ON THE PROPAGATION PROPERTIES OF SURFACE
WAVES

V. JAKSIC*, S. MOLCHANOV! AND L. PASTUR}

1. Introduction. Surface waves were discovered by Rayleigh at the
end of the last century [1]. He considered a homogeneous and isotropic
elastic half-space R = {(z,¢), > 0, ¢ € R?}, whose boundary surface
z = 0 1s free of traction. He discovered that there are two types of solutions
of the respective boundary value problem:

(i) Solutions which are oscillating and nondecaying in all variables.
They are called the volume (bulk) waves.

(ii) Solutions which are the plane waves in the longitudinal variables
¢ and which are exponentially decaying in the transverse variable
z. These solutions are called the surface (grazing) waves. They
propagate only in the longitudinal directions, with the velocity
slightly smaller than the velocity of the volume waves.

The similar solutions exist if the plane z = 0 is the interface between
the two half-spaces with different elastic constants (see [1,2] for references
and discussion). This should be compared to the case where a homogeneous
elastic body occupies the whole R? and where the solutions are the plane
waves in all variables.

The Rayleigh result is perhaps the first demonstration of a rather
general property of solutions of differential and finite-difference equations
which can be summarized as: If the coefficients of the equations are strongly
inhomogeneous (spatially dependent), then the equations may have solu-
tions which are localized near the inhomogeneities.

Returning to the surface waves, we remark that after the Rayleigh dis-
covery the similar solutions for the Maxwell equations were found, at the
turn of the century, by the Sommerfeld school in the study of the propa-
gation properties of the radio waves around the earth surface. These are
the electromagnetic waves that propagate along the surface of a dielectric
subspace or the interface between the two half-spaces with different dielec-
tric constants and decay exponentially with the increase of the distance
from surface (intersurface). These solutions are now known as the surface
polaritons or the surface plasmons (the latter correspond to the limiting
case ¢ = 0o, where ¢ is the velocity of light) [3].
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The natural analogue of the Rayleigh problem, in the case of inhomo-
geneous (and in particular, randomly inhomogeneous) media, is a model
of an inhomogeneous elastic half-space. The common wisdom of the lo-
calization theory suggests that in the case of a randomly inhomogeneous
elastic medium occupying the whole space R?, d > 3, delocalized (ex-
tended) states exist for low and high frequencies, and localized states exist
for an interval (“window”) of intermediate frequencies (if the disorder is
large enough). In the case of half-infinite random inhomogeneous media
the above picture should be complemented by the surface solutions which
are delocalized (propagating) with respect to the transverse coordinates, if
the inhomogeneity is weak enough (or if their frequency is small enough).

The above picture assumes the positive solution of a hard problem, the
proof of the existence of delocalized states in a randomly inhomogeneous
media. We will consider in this note a class of simpler problems where sim-
ilar phenomena is expected to emerge. A typical example is the boundary
value problem for the Laplace equation:

(1.1) —Axu=FEu, X =(2,§)eR ={z>0, (£ eR"},
with the boundary condition

Ju _
(1.2) oy lr=0=V(Ou(0,0), € € R

If V(&) is a constant, V(£) = a, then the eigenvalue problem can be
solved by separation of the variables. Its solutions can be explicitly identi-
fied as follows.

(i) If a > 0 then the solutions are
(1.3) wX,K) = (Qd_zﬂ'd(kz + az))_l/2 "8 (k cos kX + asin kX),

where K = (k,p) € R4, E =k%+ 2 > 0.
(ii) If @ < 0 then we have two classes of solutions:

(1.4) u (X, K) = (Qd_zﬂ'd(kz + az))_l/2 "8 (k cos kX + asin kX),
where K = (k,p) € R4, E =k%+ ? >0, and
(15) UQ(X,QD)I <2dﬂ,d—1|a|)_1/2eiw§—|a|x’

where ¢ € R¥™Y E = o? —a® > —d®.

Thus for ¢ < 0 we have analogues of the volume and the surface waves;
the only difference between (1.1)-(1.2) and the Rayleigh problem is that
the spectral parameter can be negative.

This note i1s an introduction to the program whose goal is to understand
the structure of the solutions of the eigenvalue problem (1.1)-(1.2) in which
V' is a quasi-periodic or random function. In the next section we give
a more precise description of the program; the explicitly solvable model
V(&) = const will serve us as a guide. In the Section 3 we present some
rigorous results concerning the discrete analog of the model (1.1)-(1.2).
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2. Generalities. We begin by reformulating the boundary value prob-
lem (1.1)-(1.2) in terms of spectral theory.

Let us recall that the spectrum of an abstract selfadjoint operator H
consists of the absolutely continuous, singular continuous and pure point
components: 0(H) = 04.(H)|Jos.(H)Jopp(H). Typically, the given op-
erator H is a differential or finite difference operator and it is generally
accepted that generalized eigenfunctions corresponding to o4.(H) describe
the propagating waves and particles. A typical example is the Schrodinger
operator in L2 (Rd), whose potential decays at infinity. If this decay is
fast enough, then the absolutely continuous spectrum of this operator is
R, ; the respective eigenfunctions are superpositions of the incident plane
waves and scattered spherical waves (the Sommerfeld solutions).

The boundary value problem (1.1)-(1.2) defines the selfadjoint operator
Hy acting in the space L? (Rfll_). Thus, we can reformulate the results
(1.3)-(1.5)(V (&) = a) as follows:

(i) a > 0. The spectrum of Hy is R, and is purely absolutely con-
tinuous. The respective eigenfunctions are given by (1.3). They
are the plane waves with respect to the longitudinal coordinates
¢ € R ! and the standing waves with respect to the transverse
coordinate z > 0. This system of eigenfunctions is orthonormal
and complete, 1.e.

/ w(X, K1)u(X, K3)dX = 6(K; — Ko),
Ry
/U(Xl, [{)U(Xz, [{)d[{ = (S(Xl — Xz)

R

(i) a < 0. The spectrum of Hy is the interval [—a? co) D Ry, and
is again purely absolutely continuous. The generalized eigenfunc-
tions are given by (1.4) and (1.5); we call them respectively the
volume (bulk) and the surface (grazing) solutions (waves). These
eigenfunctions satisfy the relations:

/ Ul(X, [(1)U1(X, [{z)dX = 6([&71 — [(2),
Ry
/ us(X, pr)ua(X, p2)d X = 6(p1 — p2),

d
RS
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/ul(X,K)uz(X,go)dX =0

d
RY

/Ul(Xl,[{)ul(Xz,[{)d[{+ / Uz(Xl,gD)UQ(XQ,QD)dQDI(S(Xl —Xz).

R4 Rd-1

Thus, the volume waves {u;(X, K) : K € R} and the surface waves
{us(X, ¢) : ¢ € R471} generate two orthogonal subspaces. In other words,
the spectrum of Hy, for V(£) = a < 0, consists of two “layers” (channels)
[0,00) and [—a?, 00). The first corresponds to the volume waves (1.4) and
the second to the surface waves (1.5). There is no scattering between the
volume channel and the surface channel.

We now mention a few other problems which have a similar structure
of the spectrum.

The Schrédinger operator in R¢ with a surface potential.

We consider the Schrodinger equation

(2.1) Hu=—-Axu+26(x)V()u= Fu,

on R = {X =(2,8) | x€R, £ € R}, where §(x) is the Dirac é-
function. For simplicity, we assume that the surface potential V(£) is
bounded. Let

G.(XIY)=(H -2 (X[Y), (X =Y)=(-A-2)"(X]V),
for the complex spectral parameter z, Imz # 0. The Green formula yields
GAXY) = 0. (X =V) =2 [ g.(e.0 =~ VOG0,

Rd-1
setting # = 0 in this formula we obtain an integral equation for G,(0,(|Y):
GG = g€ =m =2 [ 0.00.6= OVOG.0,6)de.
Ri-1

On the other hand, the Green formula for the Green function of the problem
(1.1)-(1.2), and the Green function

dM(X|Y) = g.(x —y, & =)+ g.(x +y, & — ).

of the Neumann problem (corresponding V' = 0 in (1.2)) yield the same
integral equation since

g™(0,€10,n) = 2¢.(0,€ — n).

Thus the spectral problems (1.1)-(1.2) and (2.6) are equivalent.
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Discrete boundary value problem. On the half-space

Zd = {X = (,€), z €[0,00), € € Z471},
we consider the spectral problem

(2.2) wre -1 +ulx+ 1,6+ (Ag—ru)(z,8) = Fu, z >0,

(2.3) u(=1,6) = V(€)u(0,6).

Here

(2.4) (Ag-1u)(§) = > uly),

nEZI~1 |E—n|=1

is the discrete Laplacian in Z?'. This boundary value problem is the
natural discrete analogue of (1.1)-(1.2).

Discrete Schrodinger operator with a surface potential. The respect-
ive operator is defined by the finite-difference equation in

7% = {(2,€), x €Z, £ €29}

—Aqu+26(x)V(&)u = Fu,

where §(#) is the Kronecker §—symbol.
Discrete Schrodinger operator with the “subspace” potential. We de-

compose Z? as
74 =7M x 2% = {X = (2,&), v € 2", ¢ € 2%},

and consider the finite-difference equation

(2.5) —Agqu+ §(2)V(&)u = Fu,
where
()= [ 8(es).

The potential is now concentrated on the subspace Z%. If d = 3, d; = 1,
ds = 2 this model can be regarded as a model of the thin film; for d = 3,
d1 =2, ds = 11t can be regarded as a model of the line inhomogeneity. We
call the latter case the polymer problem. The case d =3, d; =1, ds = 2
and V depending only on &; reduces to d = 2, d; = d» = 1 and can be
regarded as a model of the grating (the linear interferometer).
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It is easy to show that all these problems with V' = const have the
surface (subspace) solutions which decay exponentially as |#| — oo and
which are the plane waves in &-variable, i.e. propagate along the subspace
vACH

Similar results are also known for the case where V(&) is periodic (see
[5-7).

The goal of our program is to analyze the spectral and scattering
properties of the above models in the cases where the function V() is
quasi-periodic and random; to analyze the structure of the generalized
eigenfunctions of the models and to study their propagation properties;
to understand to what extent the simple division of spectra into the “vol-
ume” channel and “surface” channel persists after replacing the constant
boundary condition with a function of the above type.

For the rest of this note we will discuss only the discrete boundary
value problem. In the next section we present some rigorous result on the
model. To give the reader the taste of the results we are aiming to, we
finish this section with the following simple result. Recalling the property
of polynomial boundedness of generalized eigenfunctions of finite-difference
operators, we define the set S of the surface (subspace) solutions for the

model (2.10) by

Sz{uE(x,g);

sup (1+ €971 Z lug (2, €)]? < oo for some a > d}.
£€Zd2 ez

(2.6)

We also introduce
os ={F: ug € S}.

PrOPOSITION 2.1. Let Hy = Ay and let Hy be the selfadjoint oper-
ator defined by (2.10). Let o(Hy) and o(Hy) = c4c(Ho) = [—2d,2d] be
their spectra. Then o(Hy)\o(Hy) C o5 and the corresponding generalized
eigenfunctions decay exponentially as |a| — co.

The proof of this proposition follows from:

(i) The Green formula
nezd2
(ii) The polynomial bound
lug(X)] < Co(1+|X[Y*F=), >0,

which is valid for almost all £ with respect to the spectral measure
of Hy;

(iii) The exponential decay of the “free” Green function gg(X), F ¢
O'(Ho) .
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3. Discrete boundary value problem. In this section we present
some rigorous results concerning the discrete boundary value problem (2.7)-
(2.9) introduced in Section 2. We would like to emphasize in advance that
our understanding of the problem is limited; we have only a few results
to announce here. We plan to present a more complete analysis of the
problem in [4] and [17].

Let V(&) = gv(€), where v(€), £ € Z%71, are independent, identically
distributed random variables with continuous density p(v). The parameter
¢ measures the strength of the coupling between waves (quantum particles)
and the random corrugated surface of the medium. The boundary value
problem (2.7)-(2.9) can be alternatively defined as the spectral problem for
the operator

Hyu(z,8) = wle+1,8)+u(z—1,8+ Z u(z, &), ife>1,
lé-¢']=1
HVU(O’g) = u(1’€)+ Z u(O,f’)—I—gv(f)u(O,f).
lé-¢']=1

Here the subscript V stands for the usual random parameter (random real-
ization of the potential), see e.g. [10]. The case where the random potential
v(€) is nonzero only along certain parts of the boundary 6Zf|l_ is of the in-
dependent interest; for the sake of brevity we will not discuss such models
here.

In the case where the random variables v(£) are degenerate, v(§) = a,
the spectrum of the operator Hy is absolutely continuous and fills the union
of two intervals

o(Hy) =[-2d,2d|U[-2(d — 1) + Eu(ga),2(d — 1) + Fy(ga)l;

there Eo(ga) = ga+ [ga]™?, |Eo(ga)| > 2, is the only eigenvalue of the one
dimensional boundary value problem u(z — 1)+ u(z+1) = Fu(z), u(-1) =
gau(0) (this eigenvalue exists if |ga| > 1). As in the continuous case, these
intervals correspond to two “channels”, volume waves and surface waves.
If the surface channel exists (|ga| > 1), then it has a “tail” lying outside of
o(Hy). The generalized eigenfunction associated to the “volume channel”
do not decay in any direction; the ones associated to the the “surface
channel” are exponentially decaying in the z-variable.

Our goal is to understand how is the structure of spectrum affected
after the replacement of the constant potential along the boundary with
the random one.

The standard ergodicity argument (see e.g. [9], or [10]), yields that
there are closed sets 4., Xpp, Zae C R so that for ae. V, 04.(Hy) = X,
0so(Hyv) = Zyo, 0pp(Hv) = Epp. In particular, for a.e. V

o(Hy) = T4 U, UL, = .
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In fact, 1t 1s not too difficult to explicitly i1dentify the set . If V is the
support of density function p(v), namely the closure of the set {v: p(v) #
0}, then

S = [—2d, 2d] U {[~2(d — 1), 2(d — 1)] + Eo(gV)}

where X +Y ={e+y,2e X,yeY}.

It is a characteristic feature of the model that the operator Hy always
has lots of absolutely continuous spectra, due to the free propagation along
the z-axis.

THEOREM 3.1. If [ |v|p(v)dv < oo then ¥4 D [—2d, 2d].

The basic idea of the proof is to show that there is a dense set of vectors
D C I*(Z4) so that the limit

s — tlim exp(it Hy ) exp(—it Hy)u, u€eD,

exists, see e.g. [16]. By the Cook criterion, it suffices to show that

(3.1) / [[(Hy — Hy)exp(—it Ho)u||dt < oo
1
for each u € D. Clearly, (3.12) will follow if

(3.2) > 10(O)(8n, exp(—it Ho)u)| < oo,

EEZd—l

for almost all V" and all « € D. One establishes (3.13) by passing first to
the Fourier variables in the £-variables (see the discussion below), and then
using integration by parts, judicious choice of the set D, and Borel-Cantelli
lemma. The details will be presented in [4].

Further discussion of the spectral properties of Hy is based on the
Fourier transformed form of Hy . The operator Hy is unitarily equivalent
to operator Hy which acts on [2(Z1) @ L%(T9~1). We denote the variables
on that space by (z,¢) = (%, ¢1, ¢2,...¢4-1), and its elements by u(z, ¢).
Let

d—1
D(¢) =2 cos(¢y).
i=1
The operator f]v is given by
f]vﬁ(x,qb) = dlz+1,¢)+ulzx—1,0)+ O(¢)u(z, ¢), z>1,

e

It is not too difficult to show that integrable solutions of the equation

(3.3) Hyii(x,¢) = Fii(x, ¢)
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have the form

the function Ay g is determined by the relations

1
A¢7E—|———|—<I>(¢):E and 0<A¢7E<1.
Ag.E
In particular, if E' € [—2d, 2d], we may assume that the function @(0, ¢) is
supported on the set

{peT™" 1 ]0(¢) - £] > 2}.

It follows from (3.14) that function 4(0, ¢) satisfies the equation

e

(3.4) (0, 6)A; = —glovul(¢).

This equation plays the central role in our discussion. As an illustration,
we will prove the following result (recall that the set V is support of the
density function p(v)):

PROPOSITION 3.2. a) Suppose that V C [—a,a] for some a > 0. If
lg| < 1/a then Hy has no eigenvalues in [—2d, 2d).
b) Suppose that V C [a,b] for some constants 0 < a < b. If ga + [ga]™! >
4d — 2, then Hy has no eigenvalues on [—2d, 2d].
Remark. The above results are in fact deterministic.
Remark. A much stronger version of these results will be presented in
[17].
Remark. The part a) yields that there are no eigenvalues on [—2d, 2d] as
long as there is no spectrum outside the spectrum of Laplacian. The part
b) yields that as long as the spectrum outside [—2d, 2d] is separated from
[—2d, 2d] by a gap, then there are no embedded eigenvalues in [—2d, 2d].
Proof: The equation (3.15) yields that

e

/ (0, )47 26 = |gI? / fov (0, &) do.
Ta-1 T

Assume that v 1s normalized as
1= [ 0= Y 0.0
Td—l fEZd_l

The result follows immediately from the following two elementary esti-
mates:

App+ Ay <4d—2,

1<g® ) [ OF[a(0. O < sup A0, ). 0

EEZd—l
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We now turn to the analysis of the structure of the “tail” part of the
spectrum of Hy, given by ¥\[-2d, 2d]. Let Ry (X, X'; E+ie) be the matrix
elements of the resolvent (Hy — z)~! for z = E + ie. Let Xo = (0,&p) be
fixed point on the boundary 9Z¢ and let |E| > 2d. Then

(3.5) Ry (Xo,(z,0); E+i€) = Ry(Xo,(0,0); E+ic)[Ag prie]”-

Here Ay pyic is the analytic continuation of the function Ag g from the
part of the real axis |E| > 2d to the upper half-plane {w | Im(w) > 0}.
For ¢ € Z971 let D(&, E + ie) be the inverse Fourier transform of Ay pie.
Obviously, for each |E| > 2d there is Cg > 0 and y(E) > 0 so that

(3.6) sup |DE(&, E +ie)| < Cgexp(—y(E)|E]).

The resolvent equation restricted to the boundary 6Zf|l_ becomes

[D(§ = &o, E+i€) + Ay + gv(§)] Rv ((0,60),(0,€); £+ ie) =
(6(€ - gO) + L+ iE)RV((Oa€0)a (0,€), E4 ZG)

On this way we have obtained a (d — 1)-dimensional eigenvalue problem
which, however, depends non-linearly on the spectral parameter E. Never-
theless, the techniques developed in the spectral theory of random operators
can be properly adapted to handle the problem in the strong localization
regime and we have (see [11],[12])

THEOREM 3.3. Suppose that density p(v) satisfies sup,cg |p(v)] < .
Then for ¥§ > 0 there is g(§) > 0 so that the estimate

(3.7 sup |Rv((0,80),(0,8); B+ i0)] < Crgov exp(=v(E)IE = &ol),

holds for |g| > g(8), each fized |E| > 2d + & and for a.e. V. The same
estimate holds for each fized g if |E| is taken large enough, |E| > Eo(yg).
Remark. The result holds under more general condition on density p(v).
Remark. Naturally, the constant v(Z) in (3.17) may differ from the one
in Theorem 3.3. For notational simplicity, we will always use the letter
y(E) for the F-dependent constant figuring in the exponential decay of the
quantity in question.

From the estimate (3.18) and relation (3.16) it follows that under the con-
ditions of the Theorem 3.3, the resolvent kernel of Hy satisfies

sup [ Ry (Xo, X; F + ie)| < Cv x, z exp(=y(E)[Xo — X|4),
e>0

in the large coupling/high energy regime described in the Theorem 3.3.
The Simon-Wolff’s theorem [9], [10]) yields the following result:
THEOREM 3.4. Under the conditions of Theorem 3.3 we have:
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a) For each § > 0 there is g(§) > 0 so that for |g| > g(8),
EN{E||E|>2d+ 46} CE,,.
The corresponding eigenfunctions decay exponentially.

b) For each g # 0 there is E(g) so that
SA{E|[E] > B(g)} C Spp.
The corresponding eigenfunctions decay exponentially.

Consider now the quasiperiodic potential

(3.8) V(¢) = gtan7f(@, &) + ]

where o = (a1, ..4—1) is a Diophantine vector, i.e.
(@, ) + w| > Cl¢)f

for all £ € Z4=1\ {0}, m € Z and some positive C' and 3; w € [0, 1] is the
“randomness” parameter.

The potential (3.19) can model a quasiperiodically (strongly) corru-
gated surface. The Schrodinger operator with a similar potential is ana-
lyzed in [10]. This operator has pure point spectrum coinciding with R for
all ¢ # 0 and almost all w € [0, 1] with respect to the Lebesgue measure.

Similarly, for the surface potential (3.19) we have [13]:

THEOREM 3.5. Let Hy be the operator defined by (2.7)-(2.9) and
(3.19). Then the spectrum of Hy is R and its part lying outside o(Hy) =
[—2d, 2d] is pure point for almost all w € [0, 1] with respect to the Lebesgue
measure. The eigenvalues are simple and dense on R\ [—2d,2d] and the
corresponding etgenfunctions decay exponentially in &.

Combining Proposition 2.1 (which naturally also holds for the model
(2.7)-(2.9)) and Theorems 3.4 and 3.5 we conclude that in the strong lo-
calization regime the eigenfunctions are the surface solutions of respective
equation and that they decay exponentially not only in the transverse co-
ordinates & but also in the longitudinal coordinates £. In other words, in
the cases treated in Theorems 3.4 and 3.5 the surface waves are localized
by strong fluctuations of the random potential.

On the other hand, according to Theorem 3.1, the absolutely contin-
uous spectrum fills the interval [—2d, 2d] for all strengths of the coupling.
Thus we are naturally lead to the following questions:

(I) TIs the spectrum of Hy purely absolutely continuous for g small?

(IT) What is the nature of the spectrum on the interval [—2d, 2d] for
the intermidate and large values of g7 Do we have embedded
eigenvalues in a.c. spectrum?
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(III) Do surface solutions exist on the interval [2d,2d]? Are they propa-
gating? What are the respective conditions?

Concerning (I), if d = 3 and the random potential is placed only along a line
(the polymer case), then the conjecture can be established using a version
of Kato’s smooth perturbation theory [4]. Concerning (III), the answer is
affirmative if d = 3 and i.i.d. random variables v(&;1,€2) do not depend on
&5. Indeed, in this case the dependence of solutions on &5 is harmonic and
the corresponding energies belong to the absolutely continuous spectrum
of Hy . On the other hand, since the analogue of the respective non-linear
spectral problem (3.15) is one-dimensional, one might hope to obtain some
informations modifying the existing techniques of 1-d random Schrodinger
operator theory. In [4] we modify and extend the technique developed in
[14], [15], to prove (for the model (2.7)-(2.9)) that if d = 2 then under
general conditions and for any g we have XN {E : |E| > 4} C E,,. This
allows us to prove that if v(£1,€2) does not depend on &3 then o5 N[—6, 6] #
(). The corresponding solutions propagate along £s-axis and exponentially
decay in &1 and x.

Note: The question (I) and a part of the question (II) are recently resolved
in [17].
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