orthonormal basis {Ω, X} of the Hilbert space C2, and the basis a×, a+, a−, a◦ of
the algebra M(2,C) of complex, 2× 2 matrices defined by

a× ≡
„

1 0
0 0

«
, a+ ≡

„
0 0
1 0

«
, a− ≡

„
0 1
0 0

«
, a◦ ≡

„
0 0
0 1

«
.

in the basis {Ω, X}.
For any m ∈ N∗ let TΦm ≡ (C2)⊗m, the m-fold tensor product of C2. For i ∈ {1, . . . ,m} and

ε ∈ {×,+,−, ◦} we denote by aεi the ampliation of aε acting on the i-th copy of C2 in TΦm. The family
(aεi )i∈{1,...,m},ε∈{×,+,−,◦} is then a basis of the algebra Mm ≡M(2,C)⊗m (this is the toy Fock space approx-
imation of [A]). We further denote by Ωm the vector Ω⊗m and by ωm the associated state A 7→ (Ωm, AΩm).
In this state, the operators

ni,m ≡
a+
i + a−i√
m

, pi,m ≡
a+
i + a−i√
m

+ a◦i +
1

m
a×i , zi,m ≡ a◦i ,

respectively follow the laws

1

2
δ−m−1/2 +

1

2
δm−1/2 ,

m

m+ 1
δ0 +

1

m+ 1
δ1+m−1 , δ0,

with characteristic functions

cos

„
α√
m

«
,

eiα(1+1/m) +m

1 +m
, 1.

Moreover, for b ∈ {n, p, z}, bi,m and bj,m commute if i 6= j. Therefore each family (bi,m)i∈{1,...,m}, has
a joint law in the state ωm and, in addition, this joint law can be seen to correspond to independent random
variables. It follows that the random variables

Nn ≡
mX
i=1

ni,m, Pm ≡
mX
i=1

pi,m, Zm ≡
mX
i=1

zi,m,

have characteristic functions»
cos

„
α√
m

«–m
,

»
eiα(1+1/m) +m

1 +m

–m
, 1,

which, as m→∞, are easily seen to converge to

e−α
2/2, eeiα−1, 1,

the characteristic functions of the centered normal law with variance 1, the Poisson law of intensity 1 and the
law δ0. The classical Lévy-Cramér theorem thus implies the convergence in law of the individual sequences
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(Nm)m∈N∗ , (Pm)m∈N∗ , (Zm)m∈N∗ to the corresponding random variables. As an application of our quantum
Lévy-Cramér theorem, we shall now consider some properties of the joint sequence (Nm, Pm, Zm)m∈N∗ .

We start with a simple observation. Denote by Φm ⊂ TΦm the subspace generated by completely symmetric
tensor products. An orthonormal basis of Φm is given by the family (ek)k∈{0,...,m} where ek is the (normalized)
complete symmetrization ofX⊗k⊗Ω⊗(m−k). In particular Ωm = e0. The operatorsNm, Pm, Zm clearly leave
Φm invariant. A simple calculation shows that

Nmek =

r
1− k − 1

m

√
k ek−1 +

r
1− k

m

√
k + 1 ek+1,

Pmek =

r
1− k − 1

m

√
k ek−1 +

r
1− k

m

√
k + 1 ek+1 +

„
k + 1− k

m

«
ek, (24)

Zmek = k ek,

where, by convention, e−1 = em+1 = 0. In studying the random variables Nm, Pm, Zm in the state ωm we
may therefore consider that these operators act on the space Φm.

To describe limiting random variables N∞, P∞, Z∞ we denote by M∞ the algebra of bounded operators on
Φ ≡ `2(N) with (ẽk)k∈N its canonical orthonormal basis, and by ω∞ the state A 7→ (ẽ0, Aẽ0). The operators
a+, a−, a◦ defined by

a+ẽk ≡
√
k + 1 ẽk+1, a−ẽk ≡

√
k ẽk−1, a◦ẽk ≡ a+a−ẽk = k ẽk,

(with the convention ẽ−1 = 0) are such that in the state ω∞, for any w ∈ C, the operators

wa+ + w̄a−, wa+ + w̄a− + a◦ + |w|2I, a◦, (25)

follow respectively a centered normal law with variance |w|2, a Poisson law of intensity |w|2 and the law δ0.
Setting

N∞ ≡ a+ + a−, P∞ ≡ a+ + a− + a◦ + I, Z∞ ≡ a◦,
we therefore have the convergences in law Nm → N∞, Pm → P∞ and Zm → Z∞.

Let us show that Assumption (A) holds with (A
(1)
m , A

(2)
m , A

(3)
m ) ≡ (Nm, Pm, Zm), m ∈ N∗∪{∞}. We first

note that the partial isometry Sm : Φm → Φ induced by the map ek 7→ ẽk, k ∈ {0, . . . ,m} satisfies

ωm(eiα1A
(j1)
m · · · eiαkA

(jk)
m ) = ω∞(eiα1Ã

(j1)
m · · · eiαkÃ

(jk)
m ), (26)

where Ã(j)
m ≡ SmA(j)

m S∗m. Using relations (24), one easily shows that, for any k ∈ N and j ∈ {1, 2, 3}

lim
m→∞

Ã(j)
m ẽk = A(j)

∞ ẽk. (27)

Using the fact that the set of finite linear combinations of basis vectors ẽk is a common core for all Ã(j)
m and

A
(j)
∞ , it follows from (27) that the sequence Ã(j)

m converges to A(j)
∞ in strong resolvent sense (see e.g., Theorem

VIII.25 in [RS]). On concludes that

s−lim
m→∞

eiαÃ
(j)
m = eiαA

(j)
∞ ,

for any α ∈ R and j ∈ {1, 2, 3}. Assumption (A) clearly follows from this relation and Equ. (26).
Computations using commutation between Weyl operators (see [Bia]) show that

eiαN∞ eiβP∞ e−iαN∞ = eiβ((1−iα)a++(1+iα)a−+a◦+|1−iα|2),

so that (recall (25))
β 7→ ω∞

“
eiαN∞ eiβP∞ e−iαN∞

”
,

is the characteristic function of a Poisson law of intensity |1−iα|2. We therefore obtain a non-trivial consequence
of Theorem 2:

lim
m→∞

ωm
`
f1(Nm)f2(Pm)f3(Nm)

´
= ω∞

`
f1(N∞)f2(P∞)f3(N∞)

´
for any f1, f2, f3 ∈ B with f2 continuous at every point of N. In particular, for any a < b in R and any c < d in
R \ N,

lim
m→∞

ωm
`
1l[a,b](Nm)1l[c,d](Pm)1l[a,b](Nm)

´
= ω∞

`
1l[a,b](N∞)1l[c,d](P∞)1l[a,b](N∞)

´
.
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In a similar way, one shows that

lim
m→∞

ωm
`
f1(Pm)f2(Nm)f3(Pm)

´
= ω∞

`
f1(P∞)f2(N∞)f3(P∞)

´
for any f1, f2, f3 ∈ B.

This example also allows us to illustrate the necessity of our strengthened continuity assumptions (note that
the state ω∞ is not faithful, as for example Z∞ is a positive operator and yet ω∞(Z∞) = 0). For finite m it
follows from (24) that Zm is a positive matrix with integer eigenvalues, so that 1l{1}(Zm + 1

m
) = 0 and hence

ωm

„
eiαNm1l{1}

„
Zm +

1

m

«
e−iαNm

«
= 0.

On the other hand,

ω∞
`
eiαN∞1l{1}(Z∞)e−iαN∞

´
= ω∞

`
1l{1}(e

iαN∞Z∞e−iαN∞)
´
, (28)

and eiαN∞Z∞e−iαN∞ = −iαa+ + iαa− + a◦ + |α|2 (again by the commutation relations of Weyl operators,
see [Bia]). Since this operator follows, in the state ω∞, a Poisson law of intensity α2, the right hand side of Equ.
(28) is strictly positive provided α 6= 0. We thus have

ω∞
`
eiαN∞1l{1}(Z∞)e−iαN∞

´
6= lim
m→∞

ωm

„
eiαNm1l{1}

„
Zm +

1

m

«
e−iαNm

«
,

even though assumption (A) obviously remains true if we replace Zm by Zm + 1
m

. This shows that Theorem 2
is false if we only assume that each fj satisfies ω(j)

∞ (D(fj)) = 0, and illustrates why: the projection associated
with the eigenvalue 1 of Z∞ is not in the support of ω∞, and so the singularities of 1l{1} have measure zero
under the law of Z∞. However, when conjugated by eiαN∞ , this projection is sent to the support of ω∞ and the
singularities of 1l{1} have non-zero measure under the law of eiαN∞Z∞e−iαN∞ .

4.2 Previous results of Lévy-Cramér type
The paper [CH] was the first to study explicitly a non-commutative central limit theorem, which it proves using
a result of the non-commutative Lévy-Cramér type (Theorem 2 in the cited paper). That result, in a slightly
simplified framework, is the following: consider a sequence (qn, pn)n∈N of canonical pairs onH ≡ L2(R), i.e.
a pair of (unbounded) self-adjoint operators such that there exists a dense subspace Dn ⊂ H in the domain of
both qn and pn, which is stable by qn and pn, on which the canonical commutation relation (CCR)

qnpn − pnqn = iI, (29)

holds. In analytically simpler terms, this can be rewritten as the Weyl relation

ei(xpn+yqn) = eixpneiyqneixy/2, (30)

(see [BR1] or [Pet] for more details on canonical pairs).
Assume that every (qn, pn) is irreducible, i.e. no nontrivial subspace of H is left invariant by all operators

ei(xpn+yqn). A normal reference state ρ on B(H) is fixed; then a state ρn on B(H) can be associated to every
canonical pair (qn, pn) by

ρn(A) ≡ ρ(U−1
n AUn),

whereUn is the unitary operator mapping (qn, pn) to the Schrödinger representation of the CCR (29). The Stone-
von Neumann unicity theorem for irreducible representations of the CCR ensures its existence (see [Mey]).

Cushen and Hudson define the pseudo-characteristic function by

ϕn(x, y) ≡ ρ(ei(xpn+yqn)).

This definition is different from ours but in the case of canonical pairs it follows from (30) that the two definitions
are essentially equivalent. It is then proven that there exists a state ρ∞ such that

lim
n→∞

ρn(A) = ρ∞(A), (31)

for every A ∈ B(H) (a property which Cushen and Hudson call convergence in distribution) if and only if the
sequence ϕn converges pointwise on R2 to a function which is continuous at zero.
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It is the easy part of the theorem to show that, if the sequence (ϕn)n∈N has a pointwise limit ϕ∞ which is
continuous at zero, then ϕ∞ is of the form

ϕ∞(x, y) = ρ(ei(xp∞+yq∞)),

for some canonical pair (q∞, p∞). This and the Weyl relation (30) imply that pointwise convergence of ϕn to a
function which is continuous at zero is equivalent to our assumption (A) for ω = ρ and A(1)

n = qn, A(2)
n = pn.

Moreover, the Weyl relation (30) implies that

eixpneiyqne−ixpn = e−ixyeiyqn , eiyqneixpne−iyqn = e+ixyeixpn ,

and the law of both p∞ and q∞ in the state ω∞ is Gaussian, so that Theorem 2 implies (7) for all bounded
Borel functions. The conclusion of [CH], i.e. the convergence (31), is stronger than ours at first sight, but it
is a consequence of the properties of the Weyl correspondence (as described in the proofs of Proposition 6 and
Theorem 2 of that paper) that both conclusions are actually equivalent. Our results therefore extend the results
of Cushen and Hudson, which rely heavily on the particular properties of canonical pairs.

The other occurrence of a non-commutative Lévy-Cramér type result we are aware of is [Kup]. In this paper,
Kuperberg proves implications of pointwise convergence of pseudo-characteristic functions, of the same type as
(7): for M a von Neumann algebra equipped with a normal state ρ, he considers for any A ∈M the elements

AN =
1√
N

NX
k=1

I⊗k−1 ⊗A⊗ I⊗N−k,

(we use different notations from that in [Kup] to stay as close as possible to our own) and shows that, for fixed self
adjoint elements A(1), . . . , A(k) ∈ M, for any self adjoint non commutative polynomial p, p(A(1)

N , . . . , A
(k)
N )

converges in distribution to p(X(1), . . . , X(k)) in any tracial state ρ, where (X(1), . . . , X(k)) is a (classical)
centered Gaussian vector with covariance matrix Cij ≡ ρ(A(i)A(j)) − ρ(A(i))ρ(A(j)). One of the steps of
that proof is to show that the convergence of ρ

`
eiα1A

(1)
· · · eiαkA

(k)´
to E

`
eiα1X

(1)
· · · eiαkX

(k)´
for every

α1, . . . , αk implies the convergence of any quantity ρ
`
f(A(1)) · · · f(A(k))

´
to E

`
f(X(1)) · · · f(X(k))

´
for

every f1, . . . , fk ∈ C. The same method could easily be extended to include bounded Borel functions with the
standard continuity assumptions (here the limiting quantities are purely commutative) but the proof here uses the
fact that the GNS norm associated with the reference state ρ is spectral, which is only true if ρ is tracial. Our
result therefore improves the scope of application of this part of Kuperberg’s results.

4.3 Applications
In this subsection we discuss the literature related to Assumption (A), i.e. the specific models for which (A)
has been verified and to which our main results apply. The related results cover a number of technically and
conceptually different frameworks and, for reason of space, we shall only briefly touch on several central points.
For the terminology and additional information we refer the reader to the original papers.

The first series of results originates in the paper [AFL] (later extended in more than one direction, see e.g.
[Gou] and references therein) for the weak coupling limit and [AL] for the low density limit. The results of the
form of (A) in the cited papers exist at two different levels. First there are kinematical results: Theorem 3.4 in
[AFL] and Lemma 2.1 in [AL]. Note that, at this level, the von Neumann algebras Mt and the states ωt are the
same (the algebra being of the form B(H), the state being the pure state associated with the vacuum vector) for
all t in the case of the weak coupling limit, but not in the case of the low density limit, where the parameter z
enters the definition of the considered scalar product. The second level at which these papers prove results of
the form (A) is the dynamical one: Theorem (II) in [AFL], Theorem 5.1 in [AL] where this time the structure
depends on t in all cases. These theorems consider only one unitary Ut at a time; we can, however, make a
connection with a non-trivial form of (A) by noting that they can be easily extended to the case where the single
unitary operator Ut is replaced with a product of different operators corresponding to different couplings V in
the Hamiltonian.

Another possible application comes from [AP] (and its extension in [AJ]); this time the considered limit is
that of “repeated to continuous” interactions. The whole picture, that is both the h > 0 systems and the limiting
case can be described within a single algebra. Here again the main result of the paper, Theorem 13, shows a priori
a result of type (A) for the case of a single operator, but Corollary 18 implies that one has, in the common Hilbert

space for all operators, strong convergence of the operators eiαiA
(i)
n to eiαiA

(i)
∞ . Therefore, (A) will also hold
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for a product of more that one operator, corresponding to possibly different operators L (when using Theorem
17) or different Hamiltonians H (when using Theorem 19) – it is Theorem 19 that we used in subsection 4.1,
in the simple case where H0 = C. Note that standard results on strong resolvent convergence of operators (see
[RS]) imply the strong convergence of fi(A

(i)
n ) to fi(A

(i)
∞ ), hence the convergence (7) for bounded continous

functions fi. It is a non-trivial improvement to obtain the same result for non-continuous fi.

Finally, we mention the study of “fluctuation algebras” in the papers [GV], [GVV] (and subsequent papers
by the same authors), [Mat], [AJPP] and [JPP]. These papers consider operators A(i)

n or A(i)
t of the form

A(i)
n =

1√
n

X
|x|≤n

(τx(Ai)− ω(Ai)),

or

A
(i)
t =

1√
t

Z t

0

(τs(Ai)− ω(Ai)) ds,

where τx is a translation operator (as in [GV], [GVV], [Mat], which study spatial fluctuations) or τs is a dynami-
cal group (as in [AJPP] and [JPP], which study time fluctuations) and everyAi is an observable of the considered
system (belonging to some subalgebra M1). In both cases, a result of the type (A) is proven in which the limiting

quantities ω∞(eiα1A
(1)
∞ · · · eiαpA

(p)
∞ ) are of the form ρ(W (A(1)) . . .W (A(p))), where the W are elements of a

Weyl algebra over M1 for an explicit symplectic form, and ρ is a quasi-free state on this Weyl algebra (see [BR1]
or [Pet]). A case of particular interest is when this symplectic form is found to be null, so that the Weyl algebra
is abelian; in this case, the law of the operators A(1)

∞ , . . . , A
(n)
∞ in the state ω∞ is that of a (classical) Gaussian

vector.
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