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Abstract

We study ergodic properties of Pauli-Fierz systems—W ∗-dynamical systems of-
ten used to describe the interaction of a small quantum system with a bosonic free
field at temperature T ≥ 0. We prove that, for a small coupling constant uniform
as the positive temperature T ↓ 0, a large class of Pauli-Fierz systems has the
property of return to equilibrium. Most of our arguments are general and deal with
mathematical theory of Pauli-Fierz systems for an arbitrary density of bosonic field.
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1 Introduction

A quantum system is often described by a W ∗-algebra M with a σ-weakly continuous
group of automorphisms t 7→ τ t. The pair (M, τ) is called a W ∗-dynamical system
and τ a W ∗-dynamics. We say that the system (M, τ) has the property of return
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to equilibrium if there exists a normal state ω on M such that for all normal states
φ and A ∈ M,

lim
|t|→∞

φ(τ t(A)) = ω(A).

Such ω is obviously unique and τ -invariant. Physical intuition suggests the following
quasitheorem.
Quasitheorem Suppose that (M, τ) describes a quantum system that is:

(1) infinitely extended;

(2) a localized perturbation of a thermal equilibrium system;

(3) sufficiently regular;

(4) sufficiently generic.

Then (M, τ) has the property of return to equilibrium.

Conditions (1) and (3) are idealizations necessary to prove sharp mathemati-
cal results. In particular, it is well-known that finite volume (confined) quantum
systems do not return to equilibrium.

Condition (2) is related to the issue of stability of equilibrium states (see [BR2]
and references therein). It is expected on physical grounds, and in some circum-
stances it can been proven, that if (M, τ) describes a localized perturbation of a
physical system away from thermal equilibrium, then there are no normal τ -invariant
states (see Subsections 3.6 and 7.9).

Concerning (4), some assumptions are necessary to prevent the existence of
internal symmetries which would lead to an artificial multiplicity of τ -invariant
normal states. In our paper the conditions of this type will be called effective
coupling conditions and they will be generically satisfied.

In this paper we will study a class of quantum systems which are commonly used
to describe the interaction of a ”small” quantum system, often called an ”atom”,
with a ”bosonic reservoir”. We will call them Pauli-Fierz systems [PF]. They arise
in physics as simplified versions of the non-relativistic QED.

We note that in the literature the name “Pauli-Fierz Hamiltonians” appears in a
number of different (although closely related) contexts. Our definition of Pauli-Fierz
systems is consistent with our previous work [DG, DJ1].

Our main result is a precise formulation of the conditions decribed in the ”qu-
asitheorem” and a proof that under these conditions Pauli-Fierz systems have the
property of return to equilibrium. Results closely related to ours can be found in
[BFS2, JP2, M] and we will discuss them in Subsection 1.2. The rest of this section
is devoted to an informal discussion of our main results.

In our paper the small system is described by a finite dimensional Hilbert space
K and a Hamiltonian K.

The bosonic reservoir is described by a pair (Z, h) where Z and h are the Hilbert
space and the energy operator of a single boson. We will always assume that h ≥ 0.
Physically, the bosons can be interpreted as phonons or photons.

The interaction between the small system and the reservoir is specified by a
form-factor λv, where v ∈ B(K,K ⊗ Z) and λ is a real coupling constant which
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controls the strength of the interaction. Our main results hold for sufficiently small
nonzero values of λ.

The data (K,K,Z, h, v) determine the basic Pauli-Fierz Hamiltonian, which is
defined as the self-adjoint operator

H = K ⊗ 1 + 1 ⊗ dΓ(h) + λV

on the Hilbert space H = K ⊗ Γs(Z), where Γs(Z) is the bosonic Fock space over
the 1-particle space Z and the interaction term V is the field operator associated
to the form-factor v. Thus we obtain the W ∗-dynamical system

(
B(H), eitH · e−itH

)
. (1.1)

The W ∗-dynamical system (1.1) is however not our main object of study. We
are interested in a family of W ∗-dynamical systems that arise as thermodynamical
limits of (1.1) and which describe Pauli-Fierz systems with non-zero radiation field
density. Apart from (K,K,Z, h, v), these systems are parametrized by a positive
operator (the radiation density operator) ρ on Z commuting with h. We call them
Pauli-Fierz systems at density ρ. To describe such systems one needs to use the
so-called Araki-Woods representations of CCR [AW, BR2]. In typical cases, for
instance if ρ has some continuous spectrum, the corresponding W ∗-algebras are of
type III. The system (1.1) corresponds to the density ρ = 0 and its W ∗-algebra
B(H) is of type I.

A special class of radiation densities is given by Planck’s law at inverse temper-
ature β, that is ρβ = (eβh − 1)−1. Such densities describe a system close to thermal
equilibrium at temperature 1/β. A large part of our paper is not restricted to the
thermal case and deals with an arbitrary radiation density. These results are useful
in the study of non-equilibrium theory of Pauli-Fierz systems.

For shortness, in the remaining part of the introduction we restrict ourselves to
the case of thermal densities. The main object of our study is a 1-parameter family
of W ∗-dynamical systems

(Mβ , τβ) (1.2)

where Mβ = B(K)⊗M
AW
β,l , and M

AW
β,l is the Araki-Woods W ∗-algebra corresponding

to the density ρβ. The dynamics is defined in a canonical way given the data
(K,K,Z, h, v) and the inverse temperature β ∈]0,∞]. For β = ∞ the system (1.2)
coincides with (1.1). Under the conditions used in our paper the W ∗-dynamical
systems (1.2) are non-equivalent for distinct β.

The Pauli-Fierz systems (1.2) considered in our paper satisfy the first two con-
ditions of the “quasitheorem”. They describe an infinitely extended system (this
is expressed in particular by the fact that h has continuous spectrum). Since the
radiation density of the bosonic field is given by the Planck law, the system is near
thermal equilibrium.

The information on the W ∗-dynamics τβ is conveniently encoded by a certain
self-adjoint operator Lβ called the Liouvillean. The operator Lβ is canonically
defined in the standard representation of Mβ .
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For β < ∞ (positive temperatures), under quite broad conditions one can show
the existence of a (τβ , β)-KMS vector, which is an eigenvector of Lβ with a zero
eigenvalue. This result was proven in [DJP] and is based on an extension of the
well-known result of Araki [Ar, BR2].

For β = ∞ (the zero temperature) in many cicumstances one can show that
the Pauli-Fierz Hamiltonian H has a ground state [AH, BFS1, Ge, Sp2, Sp3]. The
ground state gives rise to an eigenvector of the corresponding Liouvillean L∞ with
a zero eigenvalue.

For β < ∞, the return to equilibrium can be deduced from spectral properties of
Lβ. In particular, the return to equilibrium follows if Lβ has no singular spectrum
except for a nondegenerate eigenvalue at zero.

For a W ∗-dynamical system (M, τ) with M being a type I factor, the return
to equilibrium never holds (unless the algebra is 1-dimensional). Therefore, the
Pauli-Fierz systems with β = ∞ do not have the return to equilibrium property.

In the literature [HS1, FGS], one can find a related property called the relaxation
to a ground state, which in some cases can be proven for zero temperature systems.
Note, however, that to prove this property one needs to consider appropriate C ∗-
dynamical systems, whereas we always consider W ∗-dynamical systems.

The regularity assumption on Pauli-Fierz systems that we make is based on the
ideas and results of [JP1, JP2]. This method consists in ”gluing” together neg-
ative and positive frequences of the bosons, which allows to define a “conjugate
operator”—the generator of translations in the spectral variables. In the original
approach of [JP1, JP2] the analyticity of the form-factor with respect to the trans-
lations was assumed and the Liouvillean was studied using the complex deformation
method. Here, we asssume only the differentiability of a sufficiently high order and
study the spectrum using the Mourre theory developed for this purpose in our pre-
vious paper [DJ1]. The Mourre theory allows us to treat Pauli-Fierz systems more
efficiently, especially at low temperatures.

To express our effective coupling assumptions we use some simple algebraic con-
ditions derived from the so-called Fermi Golden Rule, which describes how to com-
pute eigenvalues and resonances to the second order. In particular, it can be used
to predict which eigenvalues will disappear after the interaction is ”switched on”.
The information obtained by the Fermi Golden Rule can be conveniently encoded
in the so-called Level Shift Operator Γβ—an object that plays a crucial role in our
paper.

The Liouvillean of a Pauli-Fierz system in the absence of interaction has a large
kernel (of dimension at least dimK). After the interaction is ”switched on”, the
dimension of the kernel of Lβ is at least one. Our aim is to show that there are no
other eigenvectors of Lβ for small nonzero λ.

For small nonzero λ and all β ∈]0,∞[, that is for the whole range of positive
temperatures, analysis of the Level Shift Operator Γβ gives a single condition that
on the formal level indicates the absence of the singular spectrum of Lβ except
for a nondegenerate eigenvalue at zero. In order to check this condition one con-
structs a certain (finite dimensional) ∗-algebra N ⊂ B(K) which depends only on
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(K,K,Z, h, v) and not on the inverse temperature β. Our positive temperature ef-
fective coupling assumption is that N = C1. The result of [DJ1] provides a rigorous
method to show that the above assumption together with a sufficient regularity of
the form-factor imply the desired spectral properties of Lβ, and hence imply the
return to equilibrium. The result described so far is, however, not uniform in the
temperature.

Our main goal is to show that under suitable conditions Pauli-Fierz systems
have the property of return to equilibrium uniformly in the temperature. This re-
quires a detailed analysis of the zero temperature case, which is in many respects
different from that of positive temperatures. Analysis of the Level Shift Opera-
tor Γ∞ yields natural effective coupling conditions under which one should expect
that for a sufficiently small nonzero λ the Pauli-Fierz Hamiltonian H has no sin-
gular spectrum except for a nondegenerate ground state. These conditions involve
the nondegeneracy of the unperturbed ground state and the strict positivity of a
certain auxiliary operator. The result of [DJ1] gives a rigorous proof that these
conditions together with a sufficient regularity of the form-factor imply the desired
properties of Pauli-Fierz Hamiltonians. As an immediate consequence, under the
same conditions zero temperature Liouvilleans have no singular spectrum except
possibly for a nondegenerate eigenvalue at zero.

If the zero temperature and the positive temperature effective coupling assump-
tions hold and if the form-factor is sufficiently regular, then we can establish return
to equilibrium uniformly in the temperature. More precisely, we show that for any
β0 > 0 there is λ0 > 0 such that for 0 < |λ| < λ0 and β ∈ [β0,∞[ the Pauli-Fierz
Liouvillean Lβ has no singular spectrum except for a nondegenerate zero eigenvalue.
It follows that under the same conditions the system (Mβ , τβ) has the property of
return to equilibrium and this is the main result of our paper.

We emphasize that the above mentioned effective coupling conditions are im-
portant ingredients of our approach. These conditions are optimal if one considers
only the 2nd order perturbation theory. They are quite simple algebraically and it
is perhaps surprising that a single effective coupling condition applies to all positive
temperatures.

Similar results can be given if we consider radiation densities that are not nec-
essarily given by the Planck law. For instance, we show that if the small system
interacts with two bosonic reservoir at distinct temperatures, then generically the
coupled system has no normal time-invariant states.

1.1 Organization of the paper

In Section 2 we briefly review the definitions and results of the theory of W ∗-algebras
needed in our paper. In particular, we quote the results of [DJP].

In Section 3 we give a simplified presentation of our main results. To make the
paper more accessible, in this section we restrict ourselves to the case of a scalar
massless field. This section is not used in the remaining part of the paper, where a
more general class of models is considered and a different notation is used. Section
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3 serves as a quick introduction to our results and allows to compare them easily
with the results existing in the literature.

In Section 4 we introduce the notation and review some basic facts which we
will need in the paper. In Section 5 we introduce Pauli-Fierz operators and review
their properties following [DJ1].

In Section 6 we introduce Pauli-Fierz systems at density ρ, compute Pauli-Fierz
Liouvilleans Lρ and study their properties. The main technical results of this section
concern the structure of the Level Shift Operator Γρ of the Liouvillean Lρ.

In Section 7 we discuss thermal Pauli-Fierz systems. In Subsection 7.4 we give
conditions under which thermal Pauli-Fierz systems have the property of return to
equilibrium for a fixed inverse temperature. The result uniform in the temperature
is described in Subsection 7.7.

As we have already mentioned, the main regularity assumption our method
requires concerns the gluing condition of [JP1, JP2, DJ1]. In Section 8 we discuss
the gluing condition in the context of scalar and vector massless bosons.

1.2 Comparison with the literature

Hamiltonians similar to those considered in our paper appear frequently in the
physics literature, see e.g.[PF]. In the recent years there has been a revival of interest
in rigorous results about these operators, starting with such papers as [BFS1, DG,
HS2, JP1, Sk].

From the technical point of view, the results of our paper concern mainly spectral
properties of a certain class of Pauli-Fierz operators. A large part of the literature
on spectral analysis of Pauli-Fierz operators can be divided into two classes. The
first uses the generator of translations as the main tool and the second uses the
generator of dilations.

In the context of Pauli-Fierz systems, the generator of translations was used for
the first time in [JP1, JP2], where it was applied to deform analytically positive
temperature Pauli-Fierz Liouvilleans. These papers also contain the first proof
that thermal Pauli-Fierz systems have the property of return to equilibrium. The
infinitesimal version of this method based on the Mourre theory was developed in
[DJ1]. That paper was a technical preparation for the present paper. In fact, in the
introduction to [DJ1] we roughly described the applications contained in this paper
(without, however, giving exact conditions).

The generator of translations is also the main tool of an interesting paper by
Merkli [M], which is devoted to the proof of return to equilibrium in the mean.
This paper is based on the technique of a “modified conjugate operator” originally
due to Hübner and Spohn [HS2] and elaborated later in [BFSS]. The results of [M]
are closely related to ours. One of the differences is that Merkli studies return to
equilibrium in the mean and he does not show the absence of singular continuous
spectrum for Pauli-Fierz Liouvilleans. His proof is based on the virial theorem,
whereas the method of [DJ1] is based on the limiting absorbtion principle. Merkli’s
main result is not uniform in the temperature.
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In the context of Pauli-Fierz systems with positive mass the generator of dila-
tions was used for the first time in [OY]. In the zero temperature massless case it
was used first in [BFS1]. In [BFS2] the generator of dilations was used to study
return to equilibrium of Pauli-Fierz systems uniformly in the temperature. A dis-
tinctive feature of the papers [BFS1, BFS2] is the so-called renormalization group
technique, which in this context is meant to describe an iterative procedure based on
the Feshbach method, used to control the spectrum of Pauli-Fierz operators. The
results of [BFS2] resemble closely ours and Merkli’s. Strictly speaking, however,
the conditions of [BFS2] are not comparable to ours and one can find interactions
which can be treated with one method and not by the other. With regard to the
infrared singularity, the conditions of [BFS2] for the uniform in temperature return
to equilibrium are somewhat less restrictive than ours.

There is a vast body of literature dealing with Pauli-Fierz systems in the Van
Hove weak coupling limit s = λ2t, λ ↓ 0, with s fixed (see eg. [Da, Sp2]). In this limit
one obtains an irreversible Markovian dynamics on the algebra of the small system.
The generator of this dynamics is sometimes called the Davies generator. The Level
Shift Operator, which arises through the Fermi Golden Rule for the Liouvillean and
is one of the main tools of our paper, is similar to the Davies generator in many
respects. Let us stress, however, that they are different operators. The Davies
generator describes the evolution of observables and always has a zero eigenvalue.
On the other hand, the Level Shift Operator describes the shift of eigenvalues and
resonances of the Liouvillean and often does not have a zero eigenvalue. In the
thermal case, however, these operators are closely related, see [DJ2].

The effective coupling assumptions for return to equilibrium used in our paper
are different from those found in the literature. To our knowledge they are simpler
and less restrictive—in fact, they are optimal in the context of the 2nd order per-
turbation theory. They are based on a detailed algebraic analysis of the Level Shift
Operator for Pauli-Fierz Liouvilleans that seems to appear for the first time in the
literature. Somewhat similar effective coupling conditions for return to equilibrium
of quantum Markovian semigroups were given in [Fr, Sp2].

One of the consequences of our method is a relatively simple proof of the non-
degeneracy of the ground state of Pauli-Fierz Hamiltonians under certain regularity
and effective coupling assumptions. The other proofs in the literature use Perron-
Frobenius type arguments and are restricted to positivity preserving interactions
[BFS1, Sp1, Sp3]. The only exception that we know is the proof based on the
“renormalization group” contained in [BFS1].

The first result about existence of KMS states for Pauli-Fierz systems goes back
to [FNV] where the spin-boson system was considered. It was also proven in [BFS2]
under a more restrictive infrared condition than that of our paper.

Our result about a system coupled to several reservoirs at different temperatures
can be compared with recent works on non-equilibrium quantum statistical physics
[JP3, Ru]. Note that these papers use C∗-dynamical systems rather than W ∗-
dynamical systems and look for stationary states that are not normal.



8

2 Algebraic preliminaries

In this section we review some elements of the theory of W ∗-algebras needed in our
paper. For more details we refer the reader to [DJP], and also [BR1, BR2, St].

One of the most important concepts of the modern theory of W ∗-algebras is
the so-called standard representation. We say that a quadruple (π,H, J,H+) is a
standard representation of a W ∗-algebra M if π : M → B(H) is a ∗-representation,
J is an antiunitary involution on H and H+ is a self-dual cone in H satisfying the
following conditions:
(1) Jπ(M)J = π(M)′;
(2) Jπ(A)J = π(A)∗ for A in the center of M;
(3) JΨ = Ψ for Ψ ∈ H+;
(4) π(A)Jπ(A)H+ ⊂ H+ for A ∈ M.
Every W ∗-algebra has a unique (up to unitary equivalence) standard representation.

The standard representation has several important properties. First, every nor-
mal state ω has a unique vector representative in H+ (there is a unique normalized
vector Ω ∈ H+ such that ω(A) = (Ω|π(A)Ω)). Secondly, for every W ∗-dynamics τ
on M there is a unique self-adjoint operator L on H such that

π(τ t(A)) = eitLπ(A)e−itL, eitLH+ = H+. (2.3)

The operator L is called the Liouvillean of the W ∗-dynamical system (M, τ).

Theorem 2.1 Let ω be a normal state and Ω ∈ H+ its vector representative. Then
ω is τ -invariant iff Ω ∈ KerL.

Theorem 2.2 (1) The Liouvillean L has no eigenvalues iff the W ∗-dynamics τ
has no normal invariant states.

(2) The Liouvillean L has exactly one nondegenerate eigenvalue at zero iff the
W ∗-dynamics τ has a single normal invariant state.

(3) Suppose L has no singular spectrum except for a nondegenerate eigenvalue at
zero, and that the corresponding eigenstate is separating for M. Then the
system (M, τ) has the property of return to equilibrium.

Theorem 2.1 follows easily from (2.3). Theorem 2.2 (3) was proven in [JP1]
although similar results can be traced to much older literature (see [BR1, Ja]).

We now describe some results concerning perturbation theory of W ∗-dynamical
systems. Our presentation follows [DJP].

Let (M, τ) be a W ∗-dynamical system and (π,H, J,H+) a standard representa-
tion of M. Let L be the Liouvillean of τ . Let V be a self-adjoint operator affiliated
to M. Let us state the following assumption:

Assumption 2.A L + π(V ) is essentially self-adjoint on D(L) ∩ D(π(V )) and

LV := L + π(V ) − Jπ(V )J

is essentially self-adjoint on D(L) ∩ D(π(V )) ∩ D(Jπ(V )J).
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Theorem 2.3 [DJP] Assume that 2.A holds and set

τ t
V (A) := π−1

(
eit(L+π(V ))π(A)e−it(L+π(V )

)
.

Then τV is a W ∗-dynamics on M and LV is the Liouvillean of (M, τV ).

Our final subject is the perturbation theory of KMS states. We will describe the
results of [DJP], which extend the well known results of Araki [Ar, BR2] valid for
bounded perturbations.

Let ω be a (τ, β)-KMS state and Ω ∈ H+ its vector representative. We will call
Ω a (τ, β)-KMS vector (or a β-KMS-vector for the dynamics τ).

We make the following additional assumption on the perturbation V :

Assumption 2.B ‖e−βπ(V )/2Ω‖ < ∞.

Theorem 2.4 [DJP] Assume that Assumptions 2.A and 2.B hold. Then
(1) Ω ∈ D(e−β(L+π(V ))/2) and the vector ΩV := e−β(L+π(V ))/2Ω is a (τV , β)-KMS
vector.
(2) Let ωV (A) = (ΩV |π(A)ΩV )/‖ΩV ‖2. Then ωV is a (τV , β)-KMS state on M.

Note that if V ∈ M, then Assumptions 2.A and 2.B are automatically satisfied,
and the above theorems reduce to the well-known results of Araki [Ar, BR2].

3 Simplified presentation of the main results

This section gives a self-contained description of simplified versions of our main
results. It will not be used in the remaining part of the paper. The reader who
prefers a more complete exposition can skip this section and go directly to Section
4.

In this section the 1-particle bosonic space is Z = L2(Rd) and the 1-particle
energy h is the operator of multiplication by |ξ|, where ξ ∈ R

d describes the mo-
mentum. The small system is described by a finite dimensional Hilbert space K and
a Hamiltonian K. The interaction is described by a measurable operator-valued
function (form-factor) R

d 3 ξ 7→ v(ξ) ∈ B(K).

3.1 Pauli-Fierz system at zero temperature

The Hilbert space of the Pauli-Fierz system at zero temperature is K⊗Γs(L
2(Rd)),

where Γs(L
2(Rd)) denotes the symmetric (bosonic) Fock space over the 1-particle

space L2(Rd). The free Pauli-Fierz Hamiltonian is

Hfr := K ⊗ 1 + 1 ⊗
∫

|ξ|a∗(ξ)a(ξ)dξ,
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where a∗(ξ)/a(ξ) are the creation/annihilation operators of bosons of momentum
ξ ∈ R

d. We assume that the form-factor satisfies

∫
(1 + |ξ|−1)‖v(ξ)‖2dξ < ∞. (3.4)

The interaction is given by the operator

V :=

∫
(v(ξ) ⊗ a∗(ξ) + v∗(ξ) ⊗ a(ξ))dξ,

and the full Pauli-Fierz Hamiltonian equals

H := Hfr + λV,

where λ ∈ R. H is self-adjoint on D(Hfr) and bounded from below.
We have discussed in [DJ1] how Pauli-Fierz Hamiltonians arise as an approxima-

tion to the standard Hamiltonian of the non-relativistic QED. A related discussions
can be found in [BFS1].

A simplest non-trivial example of a Pauli-Fierz Hamiltonian is the so-called spin-
boson model where K = C

2, K = σz and v(ξ) = σxα(ξ) (σz and σx are the usual
Pauli matrices and α ∈ L2(Rd) satisfies (3.4)).

3.2 Bosonic fields at non-zero density

Assume that the radiation density of the bosonic field is described by a positive
measurable function ρ(ξ) on R

d. The observables of the bosonic reservoir are
then described by the W ∗-algebra M

AW
ρ,l , the (left) Araki-Woods algebra at den-

sity ρ. This algebra is constructed as follows. It is represented on the Hilbert
space Γs(L

2(Rd) ⊕ L2(Rd)). The creation/annihilation operators corresponding to
the first L2(Rd) (which describe excitations) are denoted by a∗

l (ξ)/al(ξ), and those
corresponding to the second L2(Rd) (describing holes) are denoted by a∗

r (ξ)/ar(ξ).
(l/r stand for left/right). M

AW
ρ,l is generated by the operators of the form

exp i
(∫

(f(ξ)(1 + ρ(ξ))
1

2 a∗l (ξ) + f(ξ)ρ(ξ)
1

2 ar(ξ) + hc)dξ
)

,

where f ∈ L2(Rd) satisfies
∫
|f(ξ)|2ρ(ξ)dξ < ∞.

3.3 Pauli-Fierz systems at non-zero density

The Pauli-Fierz algebra at density ρ, Mρ, is defined by Mρ := B(K) ⊗ M
AW
ρ,l . To

define the dynamics, we need the following assumption:

Assumption 3.A
∫
(1 + |ξ|2)(1 + ρ(ξ))‖v(ξ)‖2dξ < ∞.
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Set

Lsemi
fr := K ⊗ 1 + 1 ⊗

∫ (
|ξ|a∗l (ξ)al(ξ) − |ξ|a∗r (ξ)ar(ξ)

)
dξ,

Vρ :=

∫
v(ξ) ⊗

(
(1 + ρ(ξ))

1

2 a∗l (ξ) + ρ(ξ)
1

2 ar(ξ)
)
dξ + hc,

Lsemi
ρ := Lsemi

fr + λVρ. (3.5)

Proposition 3.1 Assume that Assumption 3.A holds. Then the operator Lsemi
ρ is

essentially self-adjoint on D(Lfr) ∩D(Vρ) and

τ t
ρ(A) := eitLsemi

ρ Ae−itLsemi
ρ (3.6)

is a W ∗-dynamics on Mρ.

We will call the W ∗-dynamical system (Mρ, τρ) the Pauli-Fierz system at density
ρ. In the absence of interaction (λ = 0) we call it a free Pauli-Fierz system.

The identity representation Mρ → B(K⊗Γs(L
2(Rd)⊕L2(Rd)) will be called the

semistandard representation of the Pauli-Fierz system, to distinguish it from the
standard representation described in the next subsection. Similarly, we will call the
operator Lsemi

ρ the Pauli-Fierz semi-Liouvillean at density ρ.

3.4 Pauli-Fierz systems in standard representation

Let K be a Hilbert space complex conjugate to K. The standard representation of
the algebra Mρ is realized on the Hilbert space

H := K ⊗K ⊗ Γs(L
2(Rd) ⊕ L2(Rd)),

and for B ⊗ C ∈ B(K) ⊗ M
AW
ρ,l ,

π(B ⊗ C) = B ⊗ 1K ⊗ C.

For the description of the cone Hρ,+ and the modular conjugation J we refer the
reader to Subsection 6.6.

Note that Vρ is affiliated to Mρ and

π(Vρ) =

∫
v(ξ) ⊗ 1 ⊗

(
(1 + ρ(ξ))

1

2 a∗l (ξ) + ρ(ξ)
1

2 ar(ξ)
)
dξ + hc,

Jπ(Vρ)J =

∫
1 ⊗ v(ξ) ⊗

(
(1 + ρ(ξ))

1

2 a∗r (ξ) + ρ(ξ)
1

2 al(ξ)
)
dξ + hc.

The Liouvillean of the free Pauli-Fierz system is

Lfr = K ⊗ 1 ⊗ 1 − 1 ⊗ K ⊗ 1 + 1 ⊗ 1 ⊗
∫ (

|ξ|a∗l (ξ)al(ξ) − |ξ|a∗r (ξ)ar(ξ)
)
dξ.

Set
Lρ := Lfr + λπ(Vρ) − λJπ(Vρ)J.
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Proposition 3.2 Assume that Assumption (3.A) holds. Then the operator Lρ is
essentially self-adjoint on D(Lfr)∩D(π(Vρ))∩D(Jπ(Vρ)J) and is the Liouvillean of
the Pauli-Fierz system (Mρ, τρ).

Let us note that from the mathematical point of view Pauli-Fierz Hamiltonians,
semi-Liouvilleans and Liouvilleans belong to the class of operators that we call Pauli-
Fierz operators. This class of operators has been studied in detail in our previous
paper [DJ1].

3.5 Thermal Pauli-Fierz systems

Let β > 0 be the inverse temperature. A Pauli-Fierz system whose radiation density
is given by the Planck law ρβ(ξ) = (eβ|ξ|−1)−1 is called a thermal Pauli-Fierz system
at inverse temperature β. Due to the specific form of the Planck law Assumption
3.A takes a somewhat simpler form and is equivalent to:

Assumption 3.B
∫

(|ξ|2 + |ξ|−1)‖v(ξ)‖2dξ < ∞.

With a slight abuse of the notation instead of the subscript ρβ we will use β, so Lβ

and τ t
β now stand for Lρβ

and τ t
ρβ

etc. Using the main result of [DJP] described in
Theorem 2.4 (see Theorem 7.3) one can easily show

Theorem 3.3 Assume that Assumption 3.B holds. Then for all λ ∈ R and β ∈
]0,∞[ the Pauli-Fierz system (Mβ , τβ) has a unique β-KMS state.

3.6 Main results

In this subsection we state simplified versions of our main results, described more
precisely and proved in Section 7. We use the following notation. sp(K) denotes the
spectrum of K and k0 = inf sp(K). The spectral projection of K onto k ∈ R will
be denoted by 1k(K) and vk1,k2(ξ) = 1k1

(K)v(ξ)1k2
(K). Obviously, vk1,k2(ξ) = 0

unless k1, k2 ∈ sp(K). p ∈ R+ denotes the radial coordinate. Sd−1 is the d − 1-
dimensional unit sphere, ω ∈ Sd−1 is the angle coordinate and dω is the surface
measure on Sd−1.

Let F+ be the set of positive differences of eigenvalues of K. (In physical terms,
these are the Bohr frequencies of the small system—the energies of photons that
can be emitted).

An important role will be played by a certain subset N of bounded operators on
K defined as follows: B ∈ B(K) belongs to N iff for almost all ω ∈ Sd−1 we have

B
∑

k∈sp(K)

vk−p,k(pω) =
∑

k∈sp(K)

vk−p,k(pω)B, p ∈ F+,

B∗
∑

k∈sp(K)

vk−p,k(pω) =
∑

k∈sp(K)

vk−p,k(pω)B∗, p ∈ F+,

B
∑

k∈sp(K)

lim
p↓0

p−1/2vk,k(pω) =
∑

k∈sp(K)

lim
p↓0

p−1/2vk,k(pω)B.

(3.7)
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Obviously, 1 ∈ N. Note also that N is a ∗-algebra invariant wrt eitK · e−itK .
We start with a result which does not hold uniformly in the temperature.

Theorem 3.4 Suppose that Assumption 3.B holds and the following conditions
are satisfied:

(1) ∫
‖∂3

pp−1+d/2〈p〉1/2v(pω)‖2dpdω < ∞,

∂j
pp

−1+d/2v(pω)
∣∣∣
p=0

= (−1)j∂j
pp

−1+d/2v∗(pω)
∣∣∣
p=0

, j = 0, 1, 2, ω ∈ Sd−1.

(2) N = C1.

Then for any 0 < β < ∞ there exists λ0(β) > 0 such that for 0 < |λ| < λ0(β) the
Pauli-Fierz Liouvillean Lβ has no singular spectrum except for a simple eigenvalue
at zero. Consequently, under the above conditions the system (Mβ , τβ) has the
property of return to equilibrium.

Condition (1) is our regularity assumption. Note that it allows for quite singular
infrared behavior of the form-factor. For example, assume that v(ξ) is smooth
outside of zero and of compact support. Then (1) holds if around zero

v(ξ) = v0|ξ|1−d/2, (3.8)

where v0 ∈ B(K) is self-adjoint. In particular, Theorem 3.4 applies to models derived
from QED in the so-called ohmic case (see Subsection 8.1).

Condition (2) is our positive temperature effective coupling assumption. Note
that it does not depend on the temperature.

The next theorem holds uniformly in the temperature.

Theorem 3.5 Suppose that Assumption 3.B holds and the following conditions
are satisfied:

(1)

∫
〈p〉‖∂3

pp−1+d/2v(pω)‖2dpdω < ∞;

∫
p−5+2j‖∂j

pp−1+d/2v(pω)‖2dpdω < ∞, j = 0, 1, 2;

∂j
pp−1+d/2v(pω)

∣∣∣
p=0

= (−1)j∂j
pp−1+d/2v∗(pω)

∣∣∣
p=0

, j = 0, 1, 2, ω ∈ Sd−1.

(2) N = C1.

(3) dim1k0
(K) = 1 (the operator K has a nondegenerate smallest eigenvalue).

(4) There exists c > 0 such that for all k ∈ sp(K), k 6= k0,

∑

p>0

∫

Sd−1

(v∗)k,k−p(pω)vk−p,k(pω)dω ≥ c1k(K).
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Then for any 0 < β0 < ∞ there exists λ0 > 0 such that for 0 < |λ| < λ0 and
β ∈ ]β0,∞[ the Pauli-Fierz Liouvillean Lβ has no singular spectrum except for a
simple eigenvalue at zero. Consequently, under the above conditions the system
(Mβ , τβ) has the property of return to equilibrium.

In comparison with Theorem 3.4, in Theorem 3.5 we need two additional effective
coupling assumptions (3) and (4). Note also that the regularity assumption (1) of
Theorem 3.5 is much stronger than that of Theorem 3.4. For example, assume that
v(ξ) is smooth away from zero and of compact support. Then (1) of Theorem 3.5
holds if around zero we have v(ξ) = v0|ξ|α, where v0 ∈ B(K) and α > (7 − d)/2
(compare with (3.8)).

Let us mention that our formalism can be applied to non-thermal radiation den-
sities. For instance, if the small system interacts with several reservoirs at distinct
temperatures, each satisfying the conditions of Theorem 3.4, then the Liouvillean
has no singular spectrum. Consequently, under these assumptions the Pauli-Fierz
system has no normal states.

4 Basic notation and facts

4.1 Miscellanea

We set C+ := {z ∈ C : Imz > 0}. Throughout the paper Scl denotes the closure of
a set S, so C

cl
+ = {z ∈ C : Imz ≥ 0}. We will use the shorthand 〈x〉 := (1 + x2)1/2.

δ(p) denotes the Dirac delta at 0, Pp−1 the principal value of p−1, and (p+i0)−1 :=
limε↓0(p + iε)−1. We will sometimes use the so-called Sochocki formula:

(p + i0)−1 = Pp−1 − iπδ(p).

4.2 Operators in Hilbert spaces

Let H be a Hilbert space with the scalar product (Ψ|Φ), Ψ,Φ ∈ H. B(H), B+(H)
and U(H) denote the set of bounded, bounded positive and unitary operators on
H. l2(H) will denote the Hilbert space of Hilbert-Schmidt operators on H with
the scalar product (A|B) = Tr(A∗B). l2+(H) is the set of positive Hilbert-Schmidt
operators.

If Ψ ∈ H, then |Ψ) and (Ψ| denote respectively the operators

C 3 λ 7→ λΨ ∈ H, H 3 Φ 7→ (Ψ|Φ) ∈ C.

Obviously, (Ψ| := |Ψ)∗. If ‖Ψ‖ = 1, then |Ψ)(Ψ| is the orthogonal projection onto
the subspace spanned by Ψ.

sp(A) denotes the spectrum of a closed operator A on H. If Θ is an isolated
bounded subset of sp(A) (closed and open in the relative topology of sp(A)), then
1Θ(A) denotes the spectral (Riesz) projection of A onto Θ.
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If A is self-adjoint and Θ is a Borel subset of R, then 1Θ(A) denotes the spectral
projection of A onto Θ. 1p(A) denotes the projection onto the subspace spanned by
the eigenvectors of A. 1ac(A) and 1sc(A) := 1−1ac(A)−1p(A) denote respectively the
projections onto the absolutely continuous and the singular continuous part of the
spectrum of A. spp(A), spac(A), spsc(A) denote respectively the point spectrum (the
set of eigenvalues), the absolutely continuous spectrum and the singular continuous
spectrum of A.

If z ∈ sp(A) is an isolated point of sp(A), or A is self-adjoint, we will write 1z(A)
instead of 1{z}(A).

We denote the real and imaginary part of A ∈ B(H) by

AR :=
1

2
(A + A∗), AI :=

1

2i
(A − A∗).

Clearly, A = AR + iAI. A is called dissipative if AI ≤ 0.

4.3 Level Shift Operator

In the physics literature, the formulas for computing 2nd order corrections for eigen-
values and especially resonances often go under the name of the Fermi Golden Rule.
In this subsection we will introduce an operator, sometimes called the Level Shift
Operator, that can be used to formalize the Fermi Golden Rule.

Suppose that H is a Hilbert space with a distinguished finite dimensional sub-
space Hv. We set Hv := (Hv)⊥. We will often use 2 × 2 matrix notation for
operators on H = Hv ⊕Hv. For example, any A ∈ B(H) can be written as

A =

[
Avv Avv

Avv Avv

]
. (4.9)

Suppose that Lfr is a self-adjoint operator that leaves Hv invariant. Then

Lfr =

[
Lvv

fr 0

0 Lvv
fr

]
. (4.10)

For A ∈ B(Hv) and e1, e2 ∈ R we set

Ae1,e2 := 1e1
(Lvv

fr )A1e2
(Lvv

fr ).

Let Q be a self-adjoint operator on H such that Qvv = 0 and Qvv is bounded.
Let

w(z) := Qvv(z1vv − Lvv
fr )−1Qvv, z 6∈ sp(Lvv

fr ). (4.11)

Assume that for all e ∈ sp(Lvv
fr ) the limit

lim
ε↓0

w(e + iε)ee =: w(e + i0)ee
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exists and set
Γ :=

∑
e∈sp(Lvv

fr
)

w(e + i0)ee.

We will call Γ the Level Shift Operator associated to the triple (Hv, Lfr, Q).
Note that Γ is a dissipative operator (in general, Γ is not self-adjoint), Γe1,e2 = 0

for e1 6= e2, Lvv
fr ΓR = ΓRLvv

fr and Lvv
fr ΓI = ΓILvv

fr .
Let us now describe applications of the Level Shift Operator.
Assume that Lvv + Qvv is essentially self-adjoint on D(Lvv)∩D(Qvv). Then we

can define the self-adjoint operator

L = Lfr + λQ,

where λ ∈ R is a coupling constant. The Level Shift Operator Γ can be used to
describe some properties of the operator L for a small coupling constant.

First of all, if we make appropriate analyticity assumptions similar to those of
[JP1, JP2], then the operator

Lvv
fr + λ2Γ (4.12)

can be used to predict the approximate location and the multiplicities of eigenvalues
and resonances of L for small λ.

If we do not make analyticity assumptions, then we cannot define the notion of
resonance. Still, the Level Shift Operator can be used to study eigenvalues of L.
In particular, in [DJ1] we proved that for a certain class of Pauli-Fierz operators L
and for a small nonzero λ, the operator

∑

m∈sp(Γ)∩R

1e(Γ)(Lvv
fr + λ2Γ) (4.13)

predicts the approximate location of eigenvalues of L and that the estimate

dim1p(L) ≤ dimKerΓI

gives an upper bound on their multiplicity. These results will be described in Sub-
section 5.4.

4.4 Space L2(R)

In this subsection we describe some operators acting on L2(R).
Let r denote the self-adjoint operator of multiplication by the variable in R,

(
rΨ

)
(p) := pΨ(p).

Throughout this paper, in the context of the space L2(R) the generic name for a
variable in R will be p. On the other hand, the multiplication operator on L2(R)
by its natural variable will be denoted by r.
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We denote by s the self-adjoint operator

sΨ(p) := −i∂pΨ(p), (4.14)

and by C(R) the set of all continuous functions on R.
For p ∈ R, define an operator πp : C(R) → R by πpf := f(p). It is well known

that, for η > 1/2, D(〈s〉η) is a subset of C(R). Hence the operator πp〈s〉−η is well
defined on L2(R).

The following two results are well known.

Proposition 4.1 Let η > 1/2. Then
(1) The functional πp〈s〉−η is bounded on L2(R).
(2) The map R 3 p 7→ πp〈s〉−η ∈ B(L2(R), C) is continuous.

Proposition 4.2 Let n be a positive integer and η > n − 1
2 . Then the function

C+ 3 z 7→ 〈s〉−η(z − r)−n〈s〉−η ∈ B(L2(R))

extends from C+ to a continuous function on C
cl
+.

Let η > 1/2. In what follows, the functional πp〈s〉−η will be often used in the
following context. Let G be a Hilbert space. Obviously, G ⊗ C = G. Hence, we can
introduce the family of maps

1G ⊗ πp〈s〉−η : G ⊗ L2(R) → G. (4.15)

Clearly, the maps (4.15) are bounded and depend continuously on p.

4.5 Space L2(R,G)

Let G be a Hilbert space (not necessarily separable). We say that a function R 3
p 7→ Ψ(p) ∈ G belongs to L2(R,G) iff

(1) There exists a separable subspace G0 such that Ψ(p) ∈ G0 for all p ∈ R.

(2) For any Φ ∈ G, the function R 3 p 7→ (Φ|Ψ(p)) ∈ C is measurable.

(3)
∫
‖Ψ(p)‖2dp < ∞.

Let N (R,G) be the set of all Ψ ∈ L2(R,G) such that Ψ(p) = 0 for almost all
p ∈ R and

L2(R,G) := L2(R,G)/N (R,G).

There exists a unique unitary operator

G ⊗ L2(R) → L2(R,G) (4.16)

such that Ψ ⊗ f ∈ G ⊗ L2(R) is mapped onto p 7→ f(p)Ψ.
Let K be another Hilbert space and q ∈ B(K,G⊗L2(R)). Suppose that for some

η > 1/2, 1G⊗〈s〉η q ∈ B(K,G ⊗ L2(R)). Then for p ∈ R we can define

q(p) := 1G⊗πp q = 1G⊗πp〈s〉−η 1G⊗〈s〉ηq ∈ B(K,G).
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Clearly
R 3 p 7→ q(p) ∈ B(K,G)

is a continuous function. Note that for Ψ ∈ K, the vector qΨ ∈ G⊗L2(R) can be
identified through (4.16) with the function p 7→ q(p)Ψ in L2(R,G).

For any f ∈ L∞(R) the following identity holds:

q∗f(r)q =

∫
q∗(p)f(p)q(p)dp. (4.17)

Note the estimate

‖q∗q‖ ≤
∫

‖q∗(p)q(p)‖dp =

∫
‖q(p)‖2dp. (4.18)

4.6 Conjugate Hilbert spaces

Let K be a Hilbert space. The space K conjugate to K is any Hilbert space with a
distinguished antiunitary map

K 3 Ψ 7→ Ψ ∈ K. (4.19)

The map (4.19) is called the conjugation on K.
By the Riesz lemma, the map

K 3 Ψ 7→ (Ψ| ∈ B(K, C)

is an isomorphism between K and B(K, C) = K∗.
The inverse of the map (4.19), which is a conjugation on K, will be denoted by

the same symbol. Hence K = K and Ψ = Ψ.
If A ∈ B(K), then A ∈ B(K) is defined by K 3 Ψ 7→ A Ψ := AΨ ∈ K.
We will often use the identification of the set of Hilbert-Schmidt operators l2(K)

with K ⊗ K so that |Φ1)(Φ2| ∈ l2(K) corresponds to Ψ1 ⊗ Ψ2 ∈ K ⊗ K. This
identification can be sometimes confusing. To avoid misunderstanding we will try
to make clear which convention we use at the moment. In particular, let us note
that the following identities hold for B ∈ B(K) and C ∈ K ⊗K ' l2(K):

B⊗1K C = BC, 1K⊗B C = CB∗. (4.20)

On the left hand side C is interpreted as an element of K ⊗ K and on the right as
an element of l2(K).

An antiunitary map κ on K such that κ2 = 1 will be called an internal conju-
gation on K. Note that if we have a fixed internal conjugation κ on K, then K is
naturally identified with K. Therefore, in this case we do not need to introduce K.
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4.7 The ? conjugation

Let K and W be Hilbert spaces. In this subsection we introduce a certain antilinear
map ? from a dense subspace of B(K,K⊗W) to a dense subspace of B(K,K⊗W).

Let v ∈ B(K,K ⊗ W). We say that v is ? conjugable if there exists v? ∈
B(K,K ⊗W) such that for Φ,Ψ ∈ K and w ∈ W,

(Φ⊗w | vΨ) = (v?Φ|Ψ ⊗ w).

If v? exists, then it is unique.

Remark 4.3 Given an orthonormal basis {wi : i ∈ I} in W, any v ∈ B(K,K⊗W)
can be decomposed as

v =
∑

i∈I

Bi ⊗ |wi), (4.21)

where Bi ∈ B(K) and the sum should be understood in terms of the strong operator
convergence. Note that v∗v =

∑
i∈I B∗

i Bi. It is easy to see that v is ? conjugable iff∑
i∈I BiB

∗
i is bounded. If this is the case,

v? :=
∑

i∈I

B∗
i ⊗ |wi).

and v?∗v? =
∑

i∈I BiB
∗
i .

Proposition 4.4 Suppose that either K or W is finite dimensional. Then all v ∈
B(K,K ⊗W) are ? conjugable. Moreover, if n := min

(
(dimK)2,dimW

)
, then

‖v?‖ ≤ √
n‖v‖.

Proof. Clearly, dimB(K) = (dimK)2. Therefore, we can choose an orthonormal
system {wi} in W with at most n elements such that (4.21) is true. Now

‖v?‖2 =
∥∥∥

∑
i

BiB
∗
i

∥∥∥ ≤ ∑
i
‖BiB

∗
i ‖ =

∑
i
‖B∗

i Bi‖ ≤ n
∥∥∥

∑
i

B∗
i Bi

∥∥∥ = n‖v‖2.

2

Remark 4.5 If W and K are infinite dimensional, then it is easy to find an example
of v ∈ B(K,K ⊗W) which is not ? conjugable.

Notation. In what follows, if ρ is an operator on W and v ∈ B(K,K⊗W), we will
write ρv instead of 1K⊗ρ v.

Proposition 4.6 (1) If v is ? conjugable, then so is v?; moreover, v?? = v.

(2) If ρ ∈ B(W), then (ρv)? = ρv?.

(3) If B ∈ B(K), then (vB)? = B∗⊗1W v?.
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4.8 Coupling Hilbert-Schmidt operators

Let K and W be Hilbert spaces. In this subsection we describe some notation and
identities related to the space K ⊗K ⊗W ' l2(K) ⊗W.

Let H1, H2 be Hilbert spaces. If B ∈ B(K) and A ∈ B(K ⊗ H1,K ⊗ H2), we
define

B⊗̌A := θ−1⊗1H2
B⊗A θ⊗1H1

∈ B(K ⊗K ⊗H1,K ⊗K ⊗H2), (4.22)

where θ : K ⊗ K → K ⊗ K is defined as θ Ψ1⊗Ψ2 := Ψ2⊗Ψ1. In other words, if
C ∈ B(K), A ∈ B(H1,H2), we set

B ⊗̌ C ⊗ A := C ⊗ B ⊗ A.

We will sometimes call the operation ⊗̌ “tensoring in the middle”.
Tr denotes the trace. In the context of coupled systems Tr will be reserved for

the partial trace over the space K. To denote the partial trace over the space W we
will use tr. Thus, if C is an operator on K ⊗W, then trC is an operator on K.

The following propositions describe some algebraic properties of tensoring in the
middle ⊗̌ and the ? operation, which we will use in our computations. They can be
skipped on the first reading.

Proposition 4.7 Let A ∈ l2(K), B ∈ l2(K,K ⊗ W), vl ∈ B(K,K ⊗ W), vr ∈
B(K,K ⊗ W) and suppose that vr is ? conjugable. Then the following statements
hold:

1K⊗̌vl A = vlA,

1K⊗̌v∗l B = v∗l B,

1K⊗vr A = A⊗1W v?
r ,

1K⊗v∗r B = trBv?∗
r ,

(4.23)

where on the left we use the K ⊗K notation and on the right the l2(K) notation.

Proof. It is sufficient to prove the statement for vl = C ⊗ |w) and vr = C ⊗ |w)
where C ∈ B(K) and w ∈ W. Then

1K⊗̌vl = C ⊗ 1K ⊗ |w),

1K⊗̌v∗l = C∗ ⊗ 1K ⊗ (w|,

1K⊗vr = 1K ⊗ C ⊗ |w),

1K⊗v∗r = 1K ⊗ C
∗ ⊗ (w|.

(4.24)
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We may also assume that B = D ⊗ |w0) for some w0 ∈ W. Using (4.20) we get

1K⊗̌vl A = CA ⊗ |w) = C⊗|w) A,

1K⊗̌v∗l B = C∗D (w|w0) = C∗⊗(w| D⊗|w0),

1K⊗vr A = AC∗ ⊗ |w) = A⊗1W
(
C⊗|w)

)?
,

1K⊗v∗r B = DC(w|w0) = tr
(
D⊗|w0)

(
C⊗|w)

)?∗)
.

(4.25)

2

Proposition 4.8 Let A ∈ l2(K), ρ ∈ B(W), vl ∈ B(K,K ⊗W) and vr ∈ B(K,K ⊗
W). Suppose that vl, vr are ? conjugable. Then

1K⊗v∗r ρ 1K⊗̌vl A = trρvlAv?∗
r = v?∗

l A⊗ρ∗ vr, (4.26)

1K⊗̌v∗l ρ 1K⊗vr A = trv?
l A v∗r ρ

∗ = v∗l A⊗ρ v?
r . (4.27)

If vl,1, vl,2 ∈ B(K,K ⊗W) are ? conjugable, then

1K⊗̌v∗l,1 ρ 1K⊗̌vl,2 A = trv?
l,1v

?∗
l,2 A⊗ρ∗ = v∗l,1ρvl,2A. (4.28)

If vr,1, vr,2 ∈ B(K,K ⊗W) are ? conjugable, then

1K⊗v∗r,1 ρ 1K⊗vr,2 A = trA⊗ρ v?
r,2v

?∗
r,1 = Av∗r,2ρ

∗vr,1. (4.29)

Proof. We will prove only (4.26). First note that

1K⊗v∗r ρ 1K⊗̌vl A = 1K⊗v?
r ρ vlA = trρvlAv?∗

r . (4.30)

We take vl = Cl ⊗ |wl) and vr = Cr ⊗ |wr) for some Cl, Cr ∈ B(K), wl, wr ∈ W.
Then (4.30) is equal to

tr
(
Cl⊗|ρwl) A

(
Cr ⊗ |wr)

)?∗
)

= tr
(
Cl⊗|ρwl) A Cr⊗(wr|

)

= ClACr tr
(
|ρwl)(wr|

)
= ClACr(wl|ρ∗wr)

= Cl⊗(wl| A⊗ρ∗ Cr⊗|wr) =
(
Cl ⊗ |wl)

)?∗
A⊗ρ∗ Cr⊗|wr) = v?∗

l A⊗ρ∗vr.

2

5 Abstract Pauli-Fierz operators

In this section we first introduce the notation that we will use to describe the
interaction of a second-quantized system with another system. Then we introduce
the class of Pauli-Fierz operators. We also describe a number of results about these
operators contained in the literature, especially in [DJ1], which we will use later on.

In this section we look at Pauli-Fierz operators just as a certain class of abstract
self-adjoint operators. Only in the next two sections we will put them in the context
of W ∗-dynamical systems.
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5.1 Creation/annihilation operators in coupled systems

Suppose that W is a Hilbert space. Γs(W) = ⊕∞
n=0Γ

n
s (W) will denote the bosonic

Fock space over W (see eg. [BR2], also [DJ1]).
Consider another Hilbert space E . In this subsection we discuss the formalism

of the coupled system described by the Hilbert space E ⊗ Γs(W).
Let q ∈ B(E , E ⊗ W). The creation and annihilation operators associated to q

were introduced in [DG, DJ1]. Since we will use a somewhat different notation from
[DJ1], we discuss these notions in detail.

We define the creation operator q(a∗) as the (unbounded) quadratic form on
E ⊗ Γs(W) whose only nonzero matrix elements are between Ψn+1 ∈ E ⊗ Γn+1

s (W)
and Ψn ∈ E ⊗ Γn

s (W), for n ≥ 0, and are equal

(Ψn+1|q(a∗)Ψn) :=
√

n + 1(Ψn+1| q⊗1⊗n
W Ψn).

The annihilation operator q∗(a) is defined as q(a∗)∗ = q∗(a). Note that both q(a∗)
and q∗(a) are closed.

Remark 5.1 In [DJ1] q(a∗) and q∗(a) were denoted a∗(q) and a(q) respectively.

For further reference, let us note the following straightforward facts:

Proposition 5.2 (1) Let Ψ ∈ E ⊗ Γn
s (W). Then the following estimates hold:

‖q(a∗)Ψ‖ ≤
√

n + 1‖q‖‖Ψ‖, ‖q∗(a)Ψ‖ ≤ √
n‖q‖‖Ψ‖. (5.31)

(2) If Ψ0 ∈ E ⊗ Γ0
s (W), then q(a∗)Ψ0 = qΨ0 ∈ E ⊗ Γ1

s (W).

(3) If Ψ1 ∈ E ⊗ Γ1
s (W), then q∗(a)Ψ1 = q∗Ψ1 ∈ E ⊗ Γ0

s (W).

5.2 Pauli-Fierz operators

Let E and W be as above. From now on we will always assume that E is finite
dimensional. Let E be a self-adjoint operator on E and r a self-adjoint operator on
W. A self-adjoint operator on H := E ⊗ Γs(W) of the form

Lfr := E ⊗ 1 + 1 ⊗ dΓ(r)

will be called a free Pauli-Fierz operator.
For a given q ∈ B(E , E ⊗W) the Pauli-Fierz interaction is defined by

Q = q(a∗) + q∗(a).

It follows from Nelson’s theorem on analytic vectors that Q is essentially self-adjoint
on E ⊗ Γfin

s (W). The operator

L := Lfr + λQ,

where λ ∈ R, will be called a Pauli-Fierz operator.
We know two sets of assumptions that guarantee the self-adjointness of Pauli-

Fierz operators.
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Theorem 5.3 (1) If r ≥ 0 and r−
1

2 q is bounded, then L is self-adjoint on D(Lfr).

(2) If |r|q is bounded, then L is essentially self-adjoint on D(Lfr) ∩ D(Q).

The proof of (1) can be found in Proposition 5.2 of [DJ1] and the proof of (2) in
Proposition 5.1 of [DJ1]. We remark that (1) has been known for a long time, see
e.g. [BFS1]. The part (2) was first proven in [JP1].

5.3 Level Shift Operator for Pauli-Fierz operators

We start by the description of a condition which plays a central role in our study.
This condition was introduced [JP1, JP2] and was also used in [DJ1, M].

We assume that there exists a Hilbert space G and a unitary operator U : W →
L2(R) ⊗ G such that the operator UrU ∗ is the operator of multiplication by the
variable in R. We fix such an operator U and identify W ≡ L2(R) ⊗ G. We will
often make use of the self-adjoint operator s := −i∂p ⊗ 1G introduced already in
Subsection 4.4.

Let Hv := E ⊗ Γ0
s (W) be the distinguished subspace of H := E ⊗ Γs(W). Note

that the map
E 3 Ψ 7→ Ψ ⊗ Ω ∈ Hv,

identifies E with Hv. Likewise, the operator Lfr preserves the subspace Hv and Lvv
fr

is identified with the operator E on E . Note also that Qvv = 0 and Qvv = q.
For z ∈ C+ set

w(z) := Qvv(z1vv − Lvv
fr )−1Qvv

= q∗(z − E ⊗ 1 − 1 ⊗ r)−1q.

The next proposition follows from Proposition 4.2. (It is also a special case of
Theorem 6.1 in [DJ1]).

Proposition 5.4 Assume that 〈s〉ηq ∈ B(E , E ⊗ W) for some η > 1/2. Then the
function C+ 3 z 7→ w(z) extends by continuity to a continuous function on C

cl
+.

Under the condition of this proposition the Level Shift Operator for the triple
(E ⊗ Γ0

s (W), Lfr, Q) is well defined and is equal to

Γ =
∑

e1,e2∈sp(E)

(q∗)e1,e2(e1 − e2 + i0 − r)−1qe2,e1 , (5.32)

where
qe1,e2 := 1e1

(E)⊗1W q 1e2
(E).
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5.4 Spectral theory of Pauli-Fierz operators

The following theorem is a consequence of the main results of [DJ1].

Theorem 5.5 Let η > 2, ε > 0, C > 0 and q ∈ B(E , E ⊗W) be such that:
(a) L is essentially self-adjoint on D(Lfr) ∩ D(Q) for all λ.
(b) ‖〈s〉ηq‖ ≤ C.
(c) ΓI ≤ −ε(1 − 10(Γ

I)).
Then there exists λ0 > 0, which depends on q only through η, ε and C, such that
for 0 < |λ| < λ0 the following holds:
(1) spsc(L) = ∅.
(2) dim1p(L) ≤ dim10(Γ

I).

Remark. If (c) is replaced with the condition ΓI < −ε, then all the conclusions
of the theorem hold under the weaker assumption η > 1. Moreover, in this case
10(Γ

I) = 0, and we conclude that L has no point spectrum.
Proof of Theorem 5.5. By Theorems 6.2, 6.3 and 6.4 of [DJ1], there exists λ0 > 0
such that for 0 < |λ| < λ0, spsc(L) = ∅ and dim1p(L) ≤ dim1R(Γ). Since Γ is a
dissipative operator, dim 1R(Γ) ≤ dim10(Γ

I) (see Proposition 3.2 of [DJ1]). Hence
dim1p(L) ≤ dim10(Γ

I). The proofs of Theorems 6.2, 6.3 and 6.4 yield that the
constant λ0 depends only on η, ε and C. 2

Let us note that in [DJ1] we actually proved much more than what we stated
above. The following theorem, adapted from [DJ1], expresses in precise terms the
intuition that the operator

∑

m∈sp(Γ)∩R

1m(Γ)(E + λ2Γ)

predicts the approximate location of eigenvalues of L and estimates from above their
multiplicity.

For x ∈ R and ε > 0, we set I(x, ε) := [x − ε, x + ε].

Theorem 5.6 Suppose that ‖〈s〉ηq‖ < ∞ for some η > 2, that L is essentially
self-adjoint on D(Lfr) ∩ D(Q) for all λ and let κ = 1 − η−1. Then there exists
λ0 > 0 and α > 0 such that for 0 < |λ| < λ0, the following holds:
(1) If e ∈ sp(E) and m ∈ sp(Γee) ∩ R, then

dim1p
I(e+λ2m, α|λ|2+κ)

(L) ≤ dim1m(Γee).

(2)

spp(L) ⊂
⋃

e∈sp(E)

⋃

m∈R∩sp(Γee)

I(e + λ2m,α|λ|2+κ).
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6 Pauli-Fierz systems

In this section we consider a certain class of W ∗-dynamical systems that we call
Pauli-Fierz systems.

Subsections 6.1-6.4 are devoted to zero temperature Pauli-Fierz systems. From
the algebraic point of view they are the simplest class of Pauli-Fierz systems. Their
W ∗-algebras are type I factors—they are just B(H). The generators of their dynam-
ics in the irreducible representation are given by bounded from below Pauli-Fierz
operators. Such operators will be called Pauli-Fierz Hamiltonians. A Pauli-Fierz
Hamiltonian is completely determined by the data (K,K,Z, h, v), where K is the
energy operator of the small system on the Hilbert space K and h is a positive oper-
ator describing the boson energy on the 1-particle Hilbert space Z. The form-factor
v ∈ B(K,K ⊗Z) describes the interaction.

Subsections 6.5-6.8 are devoted to Pauli-Fierz systems at density ρ, where the
radiation density operator ρ is a positive operator on Z commuting with the 1-
particle energy operator h. A Pauli-Fierz system at density ρ is uniquely determined
by (K,K,Z, h, v, ρ). The case ρ = 0 corresponds to zero temperature systems.

There are two representations of Pauli-Fierz systems that we will use. The first
is somewhat simpler—we will call it the semistandard representation. The second
one, the standard representation, is more complicated, but also more natural from
the algebraic point of view.

In both representations there are certain distinguished Pauli-Fierz operators
that implement the dynamics. In the semi-standard representation this operator
is called the Pauli-Fierz semi-Liouvillean and is denoted Lsemi

ρ . In the standard
representation it is called the Pauli-Fierz Liouvillean and denoted Lρ.

The main results of this section concern the Level Shift Operator for Lρ, de-
noted Γρ, and are described in Section 6.7. In particular, in Theorem 6.13 we give
an algebraic characterization of KerΓI

ρ, which will later lead to the main effective
coupling assumption of our paper.

6.1 Pauli-Fierz Hamiltonians

Throughout this section we assume that K is a self-adjoint operator on a finite
dimensional Hilbert space K, h is a positive operator on a Hilbert space Z and
v ∈ B(K,K ⊗Z). The self-adjoint operator

Hfr := K ⊗ 1 + 1 ⊗ dΓ(h)

on K ⊗ Γs(Z) will be called a free Pauli-Fierz Hamiltonian. The interaction is
described by the self-adjoint operator

V = v(a∗) + v∗(a).

The operator
H := Hfr + λV,

where λ ∈ R, is called a Pauli-Fierz Hamiltonian. We will need
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Assumption 6.A h− 1

2 v ∈ B(K,K ⊗Z).

By Theorem 5.3, Assumption 6.A implies that H is self-adjoint on D(Hfr) and
bounded from below.

6.2 Gluing of reservoir 1-particle spaces

An important role in our paper will be played by the Hilbert space Z ⊕Z and the
self-adjoint operator r := h ⊕ (−h). The following operators:

Z ⊕Z 3 (z1, z2) 7→ τ(z1, z2) := (z2, z1) ∈ Z ⊕ Z, (6.33)

Z ⊕Z 3 (z1, z2) 7→ ε(z1, z2) := (z2, z1) ∈ Z ⊕ Z, (6.34)

will be also useful. Note that τ is linear, ε antilinear, and ε(z1, z2) = τ(z1, z2).
The most important assumption that we need is the gluing condition introduced

in [JP1] and further elaborated in [DJ1].

Assumption 6.B There exists a Hilbert space G and a unitary U : Z ⊕ Z →
L2(R) ⊗ G such that U ∗rU is the operator of multiplication by the variable in R.

In what follows we assume that Assumption 6.B holds and we identify Z ⊕ Z
with L2(R) ⊗ G and r with the multiplication operator (rΨ)(p) := pΨ(p).

Let us note that Z is identified with L2(R+)⊗G and h with 1[0,∞[(r)r. Likewise,

Z is identified with L2(R−) ⊗ G. Thus

(κΨ)(p) := Ψ(−p), p ∈ [0,∞[, (6.35)

defines an antiunitary map on Z, which satisfies κh = hκ. Thanks to κ, the ?
operation can be viewed as a map of B(K,K ⊗Z) into itself.

In the expression (v, 0) below we interpret 0 as an operator from K to K ⊗ Z.
Thus,

(v, 0) : K 7→ K ⊗ L2(R) ⊗ G,

where we used the identifications

K⊗Z ⊕K⊗Z ' K⊗(Z ⊕Z) ' K ⊗ L2(R) ⊗ G.

This operator can be also written as a function defined for almost all p ∈ R with
values in B(K,K ⊗ G):

(v, 0)(p) =

{
v(p), p > 0;

0, p ≤ 0.
(6.36)

Let s be as in (4.14). In the following assumption we have η ≥ 0.

Assumption 6.C(η)0 〈s〉η(v, 0) ∈ B(K,K⊗(Z ⊕Z)).

This assumption will be used in the next section in the analysis of the Level Shift
Operator for Pauli-Fierz Hamiltonians.
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6.3 Level Shift Operator for Pauli-Fierz Hamiltonians

In this subsection we will calculate the Level Shift Operator for the triple (K⊗Γ0
s (Z),Hfr, V ).

We will use the notation introduced in Subsection 4.3. In particular, we recall that

vk1,k2 = 1k1
(K)⊗1Z v 1k2

(K).

Let Fk := {k − k1 : k1 ∈ sp(K)} be the set of allowed transition energies from
the level k ∈ sp(K). The set of positive and negative transition energies from k is
denoted by F+

k := Fk∩ ]0,∞[ and F−
k := Fk∩ ] −∞, 0[ respectively. We also set

F :=
⋃

k∈sp(K)

Fk, F+ :=
⋃

k∈sp(K)

F+
k .

Let Hv := K ⊗ Γ0
s (Z) and

w(z) := V vv(z1vv − Hvv
fr )−1V vv

= v∗(z − K ⊗ 1 − 1 ⊗ h)−1v.

Proposition 6.1 Assume that Assumption 6.C(η)0 holds with η > 1
2 . Then the

function C+ 3 z 7→ w(z) extends to a continuous function on C
cl
+.

Proof. We apply the trick of “gluing non-physical free bosons” [DJ1]. Consider the
extended 1-boson space Z⊕Z and define the operators r = h⊕ (−h) and q = (v, 0).
Then, for z ∈ C+,

v∗(z − h)−1v = q∗(z − r)−1q,

and the statement follows from Proposition 5.4. 2

The Level Shift Operator, Γ, of the triple (K ⊗ Γ0
s (Z),Hfr, V ) is equal to

Γ =
∑

k∈sp(K)

Γkk,

Γkk =
∑

p∈Fk

(v∗)k,k−p(p + i0 − h)−1vk−p,k.

With a slight abuse of notation we set v(p) := (v, 0)(p) (recall (6.36)). Let vk1,k2(p) :=
1k1

(K)⊗1G v(p)1k2
(K), (v∗)k1,k2(p) := 1k1

(K)v(p)∗ 1k2
(K)⊗1G . The Assumption

6.C(η)0 with η > 1/2 ensures that v(p) is a continuous function (see Subsection
4.5). Hence, in particular, v(0) = 0. Moreover, we have

(ΓR)kk =
∑

p∈Fk

(v∗)k,k−pP(p − h)−1vk−p,k

=
∑

p∈Fk

∫
(v∗)k,k−p(p1)P(p − p1)

−1vk−p,k(p1)dp1,

(ΓI)kk = −π
∑

p∈F+

k

(v∗)k,k−pδ(p − h)vk−p,k

= −π
∑

p∈F+

k

(v∗)k,k−p(p)vk−p,k(p).

(6.37)
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We have described above ΓI and ΓR in two forms. In the first form we use
the self-adjoint operator h on Z and a number p ∈ R. Strictly speaking, neither
the principal value P(p − h)−1 nor the delta function δ(p − h) are well defined as
self-adjoint operators. However, within the context of (6.37), these formulas are
well defined by the integral expressions using the representation of v into a direct
integral with the fibers v(p).

Let k0 denote the ground state energy of K, that is, k0 := inf sp(K). For later
reference, we note that the ground states of K belong to the kernel of ΓI:

Proposition 6.2 Ran1k0
(K) ⊂ KerΓI.

One expects that for a ”generic” form-factor v, the kernel of ΓI should coincide
with the subspace of ground states of K. This leads to the first effective coupling
assumption that we will use in our paper.

Assumption 6.D Ran1k0
(K) = KerΓI.

Our second effective coupling assumption is that the ground state of K is simple:

Assumption 6.E dimRan1k0
(K) = 1.

6.4 Spectral structure of Pauli-Fierz Hamiltonians

In this subsection we formulate the main result of this paper concerning Pauli-Fierz
Hamiltonians. It will say that if the interaction v is sufficiently regular and the
effective coupling assumptions 6.D and 6.E hold, then the Pauli-Fierz Hamiltonian
H for small nonzero coupling constants has purely absolutely continuous spectrum
except possibly for a simple eigenvalue at inf sp(H).

We start with the observation that an appropriate regularity of the gluing implies
the self-adjointness of H.

Theorem 6.3 Assume that Assumption 6.C(η)0 holds with η > 1/2. Then As-
sumption 6.A holds.

Proof. We use the method described in the proof of Proposition 6.1. In particular,
we use the operators q and r introduced in the proof of this proposition.

By Assumption 6.C(η)0 with η > 1
2 and Proposition 4.2, for any p ∈ R the

operator q∗(p + i0 − r)−1q exists and is bounded. Setting p = 0 gives

q∗(i0 − r)−1q = v∗h−1v.

Hence, h− 1

2 v is bounded. 2

Now we deduce spectral information on H.
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Theorem 6.4 Suppose that Assumption 6.C(η)0 holds with η > 2 and that As-
sumptions 6.D and 6.E hold. Then there exists λ0 > 0 such that for 0 < |λ| < λ0

the following holds:
(1) dim1p(H) ≤ 1.
(2) spsc(H) = ∅.

Proof. We again use the method and the notation of Proposition 6.1. Extend
the space K ⊗ Γs(Z) to the space K ⊗ Γs(Z) ⊗ Γs(Z) ' K⊗ Γs(Z ⊕Z). The space
K⊗Γs(Z) is identified with the subspace K⊗Γs(Z)⊗Γ0

s (Z). Consider the extended
operators

Lfr := Hfr ⊗ 1 − 1 ⊗ dΓ(h) ' K ⊗ 1 + 1 ⊗ dΓ(r),

Q := V ⊗ 1 ' q(a∗) + q∗(a),

and set
L := Lfr + λQ ' H ⊗ 1 − 1 ⊗ dΓ(h).

By Theorem 6.3, H is self-adjoint on D(Hfr) and therefore L is self-adjoint on D(Lfr)
(see Section 5.2 in [DJ1]). Note also that

spp(H) = spp(L), spsc(H) = spsc(L). (6.38)

Clearly, L is a Pauli-Fierz operator such that ‖〈s〉ηq‖ < ∞ for η > 2. The
Level Shift Operator of the triple (K⊗Γ0

s (Z⊕Z), Lfr, Q) is equal (after the obvious
identification of the Hilbert spaces) to the Level Shift Operator of the triple (K ⊗
Γ0

s (Z),Hfr, V ), which we studied in the last subsection. Assumptions 6.D and 6.E
yield that dimKerΓI = 1. Therefore, Theorem 5.5 implies that there exists λ0 > 0
such that for 0 < |λ| < λ0 we have dim1p(L) ≤ 1, spsc(L) = ∅. By (6.38), this
implies dim 1p(H) ≤ 1, spsc(H) = ∅. 2

Remark 6.5 For a large class of interactions one can show that dim1inf sp(H)(H) ≥
1, namely that Pauli-Fierz Hamiltonian H has a ground state. Results of this
kind were proven in [AH, BFS1, Ge, Sp2, Sp3]. If to the assumptions of Theo-
rem 6.4 we add the assumptions of the above references, then we can replace (1)
with dim1p(H) = 1 and spp(H) = inf sp(H).

6.5 Pauli-Fierz systems of density ρ

In this subsection we introduce Pauli-Fierz W ∗-dynamical systems. They will be
the main subject of the remaining part of this section.

Let ρ ≥ 0 be an operator commuting with h. It will be called the radiation
density. The left Araki-Woods W ∗-algebra, denoted by M

AW
ρ,l is defined as the

W ∗-subalgebra of B(Γs(Z ⊕Z)) generated by the operators

exp i
((

(1 + ρ)1/2z, ρ1/2z
)
(a∗) + hc

)
, z ∈ D(ρ1/2),
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where (z1, z2)(a
∗) denotes the usual creation operators on Γs(Z ⊕ Z). The Pauli-

Fierz algebra at density ρ is defined as

Mρ := B(K) ⊗ M
AW
ρ,l . (6.39)

The identity map
Mρ → B(Γs(Z ⊕Z)) (6.40)

will be called the semistandard representation of Mρ. (The bosonic part of (6.40)
is already standard, the part involving K is not—hence the name).

Proposition 6.6 Assume that

(1 + ρ)1/2v ∈ B(K,K ⊗Z). (6.41)

Then ρ
1

2 v? is a bounded operator and the operators
(
(1 + ρ)

1

2 v, 0
)
(a∗) +

(
0, v?∗ρ

1

2

)
(a),

(
v∗(1 + ρ)

1

2 , 0
)
(a) +

(
0, ρ

1

2 v?
)
(a∗),

which act on K ⊗ Γs(Z ⊕Z), are affiliated to Mρ.

Proof. Using Proposition 4.4 and the fact that K has a finite dimension we see
that the boundedness of (1 + ρ)1/2v implies the boundedness of ((1 + ρ)1/2v)? =
(1+ρ)1/2v?. Next note that ρ1/2(1+ρ)−1/2 is bounded. This implies the boundedness
of ρ1/2v?. 2

In what follows we assume (6.41) and set

vρ := ((1 + ρ)
1

2 v, ρ
1

2 v?) ∈ B(K,K ⊗ (Z ⊕ Z)).

Note that in terms of a direct integral of operators in B(K,K ⊗ G):

vρ(p) =





(1 + ρ)
1

2 v(p), p > 0,

ρ
1

2 v?(−p), p ≤ 0.

Let
Vρ :=

(
(1 + ρ)

1

2 v, ρ
1

2 v?
)
(a∗) +

(
v∗(1 + ρ)

1

2 , v?∗ρ
1

2

)
(a)

= vρ(a
∗) + v∗ρ(a).

The operator Vρ is essentially self-adjoint on the space of finite particle vectors.
Moreover, it is affiliated to Mρ.

The free Pauli-Fierz semi-Liouvillean is the self-adjoint operator on K⊗Γs(Z⊕Z)
defined as

Lsemi
fr := K ⊗ 1 + 1 ⊗ dΓ(h ⊕−h)

= K ⊗ 1 + 1 ⊗ dΓ(r).

The full Pauli-Fierz semi-Liouvillean of density ρ is

Lsemi
ρ := Lsemi

fr + λVρ. (6.42)

Let us formulate the following assumption:
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Assumption 6.Fρ (1 + h)(1 + ρ)1/2v ∈ B(K,K ⊗Z).

Theorem 6.7 (1) τ t
fr(A) := eitLfrAe−itLfr is a W ∗-dynamics on Mρ.

(2) Suppose that Assumption 6.Fρ hold. Then Lsemi
ρ is essentially self-adjoint on

D(Lsemi
fr ) ∩ D(Vρ) and τ t

ρ(A) := eitLsemi
ρ Ae−itLsemi

ρ is a W ∗-dynamics on Mρ.

Proof. Part (1) is obvious.
Arguing as in the proof of Proposition 6.6 we see that Assumption 6.Fρ implies

that (1+h)ρ
1

2 v? is bounded. Hence (1+ |r|)vρ is bounded. Therefore, Theorem 5.3
yields that Lsemi

ρ is essentially self-adjoint on D(Lsemi
fr )∩D(Vρ). Since Vρ is affiliated

with Mρ, Theorem 3.3 in [DJP] implies that τρ is a W ∗-dynamics. 2

(
Mρ, τρ

)
will be called the Pauli-Fierz W ∗-dynamical system at density ρ.

6.6 Standard representation of Pauli-Fierz systems

Consider the representation π : Mρ → B(K ⊗K ⊗ Γs(Z ⊕Z)) defined by

π(A) := 1K⊗̌A, A ∈ Mρ = B(K) ⊗ M
AW
ρ,l ,

where ⊗̌ was introduced in (4.22). Clearly,

π(B(K) ⊗ M
AW
ρ,l ) = B(K) ⊗ 1K ⊗ M

AW
ρ,l .

Set J := JK ⊗ Γ(ε), where

JKΨ1 ⊗ Ψ2 := Ψ2 ⊗ Ψ1, Ψ1,Ψ2 ∈ K, (6.43)

and ε was introduced in (6.34). Note that if A ∈ Mρ, then

Jπ(A)J = 1K ⊗
(
1K⊗Γ(τ) A 1K⊗Γ(τ)

)
,

where τ was introduced in (6.33). Set

Hρ,+ := {AJA B⊗Ω, : A ∈ Mρ, B ∈ l2+(K)}cl.

Proposition 6.8 (
π, K⊗K⊗Γs(Z⊕Z), J, Hρ,+

)

is a standard representation of Mρ.

Set
Lfr := K ⊗ 1 ⊗ 1 − 1 ⊗ K ⊗ 1 + 1 ⊗ 1 ⊗ dΓ(r).

Proposition 6.9 Lfr is the standard Liouvillean of the free Pauli-Fierz system
(Mρ, τfr).
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In what follows we assume (6.41). Note that

π(Vρ) := 1K⊗̌Vρ

= 1K⊗̌
(
(1 + ρ)

1

2 v, ρ
1

2 v?
)
(a∗) + 1K⊗̌

(
v∗(1 + ρ)

1

2 , v?∗ρ
1

2

)
(a)

=
(
1K⊗̌vρ

)
(a∗) +

(
1K⊗̌v∗ρ

)
(a).

π(Vρ) is essentially self-adjoint on K⊗K⊗Γfin
s (Z⊕Z), affiliated to B(K)⊗1K⊗M

AW
ρ,l ,

and

Jπ(Vρ)J := 1K ⊗
(
1K⊗Γ(τ) Vρ 1K⊗Γ(τ)

)

= 1K ⊗
(
ρ

1

2 v?, (1 + ρ)
1

2 v
)
(a∗) + 1K ⊗

(
v?∗ρ

1

2 , v∗(1 + ρ)
1

2

)
(a)

=
(
1K ⊗ τvρ

)
(a∗) +

(
1K ⊗ v∗ρτ

)
(a).

Set
Lρ := Lfr + λπ(Vρ) − λJπ(Vρ)J. (6.44)

Proposition 6.10 Suppose that Assumption 6.F ρ holds. Then Lρ is essentially
self-adjoint on D(Lfr)∩D(π(Vρ))∩D(Jπ(Vρ)J) and is the Liouvillean of the Pauli-
Fierz system (Mρ, τρ).

Proof. The assumptions imply that

(1 + |r|)(1K⊗̌vρ − 1K⊗τvρ) ∈ B(K ⊗K,K ⊗K⊗ (Z ⊕Z)),

and the essential self-adjointness of Lρ follows from Theorem 5.3.
The operator Lfr + λπ(Vρ) is essentially self-adjoint on D(Lfr) ∩ D(π(Vρ)) and

π(τ t
ρ(A)) = eit(Lfr+λπ(Vρ))π(A)e−it(Lfr+λπ(Vρ)).

Hence all the conditions of Theorem 2.3 are satisfied and Lρ is the Liouvillean of
(Mρ, τρ). 2

6.7 Level Shift Operator for Pauli-Fierz Liouvilleans

We will see in this subsection that the Level Shift Operator of the Liouvillean Lρ

has very special algebraic properties.
Let us formulate the following family of assumptions parametrized by the radi-

ation density operator ρ and a number η ≥ 0.

Assumption 6.C(η)ρ 〈s〉ηvρ ∈ B(K,K ⊗ (Z ⊕Z)).

Note that Assumption 6.C(η)0, introduced in Subsection 6.2, is the special case
of Assumption 6.C(η)ρ for ρ = 0.



33

In this subsection we suppose that Assumption 6.C(η)ρ holds with η > 1
2 and we

study the Level Shift Operator, denoted Γρ, of the triple
(
K⊗K⊗Γ0

s (Z⊕Z), Lfr, π(Vρ)−Jπ(Vρ)J
)
.

Define the following self-adjoint operators on K:

∆R
ρ :=

∑

k∈sp(K)

∑

p∈Fk

(v∗ρ)
k,k−pP(p − r)−1vk−p,k

ρ

=
∑

k∈sp(K)

∑

p∈Fk

(v∗)k,k−p(1 + ρ)P(p − h)−1vk−p,k

+
∑

k∈sp(K)

∑

p∈Fk

tr vk,k−p(v∗)k−p,kρP(p + h)−1,

∆I
ρ : = −π

∑

k∈sp(K)

∑

p∈Fk

(v∗ρ)
k,k−pδ(p − r)vk−p,k

ρ

= −π
∑

k∈sp(K)

∑

p∈F+

k
∪{0}

(v∗)k,k−p(1 + ρ)δ(p − h)vk−p,k

− π
∑

k∈sp(K)

∑

p∈F−
k

tr vk,k−p(v∗)k−p,kρδ(p + h).

Set

∆ρ := ∆R
ρ + i∆I

ρ =
∑

k∈sp(K)

∑

p∈Fk

(v∗ρ)
k,k−p(p + i0 − r)−1vk−p,k

ρ

=
∑

k∈sp(K)

∑

p∈Fk

(v∗)k,k−p(1 + ρ)(p + i0 − h)−1vk−p,k

+
∑

k∈sp(K)

∑

p∈Fk

tr vk,k−p(v∗)k−p,kρ(p + i0 + h)−1.
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For B ∈ l2(K) set also

Ξρ(B) := 2π
∑

k1,k2∈sp(K)

∑

p∈Fk1
∩Fk2

(v∗ρ)
k1,k1−p

(
B ⊗ δ(p − r)

)
(τv?

ρ)
k2−p,k2

= 2π
∑

k1,k2∈sp(K)

∑

p∈F+

k1
∩F+

k2
∪{0}

(v∗)k1,k1−p
(
B ⊗ δ(p − h)(1 + ρ)

1

2 ρ
1

2

)
vk2−p,k2

+ 2π
∑

k1,k2∈sp(K)

∑

p∈F−
k1

∩F−
k2

tr vk1,k1−pB(v∗)k2−p,k2δ(p + h)(1 + ρ)
1

2 ρ
1

2 .

The formulas for ∆R
ρ , ∆I

ρ, ∆ρ and Ξρ are written in two equivalent forms. The
first forms involve the operators vρ; the second involve v and ρ. Altough the second
forms are more directly related to the basic physical quantities of interest, they
are less compact and technically less convenient. Note in particular that in the
formulas for ∆R

ρ and ∆ρ, the terms with p = 0 need to be carefully interpreted. (The
singularity of P(−r)−1 and (i0 − r)−1 is “cut” into two parts in these expressions.
This problem is absent in the formulas involving vρ).

In the expression for Ξρ we used the operator τv?
ρ ∈ B

(
K,K ⊗ (Z ⊕ Z)

)
. Note

that
τv?

ρ =
(
ρ

1

2 v, (1 + ρ)
1

2 v?
)

=
(
ρ

1

2 (1 + ρ)−
1

2 , ρ−
1

2 (1 + ρ)
1

2

)
vρ, (6.45)

τv?
ρ(p) =





ρ
1

2 v(p), p ≥ 0,

(1 + ρ)
1

2 v?(−p), p ≤ 0;

Theorem 6.11 Let B ∈ l2(K). Then

Γρ(B) = ∆ρB − B∆∗
ρ + iΞρ(B),

ΓR
ρ (B) = ∆R

ρ B − B∆R
ρ ,

ΓI
ρ(B) = ∆I

ρB + B∆I
ρ + Ξρ(B).

Proof. Using (5.32) we see that

Γρ =
∑

e1,e2∈F

(
1K⊗̌v∗ρ − 1K⊗v∗ρτ

)e1,e2(e1 − e2 + i0 − r)−1
(
1K⊗̌vρ − 1K⊗τvρ

)e2,e1 ,

(6.46)

where the superscripts e1, e2 correspond to the decomposition of K ⊗ K into the
eigenspaces of K ⊗ 1 − 1 ⊗ K. (Note that sp(K ⊗ 1 − 1 ⊗ K) = F).
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Let us switch to superscripts in sp(K) and to the decomposition of K into spectral
subspaces of K. For a fixed p ∈ R we obtain

∑
e∈F

(
1K⊗̌v∗ρ

)e,e−p
=

∑
k∈sp(K)

1K⊗̌(v∗ρ)k,k−p,

∑
e∈F

(
1K⊗v∗ρτ

)e,e−p
=

∑
k∈sp(K)

1K⊗v∗ρτ
k−p,k

,

∑
e∈F

(
1K⊗̌vρ

)e−p,e
=

∑
k∈sp(K)

1K⊗̌vk−p,k
ρ ,

∑
e∈F

(
1K⊗τvρ

)e−p,e
=

∑
k∈sp(K)

1K⊗τvρ
k,k−p.

The terms on the right can be nonzero only if p ∈ Fk. Therefore, (6.46) becomes

Γρ =
∑

k∈sp(K)

∑
p∈Fk

(
1K⊗̌(v∗ρ)

k,k−p(p + i0 − r)−11K⊗̌vk−p,k
ρ

+1K⊗v∗ρτ
k−p,k

(p + i0 − r)−11K⊗τvρ
k,k−p

)

− ∑
k1,k2∈sp(K)

∑
p∈Fk1

∩Fk2

(
1K⊗̌(v∗ρ)

k2,k2−p(p + i0 − r)−11K⊗τvρ
k1,k1−p

+1K⊗v∗ρτ
k1−p,k1(p + i0 − r)−11K⊗̌vk2−p,k2

ρ

)
.

Now let B ∈ l2(K). We see that Γρ(B) consists of four types of terms:
Type I Using (4.28), we obtain

(
1K⊗̌(v∗ρ)

k,k−p
)
(p + i0 − r)−1

(
1K⊗̌vk−p,k

ρ

)
B

= (v∗ρ)
k,k−p(p + i0 − r)−1vk−p,k

ρ B.

Summing up the above terms over k ∈ sp(K) and p ∈ Fk we obtain ∆ρB.
Type II. We switch the sign in p and rename k − p to k. Using first (4.29) and then
τrτ = −r, we get

(
1K⊗(v∗ρτ)k,k−p

)
(−p + i0 − r

)−1(
1K⊗(τvρ)

k−p,k
)
B

= B(v∗ρτ)k,k−p(−p + i0 − r)−1τvk−p,k
ρ

= −B(v∗ρ)
k,k−p(p − i0 − r)−1vk−p,k

ρ .

Summing up the above terms over k ∈ sp(K) and p ∈ Fk we obtain −B∆∗
ρ.

Type III. We use (4.27) to obtain

(1K⊗̌(v∗ρ)
k2,k2−p)(p + i0 − r)−1(1K ⊗ (τvρ)

k1,k1−p)B

= (v∗ρ)
k2,k2−pB⊗(p + i0 − r)−1(τv?

ρ)
k1−p,k1.
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Type IV. We switch the sign in p as well as rename k1 − p and k2 − p to k1 and k2.
We use (4.26) and then τrτ = −r:

(1K⊗(v∗ρτ)k1,k1−p)(−p + i0 − r)−1(1K⊗̌vk2,k2−p
ρ )B

= (v?∗
ρ )k2,k2−pB⊗(−p + i0 − r)−1τvk1−p,k1

ρ

= (v?∗
ρ τ)k2,k2−pB⊗(−p + i0 + r)−1vk1−p,k1

ρ

= (v∗ρ)
k2,k2−pB⊗(−p + i0 + r)−1(τv?

ρ)
k1−p,k1.

In the last step we used (6.45) and the fact that ρ commutes with h.
The sum of type III and IV terms over k1, k2 ∈ sp(K) and p ∈ Fk1

∩ Fk2
equals

iΞρ(B). 2

Set
ṽρ

p :=
∑

k∈sp(K)

vk−p,k
ρ , τ̃ v?

ρ
p

:=
∑

k∈sp(K)

(τv?
ρ)

k−p,k,

ṽp :=
∑

k∈sp(K)

vk−p,k, ṽ?p
:=

∑
k∈sp(K)

(v?)k−p,k.

Here is another useful expression for ΓI
ρ:

Theorem 6.12 Let B1, B2 ∈ l2(K). Then

−TrB∗
1ΓI

ρ(B2) = π
∑

p∈F

Tr
(
ṽρ

pB1 − B1⊗1 τ̃ v?
ρ
p
)∗

δ(p − r)
(
ṽρ

pB2 − B2⊗1 τ̃ v?
ρ
p
)

= π
∑

p∈F+∪{0}

Tr
(
(1 + ρ)

1

2 ṽpB1 − B1⊗1 ρ
1

2 ṽp
)∗

δ(p − h)
(
(1 + ρ)

1

2 ṽpB2 − B2⊗1 ρ
1

2 ṽp
)

+ π
∑

p∈F+

Tr
(
(1 + ρ)

1

2 ṽpB∗
2 − B∗

2⊗1 ρ
1

2 ṽp
)∗

δ(p − h)
(
(1 + ρ)

1

2 ṽpB∗
1 − B∗

1⊗1 ρ
1

2 ṽp
)
.

Proof. Recall that

−∆I
ρ = π

∑

k,p

(v∗ρ)
k,k−pδ(p − r)vk−p,k

ρ .

Hence

−TrB∗
1∆I

ρB2 = π
∑

k,p

Tr
(
vk−p,k
ρ B1

)∗
δ(p − r)vk−p,k

ρ B2

= π
∑

k1,k2,p

Tr
(
vk1−p,k1
ρ B1

)∗
δ(p − r)(vk2−p,k2

ρ B2).
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There is an alternative formula for −∆I
ρ, which follows from τrτ = −r:

−∆I
ρ = π

∑

k,p

tr(v?
ρ)

k,k−p(v?∗
ρ )k−p,kδ(p − r)

= π
∑

k,p

tr(τv?
ρ)

k,k−p(v?∗
ρ τ)k−p,kδ(p + r)

= π
∑

k,p

tr(τv?
ρ)

k−p,k(v?∗
ρ τ)k,k−pδ(p − r).

Hence

−TrB∗
1B2∆

I
ρ = π

∑

k,p

Tr
(
B1(τv?

ρ

)k−p,k
)∗δ(p − r)B2(τv?

ρ)k−p,k

= π
∑

k1,k2,p

Tr
(
B1(τv?

ρ)
k1−p,k1

)∗
δ(p − r)B2(τv?

ρ)
k2−p,k2.

Recall that

1
2Ξρ(B2) = π

∑
k1,k2,p

(v∗ρ)
k1,k1−p B2⊗δ(p − r) (τv?

ρ)
k2−p,k2 . (6.47)

Terms coming from Ξρ we split as

TrB∗
1Ξρ(B2) =

1

2
TrB∗

1Ξρ(B2) +
1

2
TrB∗

1Ξρ(B2). (6.48)

The first term on the right of (6.48) we treat as follows:

1
2TrB∗

1Ξρ(B2) = π
∑

k1,k2,p

Tr
(
vk1−p,k1
ρ B1

)∗
δ(p − r)B2(τv?

ρ)
k2−p,k2 .

Then we transform the formula (6.47), using (6.45), (4.28) and then τrτ = −r:

1

2
Ξρ(B2) = π

∑

k1,k2,p

(v?∗
ρ τ)k1,k1−p B2⊗δ(p − r) vk2−p,k2

ρ

= π
∑

k1,k2,p

tr(τvρ)
k1,k1−p B2 (v?∗

ρ )k2−p,k2δ(p − r)

= π
∑

k1,k2,p

trvk1,k1−p
ρ B2 (v?∗

ρ τ)k2−p,k2δ(p + r)

= π
∑

k1,k2,p

trvk1−p,k1
ρ B2 (v?∗

ρ τ)k2−p,k2δ(p − r).
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Hence the second term in (6.48) also has the form

1
2TrB∗

1Ξρ(B2) = π
∑

k1,k2,p

Tr
(
B1(τv?

ρ)
k2−p,k2

)∗
δ(p − r)B2v

k1−p,k1
ρ .

This ends the proof of the first identity of our theorem.
Let us prove the second identity. We have

π
∑
p∈F

Tr
(
ṽρ

pB1 − B1⊗1 τ̃ v?
ρ
p
)∗

δ(p − r)
(
ṽρ

pB2 − B2⊗1 τ̃ v?
ρ
p
)

= π
∑

p∈F+∪{0}

Tr
(
(1 + ρ)

1

2 ṽpB1 − B1⊗1 ρ
1

2 ṽp
)∗

δ(p − h)
(
(1 + ρ)

1

2 ṽpB2 − B2⊗1 ρ
1

2 ṽp
)

+π
∑

−p∈F+

Tr
(
ρ

1

2 ṽ?p
B1 − B1⊗1 (1 + ρ)

1

2 ṽ?p
)∗

δ(p + h)
(
ρ

1

2 ṽ?p
B2 − B2⊗1 (1 + ρ)

1

2 ṽ?p
)
.

The second term on the right side can be transformed into

π
∑

p∈F+

Tr
(
ρ

1

2 (ṽp)?B1 − B1⊗1 (1 + ρ)
1

2 (ṽp)?
)∗

δ(p − h)
(
ρ

1

2 (ṽp)?B2 − B2⊗1 (1 + ρ)
1

2 (ṽp)?
)

= π
∑

p∈F+

Tr
(
B∗

1⊗1 ρ
1

2 ṽp − (1 + ρ)
1

2 ṽpB∗
1

)?∗
δ(p − h)

(
B∗

2⊗1 ρ
1

2 ṽp − (1 + ρ)
1

2 ṽpB∗
2

)?

= π
∑

p∈F+

Tr
(
B∗

1⊗1 ρ
1

2 ṽp − (1 + ρ)
1

2 ṽpB∗
1

)(
B∗

2⊗1ρ
1

2 ṽp − (1 + ρ)
1

2 ṽpB∗
2

)∗
δ(p − h)

= π
∑

p∈F+

Tr
(
(1 + ρ)

1

2 ṽpB∗
2 − B∗

2⊗1 ρ
1

2 ṽp
)∗

δ(p − h)
(
(1 + ρ)

1

2 ṽpB∗
1 − B∗

1⊗1 ρ
1

2 ṽp
)
.

In the first step we used ṽ?−p
= (ṽp)?, then Proposition 4.6, Proposition 4.8 and in

the last step we used the cyclicity of trace. 2

Since

ṽρ
p(p) =





(1 + ρ)
1

2 ṽp(p), p ≥ 0

ρ
1

2 ṽ?p
(−p), p ≤ 0;

τ̃ v?
ρ
p
(p) =





ρ
1

2 ṽp(p), p ≥ 0

(1 + ρ)
1

2 ṽ?p
(−p), p ≤ 0,
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the identity proven in Theorem 6.12 can be also written as

−TrB∗
1ΓI

ρ(B2) = π
∑

p∈F

Tr
(
ṽρ

p(p)B1 − B1⊗1 τ̃ v?
ρ
p
(p)

)∗(
ṽρ

p(p)B2 − B2⊗1 τ̃ v?
ρ
p
(p)

)

= π
∑

p∈F+∪{0}

Tr
(
(1 + ρ)

1

2 ṽp(p)B1 − B1⊗1 ρ
1

2 ṽp(p)
)∗

×
(
(1 + ρ)

1

2 ṽp(p)B2 − B2⊗1 ρ
1

2 ṽp(p)
)

+ π
∑

p∈F+

Tr
(
(1 + ρ)

1

2 ṽp(p)B∗
2 − B∗

2⊗1 ρ
1

2 ṽp(p)
)∗

×
(
(1 + ρ)

1

2 ṽp(p)B∗
1 − B∗

1⊗1 ρ
1

2 ṽp(p)
)
.

(6.49)

We are now ready to state the main result of this subsection.

Theorem 6.13 B ∈ KerΓI
ρ iff the following two commutation relations hold:

(1 + ρ)
1

2 ṽp(p)B = B⊗1 ρ
1

2 ṽp(p), p ∈ F+ ∪ {0},

(1 + ρ)
1

2 ṽp(p)B∗ = B∗⊗1 ρ
1

2 ṽp(p), p ∈ F+.
(6.50)

Proof. Note that B ∈ KerΓI
ρ iff TrB∗ΓI

ρ(B) = 0. Hence B ∈ KerΓI
ρ iff all the terms

of (6.49) with B1 = B2 = B are zero, and this is precisely the condition (6.50). 2

6.8 Pauli-Fierz systems with several reservoirs

Let us describe our formalism in the case of a small system coupled to several
independent reservoirs.

Let Zi be Hilbert spaces and hi, ρi, positive commuting self-adjoint operators on
Zi, i = 1, . . . , n. Zi and hi are the single particle space and energy operator of the
i-th reservoir and ρi is the corresponding radiation density. Let vi ∈ B(K,K ⊗ Zi)
be the form factor describing interaction of the small system with the i-th reservoir.
Set

Z :=

n⊕

i=1

Zi, h :=

n⊕

i=1

hi, ρ :=

n⊕

i=1

ρi.

If we impose Assumption 6.F ρ (which is equivalent to imposing Assumptions
6.Fρi

for all i), then the corresponding composite Pauli-Fierz system is well-defined.
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If we impose Assumptions 6.C(η)ρi
with η > 1

2 on vi for all i, then the Level
Shift Operator of the composite system, Γρ, is well-defined and equal to

Γρ =
n∑

i=1

Γi,ρi
, (6.51)

where Γi,ρi
is the Level Shift Operator of the i-th subsystem.

7 Thermal Pauli-Fierz systems

Given a Pauli-Fierz Hamiltonian we can define a family of Pauli-Fierz systems
parametrized by β ∈]0,∞] whose radiation density is given by the Planck law at
the inverse temperature β. Such systems will be called thermal Pauli-Fierz systems.
They are particularly important from the physical point of view and enjoy special
mathematical properties.

7.1 Thermal Pauli-Fierz Liouvilleans

The setup of this section is very similar to the setup of the previous section. In
particular, the operators K, h, v and H, as well as the spaces K and Z are such as
those introduced in Subsection 6.1.

Let 0 < β ≤ ∞. In this section we consider the family of densities

ρβ := (eβh − 1)−1, ρ∞ = 0.

Note that
1 + ρβ = (1 − e−βh)−1 = eβhρβ, 1 + ρ∞ = 1. (7.52)

We change slightly the notation by replacing the subscripts ρβ with β. For
instance we will write vβ, Lβ, Lsemi

β , M
AW
β,l , Mβ and τ t

β instead of vρβ
, Lρβ

, Lsemi
ρβ

,

M
AW
ρβ ,l, Mρβ

and τ t
ρβ

. We warn the reader that the density ρ = 0 corresponds now
to the inverse temperature β = ∞.

Note that
vβ = |1 − e−βr|− 1

2 (v, v?),

τvβ = |1 − eβr|− 1

2 (v?, v),

τv?
β = |1 − eβr|− 1

2 (v, v?) = e−βr/2vβ.

Assumption 7.A (h−1/2 + h)v ∈ B(K,K ⊗Z)

Proposition 7.1 Suppose Assumption 7.A holds. Then for any 0 < β ≤ ∞ As-
sumption 6.Fρ for ρ = ρβ holds.
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Proof. Clearly, for 0 < β ≤ ∞, (h−1/2 + h)−1(1 + h)(1 − e−βh)−1/2 is bounded.
Therefore Assumption 7.A implies the boundedness of (1 + h)(1 − e−βh)−1/2v. 2

The following theorem follows immediately from Proposition 7.1 and Theorem
6.10.

Theorem 7.2 Suppose that Assumption 7.A holds. Then, for any 0 < β ≤ ∞, Lβ

is essentially self-adjoint on D(Lfr) ∩ D(π(Vβ)) ∩ D(Jπ(Vβ)J), the thermal Pauli-
Fierz system (Mβ , τβ) is well defined and Lβ is its Liouvillean.

7.2 KMS states for thermal Pauli-Fierz systems

In this subsection we describe results concerning the existence of KMS states for
Pauli-Fierz systems at positive temperatures. Since Pauli-Fierz W ∗-algebras are
factors, a thermal Pauli-Fierz system may have at most one KMS-state.

For 0 < β < ∞, set
γβ := e−βK/2/

√
Tr e−βK . (7.53)

(γβ is the β-KMS vector of the small system). The free Pauli-Fierz system (Mβ , τfr)
has a unique β-KMS state and γβ⊗Ω is the corresponding β-KMS vector. Obviously,
γβ ⊗ Ω ∈ KerLfr.

The existence of KMS state for interacting Pauli-Fierz systems, which is a some-
what delicate problem because perturbation Vβ is not a bounded operator and
Araki’s theory [Ar, BR2] cannot be applied directly, follows from the result of [DJP],
reviewed in Section 2.

Theorem 7.3 Suppose that Assumption 7.A holds and that 0 < β < ∞. Then
the thermal Pauli-Fierz system (Mβ , τβ) has a unique β-KMS state. Moreover,
γβ ⊗ Ω ∈ D(e−β(L+λπ(Vβ))/2) and the vector

e−β(L+λπ(Vβ))/2γβ ⊗ Ω (7.54)

is the β-KMS vector for (Mβ , τβ). This vector belongs to KerLβ.

Proof. By Theorem 2.4 (see also [DJP]), we need only to check that for all λ ∈ R,

‖e−λβπ(Vβ)/2γβ ⊗ Ω‖ < ∞.

To verify this, it suffices to show that there exists a constant c such that for all n,

‖π(Vβ)n γβ⊗Ω‖ ≤ cn
√

(n + 1)!. (7.55)

Since
π(Vβ) = 1K⊗̌vβ(a∗) + 1K⊗̌v∗β(a)

we can decompose π(Vβ)n into the sum of 2n-terms, each of which is a product of
creation and annihilation operators. Applying the estimates (5.31) to each term we
derive that (7.55) holds with c = 2‖vβ‖. 2
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7.3 Level Shift Operator for thermal Pauli-Fierz Liou-
villeans

In this subsection we consider the Level Shift Operator in the context of thermal
Liouvilleans.

Let us formulate the following family of assumptions parametrized by η ≥ 0.

Assumption 7.B(η) 〈s〉η|r|−1/2〈r〉1/2(v, v?) ∈ B(K,K ⊗ (Z ⊕Z)).

Proposition 7.4 Suppose that Assumption 7.B(η) holds. Then 〈s〉ηvβ ∈ B(K,K⊗
(Z ⊕Z)) for all β ∈]0,∞[.

Proof. It is easy to see that the function

R 3 p 7→ |1 − e−βp|− 1

2 〈p〉−1/2|p|1/2 ∈ R (7.56)

is bounded with all bounded derivatives. Hence the operator

〈s〉η|1 − e−βr|− 1

2 〈r〉−1/2|r|1/2〈s〉−η

is bounded for all η ≥ 0. Therefore, the boundedness of 〈s〉η|r|−1/2〈r〉1/2(v, v?)

implies the boundedness of 〈s〉η |1 − e−βr|− 1

2 (v, v?). 2

The following proposition gives a condition which is easy to verify in practice
and which implies Assumption 7.B(η):

Proposition 7.5 Let n be a non-negative integer and assume that

∫ ∞
0 ‖∂n

p p−1/2〈p〉1/2v(p)‖2dp < ∞;

∂j
pp−1/2v(p)

∣∣∣
p=0

= (−1)j∂j
pp−1/2v?(p)

∣∣∣
p=0

, j = 0, . . . , n − 1.

Then Assumption 7.B(n) holds.

Proof. See Proposition 7.15, which has a similar proof. 2

Throughout this subsection we assume that Assumption 7.B(η) holds with η > 1
2 .

We will describe the Level Shift Operator in the case ρ = ρβ, which, consistently
with our notation, will be denoted Γβ. A special attention needs to be devoted to
the infrared term in Γβ.

Proposition 7.6 There exists

vir := lim
p↓0

v(p)

p
1

2

= lim
p↓0

v?(p)

p
1

2

. (7.57)

Set ṽir
0 :=

∑
p vpp

ir . We have

vir = (vir)
?, (ṽir

0)? = ṽir
0. (7.58)
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Moreover, ΓI
β acts as follows:

−TrB∗
1ΓI

β(B2) = π
∑

p∈F+

|eβp − 1|−1Tr
(
eβp/2ṽp(p)B1 − B1 ⊗ 1 ṽp(p)

)∗

×
(
eβp/2ṽp(p)B2 − B2 ⊗ 1 ṽp(p)

)

+π
∑

p∈F+

|e−βp − 1|−1Tr
(
ṽp(p)B∗

2 − e−βp/2B∗
2 ⊗ 1 ṽp(p)

)∗

×
(
ṽp(p)B∗

1 − e−βp/2B∗
1 ⊗ 1 ṽp(p)

)

+π
βTr

(
ṽir

0B1 − B1 ⊗ 1 ṽir
0
)∗

×
(
ṽir

0B2 − B2 ⊗ 1 ṽir
0
)
.

(7.59)

Proof. For p > 0,

vβ(p) = |1 − e−βp|− 1

2 v(p),

vβ(−p) = |1 − eβp|− 1

2 v?(p).

Since the function R 3 p 7→ vβ(p) is continuous,

vβ(0) = lim
p↓0

vβ(p) = β− 1

2 lim
p↓0

p−
1

2 v(p),

vβ(0) = lim
p↓0

vβ(−p) = β− 1

2 lim
p↓0

p−
1

2 v?(p).

This implies the existence of the limits in (7.57) and the identities (7.58).
The identity (7.59) follows from (6.49) if we take into account the identities

(7.52) and (7.58). 2

Let
N :=

{
B ∈ B(K) : B⊗1 ṽp(p) = ṽp(p)B, p ∈ F+,

B∗⊗1 ṽp(p) = ṽp(p)B∗, p ∈ F+,

B⊗1 ṽir
0 = ṽir

0B
}
.

Proposition 7.7 N is a ∗-subalgebra of B(K) containing C1K. Moreover, for any
t ∈ C and B ∈ N we have eitKBe−itK ∈ N.

Proof. It is easy to check that N is an algebra and obviously 1K ∈ N. To see that
N is preserved by ∗, note that the first two conditions are manifestly symmetric wrt
∗. The relation (ṽir

0)? = ṽir
0 and Proposition 4.6 imply that

B⊗1 ṽir
0 = ṽir

0B ⇒ B∗⊗1 ṽir
0 = ṽir

0B∗,

and so N is a ∗-algebra.
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Note that
eitK⊗1 ṽp(p)e−itK = e−itpṽp(p), p ∈ F+,

eitK⊗1 ṽir
0e−itK = ṽir

0.

This implies that N is invariant wrt eitK · e−itK . 2

Proposition 7.8 KerΓI
β consists of operators of the form e−βK/2C with C ∈ N.

Proof. Relation (7.59) can be rewritten as

−TrB∗
1ΓI

β(B2) = π
∑

p∈F+

|eβp − 1|−1Tr
(
ṽp(p)eβK/2B1 − eβK/2B1 ⊗ 1 ṽp(p)

)∗

×e−βK ⊗ 1
(
ṽp(p)eβK/2B2 − eβK/2B2 ⊗ 1 ṽp(p)

)

+π
∑

p∈F+

|e−βp − 1|−1Tr
(
ṽp(p)B∗

2eβK/2 − B∗
2eβK/2 ⊗ 1 ṽp(p)

)∗

×
(
ṽp(p)B∗

1eβK/2 − B∗
1eβK/2 ⊗ 1 ṽp(p)

)
e−βK

+π
βTr

(
ṽir

0eβK/2B1 − eβK/2B1 ⊗ 1 ṽir
0
)∗

×e−βK ⊗ 1
(
ṽir

0eβK/2B2 − eβK/2B2 ⊗ 1 ṽir
0
)
.

Hence, B ∈ KerΓI
β iff

ṽp(p)eβK/2B − eβK/2B⊗1 ṽp(p) = 0, p ∈ F+,

ṽp(p)B∗eβK/2 − B∗eβK/2⊗1 ṽp(p) = 0, p ∈ F+,

ṽ0
ire

βK/2B − eβK/2B⊗1 ṽ0
ir = 0.

Therefore, B ∈ KerΓI
β iff B = e−βK/2C for some C ∈ N. 2

Our main effective coupling assumption is:

Assumption 7.C N = C1K.

Now Proposition 7.8 implies immediately

Theorem 7.9 Assumption 7.C is satisfied iff KerΓI
β is spanned by γβ.

7.4 Return to equilibrium for a fixed positive temper-
ature

In this subsection we describe conditions which ensure that for any fixed positive
temperature the thermal Pauli-Fierz system has the property of return to equilib-
rium. The result will not be uniform in the temperature.
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Theorem 7.10 Let η > 2 and suppose that Assumptions 7.A, 7.B(η) and 7.C
hold. Then for all β ∈]0,∞[ there exists λ0(β) > 0 such that for 0 < |λ| < λ0(β),

spp(Lβ) = {0}, dim10(Lβ) = 1, spsc(Lβ) = ∅.

In particular, under the above conditions the Pauli-Fierz system (Mβ , τβ) has the
property of return to equilibrium.

Proof. It follows from Theorem 7.9 that dimKerΓI
β = 1 for β ∈]0,∞[. Hence, by

Theorem 5.5, there exists λ0(β) such that for 0 < |λ| < λ0(β) we have

dim1p(Lβ) ≤ dim10(Γ
I
β) = 1, spsc(Lβ) = ∅.

By Theorem 7.3, dim 10(Lβ) ≥ 1, and the result follows. 2

7.5 Zero temperature Pauli-Fierz Liouvilleans

Recall that zero temperature corresponds to β = ∞. All the properties of the
zero temperature Liouvillean, denoted L∞, follow easily from the properties of the
Pauli-Fierz Hamiltonian. They are described in this subsection.

Note that after the identification K⊗K⊗ Γs(Z ⊕Z) ' K⊗ Γs(Z) ⊗K ⊗ Γs(Z)
the zero temperature Liouvillean becomes

L∞ = H ⊗ 1 − 1 ⊗ H.

Hence, the Level Shift Operator for L∞, denoted Γ∞, can be expressed in terms of
the Level Shift Operator for H, denoted Γ, as follows. If Γ∞ is expresed in terms
∆∞ and Ξ∞ as in Theorem 6.11, then

∆∞ = Γ, Ξ∞ = 0, (7.60)

and so
Γ∞(B) = ΓB − BΓ∗.

The following theorem then follows immediately from Theorem 6.4:

Theorem 7.11 Under assumptions of Theorem 6.4, there exists λ0 > 0 such that
for 0 < |λ| < λ0 we have

spp(L∞) ⊂ {0}, dim10(L∞) ≤ 1, spsc(L∞) = ∅.
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7.6 Uniform in temperature estimate on the Level Shift
Operator

In this subsection we describe conditions under which Γβ is uniformly dissipative
on the orthogonal complement to γβ. The effective coupling assumptions 6.D, 6.E,
and 7.C will play a key role.

Recall that γβ is defined by (7.53) for 0 ≤ β < ∞. For β = ∞ we set

γ∞ := 1k0
(K)/

√
Tr1k0

(K),

where k0 := inf sp(K). Note that [0,∞] 3 β 7→ γβ ∈ l2(K) is a continuous function.

Theorem 7.12 Let η > 1
2 and suppose that Assumption 7.B(η) holds. Then

(1) The function ]0,∞] 3 β 7→ ΓI
β ∈ B(l2(K)) is continuous.

(2) Assume in addition that 6.D, 6.E and 7.C hold. Let β0 > 0. Then there exists
ε > 0 such that for β ∈ [β0,∞]

TrB∗ΓI
β(B) ≤ −ε(TrB∗B − |TrBγβ|2). (7.61)

Proof. The continuity of ΓI
β in β ∈]0,∞] follows from Relation (7.59).

To prove (2), let us consider first the case β = ∞. Assumption 6.D and (7.60)
imply that there exists ε(∞) > 0 such that

∆I
∞ ≤ −ε(∞)(1 − 1k0

(K)). (7.62)

Since ΓI
∞(B) = ∆I

∞B + B∆I
∞, using (7.62) and Assumption 6.E we obtain

TrB∗ΓI
∞(B) ≤ −ε(∞)

(
TrB∗(1 − 1k0

(K))B + TrB∗B(1 − 1k0
(K))

)

≤ −ε(∞)
(
TrB∗B − TrB∗1k0

(K)B1k0
(K)

)

= −ε(∞)(TrB∗B − |TrBγ∞|2).

Consider now β < ∞. It follows from Assumption 7.C and Theorem 7.9 that for
any β ∈]0,∞[, there exists ε(β) > 0 such that

TrB∗ΓI
β(B) ≤ −ε(β)(TrB∗B − |TrBγβ|2).

The compactness of [β0,∞], the continuity of [β0,∞] 3 β 7→ ΓI
β and of [β0,∞] 3

β 7→ γβ imply that one can chose ε > 0 such that (7.61) holds. 2
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7.7 Uniform in temperature return to equilibrium

In this subsection we describe the main result of this paper. We describe conditions
under which for 0 < |λ| < λ0 and β ∈ [β0,∞[ the Liouvillean Lβ has purely
absolutely continuous spectrum except for a simple eigenvalue at zero. This implies
that for a small nonzero coupling constant the system (M, τβ) has the property of
return to equilibrium uniformly in the temperature.

One of the ingredients of our proof is the uniform estimate on the Level Shift
Operator Γβ obtained in the previous subsection. The second ingredient is an
additional assumption on the regularity of the interaction, which we will formulate
below.

For any η ≥ 0 we introduce

Assumption 7.D(η) sup1≤β≤∞ ‖〈s〉ηvβ‖ < ∞.

Proposition 7.13 Suppose that Assumption 7.D(η) holds. Then

(1) Assumption 7.B(η) holds.

(2) For any β0 > 0, supβ0≤β≤∞ ‖〈s〉ηvβ‖ < ∞.

Proof. By Assumption 7.D(η), ‖〈s〉η|1− e−r|−1/2(v, v?)‖ < ∞. Clearly, τ
(
〈s〉η|1−

e−r|−1/2(v, v?)
)?

= 〈s〉η |1 − er|−1/2(v, v?). Thus, using the boundedness of ?, we
obtain

‖〈s〉η
(
|1 − e−r|−1/2 + |1 − er|−1/2

)
(v, v?)‖ < ∞. (7.63)

Using the arguments of the proof of Proposition 7.4 we see that

〈s〉η〈r〉1/2|r|−1/2
(
|1 − e−r|−1/2 + |1 − er|−1/2

)−1〈s〉−η (7.64)

is bounded. Now (7.63) and (7.64) imply Assumption 7.B(η), which proves (1).
For 0 < β0 ≤ 1, we have

sup
β0≤β≤1

‖〈s〉η |1 − e−βr|−1/2
(
|1 − e−r|−1/2 + |1 − er|−1/2

)−1〈s〉−η‖ < ∞.

Hence (7.63) implies supβ0≤β≤1 ‖〈s〉ηvβ‖ < ∞. This proves (2). 2

Theorem 7.14 Suppose Assumptions 7.A, 7.D(η) with η > 2, 6.D 6.E and 7.C
are satisfied. Let 0 < β0 < ∞. Then there exists λ0 > 0 such that for 0 < |λ| < λ0

and β ∈ [β0,∞[ we have

spp(Lβ) = {0}, dim10(Lβ) = 1, spsc(Lβ) = ∅.

Hence, under the same conditions, the Pauli-Fierz system (Mβ , τβ) has the property
of return to equilibrium. Moreover, for 0 < |λ| < λ0,

spp(L∞) ⊂ {0}, dim10(L∞) ≤ 1, spsc(L∞) = ∅.
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Proof. By Theorem 7.2 the operator Lβ is essentially self-adjoint on D(Lfr) ∩
D(π(Vβ)− Jπ(Vβ)J) for all β ∈]0,∞[ and λ ∈ R. By Theorem 6.3 the operator L∞

is self-adjoint on D(Lfr) = D(Lfr) ∩D(π(V∞) − Jπ(V∞)J) for all λ.
By Theorem 7.12 there exists ε > 0 such that for all β ∈ [β0,∞],

ΓI
β ≤ −ε(1 − 10(Γ

I
β)).

By Assumption 7.D(η) and Proposition 7.13 (2), for all β ∈ [β0,∞] and η > 2,

‖〈s〉η
(
1K⊗̌vβ − 1K ⊗ τvβ

)
‖ ≤ 2c.

Hence, all conditions of Theorem 5.5 are satisfied, and there exists λ0 > 0 such
that for 0 < |λ| < λ0 and all β ∈ [β0,∞] we have

dim1p(Lβ) ≤ dimΓI
β = 1, spsc(Lβ) = ∅.

By Theorem 7.3 dim10(Lβ) ≥ 1 for β ∈]0,∞[, and the statement follows. 2

7.8 Simplified condition for return to equilibrium

In this subsection we describe conditions which are easy to verify in practice and
which imply Assumption 7.D(η).

Proposition 7.15 Suppose that n is a nonnegative integer and

‖〈r〉1/2sn|r|−1/2(v, v?)‖ < ∞; (7.65)

‖|r|1/2−n+jsj|r|−1/2(v, v?)‖ < ∞, j = 0, . . . , n − 1. (7.66)

Then Assumption 7.D(n) holds.

Proof. Set g(p) := |1 − e−p|−1/2|p|1/2. Note that g is smooth and

|∂j
pg(p)| ≤ cj〈p〉1/2−j . (7.67)

Now

sn|1 − e−βr|−1/2(v, v?) = β−1/2sng(βr)|r|−1/2(v, v?)

=
∑n

j=0(−i)n−jβ−1/2+n−jg(n−j)(βr)sj |r|−1/2(v, v?).

To estimate the term with j = n we use that for β ≥ 1 we have

β−1/2g(βr) ≤ β−1/2〈βr〉1/2 ≤ 〈r〉1/2

To estimate the terms with j = 0, . . . , n − 1 we use

β−1/2+n−jg(n−j)(βr) ≤ hn−j(βr)|r|1/2−n+j ,

where, by (7.67), hn−j(p) = g(n−j)(p)|p|−1/2+n−j is a bounded function. 2

Here are yet another set of conditions implying Assumption 7.D(n).
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Proposition 7.16 Suppose that
∫ ∞

0
〈p〉‖∂n

p p−1/2v(p)‖2dp < ∞; (7.68)

∫ ∞

0
p1−2n+2j‖∂j

pp
−1/2v(p)‖2dp < ∞, j = 0, . . . , n − 1; (7.69)

∂j
pp

−1/2v(p)
∣∣∣
p=0

= (−1)j∂j
pp

−1/2v?(p)
∣∣∣
p=0

, j = 0, · · · , n − 1. (7.70)

Then (7.65) and (7.66) hold, and hence Assumption 7.D(n) holds.

Proof. Since K is finite dimensional, the ? conjugation is a bounded linear map,
and (7.68) and (7.69) hold with v? instead of v.

We will prove (7.65). A similar argument yields (7.66). Using (7.68) and (7.70)
we see that

(
〈r〉1/2sn|r|−1/2(v, v?)

)
(p) = (−i)n〈p〉1/2

{
∂n

p p−1/2v(p), p ≥ 0,

∂n
p |p|−1/2v?(|p|), p ≤ 0,

and

‖〈r〉1/2sn|r|−1/2(v, v?)‖2 ≤
∫ ∞
−∞〈p〉‖∂n

p |p|−1/2(v, v?)(p)‖2dp

=
∞∫
0

〈p〉
(
‖∂n

p p−1/2v(p)‖2 + ‖∂n
p p−1/2v?(p)‖2

)
dp.

2

7.9 Pauli-Fierz systems with several thermal reservoirs

In this subsection we prove that a generic Pauli-Fierz system with a small nonzero
coupling constant has no normal invariant states. For shortness, we restrict ourselves
to a result non-uniform in the temperature.

We consider the same framework as in Subsection 6.8. Moreover, we assume
that the energy density of the i-th reservoir is given by

ρβi
= (eβihi − 1)−1,

where βi ∈]0,∞[. We set ~β = (β1, . . . , βN ) and, after replacing β with ~β, we adopt
the same notational convention as in Subsection 7.1.

Theorem 7.17 Let η > 1. Assume that Assumptions 7.A and 7.B(η) hold for
i = 1, . . . , N . Suppose also that βj 6= βk for some j, k ∈ {1, . . . , N}, and that

Assumption 7.C holds for the jth and kth reservoir. Then there exists λ0(~β) > 0
such that for 0 < |λ| < λ0(~β),

spp(L~β
) = ∅, spsc(L~β

) = ∅.

Consequently, under the above conditions the system (M~β
, τ~β

) has no normal in-
variant states.
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Proof. The proof is very similar to the proof of Theorem 7.10. By Theorem 5.5
and the remark after it, it suffices to show that dimKerΓI

~β
= {0}. The relation

(6.51) yields

KerΓI
~β

=

N⋂

i=1

KerΓI
i,βi

,

where Γi,βi
is the Level Shift Operator of the i-th subsystem. By Assumption 7.C,

KerΓI
i,βi

is spanned by γβi
for i = j, k. Since βj 6= βk, KerΓI

j,βj
∩ KerΓI

k,βk
= {0}.2

8 Examples of gluing

As we have already emphasized, the key ingredient of our method is the Jakšić-
Pillet gluing condition. In this section we show that this condition is satisfied in a
certain class of physically motivated models involving massless bosons. The gluing is
accomplished by passing to the radial coordinates in the momentum representation.

8.1 Massless scalar bosons

In this subsection we consider the same model as in Section 3. Recall that Z =
L2(Rd), where ξ ∈ R

d describes the momentum, and that h is the operator of
multiplication by |ξ|. The gluing map is defined as

L2(Rd) ⊕ L2(Rd) 3 (f+, f−) 7→ f ∈ L2(R) ⊗ L2(Sd−1), (8.71)

f(p, ω) :=

{
p

d−1

2 f+(pω), p > 0,

(−p)
d−1

2 f−(−pω), p ≤ 0.
(8.72)

Here, (p, ω) ∈ R×Sd−1. Moreover, the conjugation in L2(Rd) and L2(R)⊗L2(Sd−1)
is the standard complex conjugation. The map (8.71) is unitary.

As in Section 3, we fix a form-factor v : R
d 7→ B(K). Recall that the correspond-

ing Pauli-Fierz Hamiltonian is

H := K ⊗ 1 + 1 ⊗
∫
|ξ|a∗(ξ)a(ξ)|ξ|dξ

+λ
∫ (

v(ξ) ⊗ a∗(ξ) + v∗(ξ) ⊗ a(ξ)
)
dξ.

We fix the density R
d 3 ξ 7→ ρ(ξ) ∈ R+ and assume that Assumption 3.A holds.

Recall that the semi-Liouvillean at density ρ is given by

Lsemi
ρ := K ⊗ 1 + 1 ⊗

∫ (
|ξ|a∗l (ξ)al(ξ) − |ξ|a∗r (ξ)ar(ξ)

)
dξ

+λ
∫

v(ξ) ⊗
(
(1 + ρ(ξ))

1

2 a∗l (ξ) + ρ(ξ)
1

2 ar(ξ)
)
dξ + hc.

If we use the glued variables and introduce

vρ(p, ω) :=

{
p

d−1

2 (1 + ρ(pω))
1

2 v(pω), p > 0

(−p)
d−1

2 ρ(−pω)
1

2 v∗(−pω), p ≤ 0,
(8.73)
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then the semi-Liouvillean can be written as

Lsemi
ρ = K ⊗ 1 + 1 ⊗

∫
pa∗(p, ω)a(p, ω) dpdω

+λ
∫ (

vρ(p, ω) ⊗ a∗(p, ω) + v∗ρ(p, ω) ⊗ a(p, ω)
)
dpdω.

Now, using (8.73), it is easy to give explicit conditions on v(ξ) needed for our
results. For instance, Assumption 6.C(n)ρ is satisfied if

∫
‖vρ(p, ω)‖2dpdω < ∞,

∫
‖∂n

p vρ(p, ω)‖2dpdω < ∞. (8.74)

Recall that in (6.35) we introduced the antilinear map κ on Z. In the context
of scalar fields it is equal to

κf(ξ) = f(−ξ).

and satisfies κ2 = 1 (it is an internal conjugation). Assume that

ρκ = κρ, v? = v.

In the context of scalar fields this means

v∗(ξ) = v(−ξ), ρ(ξ) = ρ(−ξ). (8.75)

Then

vρ(p, ω) =

{
p

d−1

2 (1 + ρ(pω))
1

2 v(pω), p > 0

(−p)
d−1

2 ρ(pω)
1

2 v(pω), p ≤ 0.
(8.76)

Assume further that ρβ(ξ) := (eβ|ξ| − 1)−1 and set vβ := vρβ
. Then

vβ(p, ω) =

(
p

1 − e−βp

) 1

2

|p| d
2
−1v(pω). (8.77)

Now, if R 3 p 7→ |p| d
2
−1v(p ·) ∈ B(K,K ⊗ L2(Sd−1)) is n times differentiable and

∫
‖∂j

p|p|
d
2
−1〈p〉1/2v(pω)‖2dpdω < ∞, j = 0, n, (8.78)

then (8.74) holds (the “gluing condition” (7.70) is automatically satisfied for ρ = ρβ

by the differentiability |p| d
2
−1v(p ·) at zero). Theorem 7.10 (the nonuniform result

on return to equilibrium) applies whenever (8.74) holds with n = 3.
The case d = 3 and v(ξ) ∼ |ξ|−1/2 as |ξ| ↓ 0, is sometimes called the “ohmic

case” and is typical for the infrared regime of QED. Note that Theorem 7.10 covers
the ohmic case. However, Theorem 7.14 (our uniform result) does not apply to the
ohmic case.
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8.2 Massless vector particles

In this section we briefly explain how Jakšić-Pillet gluing works for transversal
massless vector bosons (e.g. photons).

Consider first the Hilbert space of square integrable vector fields on R
d, that is

L2(Rd) ⊗ C
d ' L2(Rd, Cd) and the function

R
d 3 ξ 7→ Ptr(ξ) := 1 − |ξ|−2|ξ)(ξ| ∈ B(Cd),

where |ξ|−2|ξ)(ξ| denotes the orthogonal projection onto ξ/|ξ|. We can view Ptr as
an operator in L2(Rd, Cd). The Hilbert space of square integrable transversal vector
fields on R

d is defined as L2
tr(R

d, Cd) := RanPtr.
We consider a Pauli-Fierz system with the 1-particle space L2

tr(R
d, Cd) and the

1-particle energy |ξ|. We assume that the interaction is of the form R
d 3 ξ 7→ v(ξ) =(

1 − |ξ|−2|ξ)(ξ|
)
v0(ξ), for a certain function R

d 3 ξ 7→ v0(ξ) ∈ B(K,K ⊗ C
d).

We can now repeat almost verbatim the constructions and statements of the
previous subsection. Note that the formulas (8.73), (8.76) and (8.77) should be
replaced by

vρ(p, ω) =
(
1 − |ω)(ω|

)
{

p
d−1

2 (1 + ρ(pω))
1

2 v0(pω), p > 0

(−p)
d−1

2 ρ(−pω)
1

2 v?
0(−pω), p ≤ 0;

(8.79)

vρ(p, ω) =
(
1 − |ω)(ω|

)
{

p
d−1

2 (1 + ρ(pω))
1

2 v0(pω), p > 0

(−p)
d−1

2 ρ(pω)
1

2 v0(pω), p ≤ 0;
(8.80)

vβ(p, ω) =
(
1 − |ω)(ω|

) (
p

1 − e−βp

) 1

2

|p| d
2
−1v0(pω). (8.81)

The condition (8.78) can be replaced by demanding that R 3 p 7→ |p| d
2
−1v0(p ·) ∈

B(K,K ⊗ L2(Sd−1)) is n times differentiable and
∫

‖∂j
p|p|

d
2
−1〈p〉1/2v0(pω)‖2dpdω < ∞, j = 0, n. (8.82)
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