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�� Introduction� Surface waves were discovered by Rayleigh at the
end of the last century ���� He considered a homogeneous and isotropic
elastic half�space R�

� � f�x� ��� x � 	� � � R�g
 whose boundary surface
x � 	 is free of traction� He discovered that there are two types of solutions
of the respective boundary value problem�

�i� Solutions which are oscillating and nondecaying in all variables�
They are called the volume �bulk� waves�

�ii� Solutions which are the plane waves in the longitudinal variables
� and which are exponentially decaying in the transverse variable
x� These solutions are called the surface �grazing� waves� They
propagate only in the longitudinal directions
 with the velocity
slightly smaller than the velocity of the volume waves�

The similar solutions exist if the plane x � 	 is the interface between
the two half�spaces with di�erent elastic constants �see ��

� for references
and discussion�� This should be compared to the case where a homogeneous
elastic body occupies the whole R� and where the solutions are the plane
waves in all variables�

The Rayleigh result is perhaps the �rst demonstration of a rather
general property of solutions of di�erential and �nite�di�erence equations
which can be summarized as� If the coe�cients of the equations are strongly
inhomogeneous �spatially dependent�
 then the equations may have solu�
tions which are localized near the inhomogeneities�

Returning to the surface waves
 we remark that after the Rayleigh dis�
covery the similar solutions for the Maxwell equations were found
 at the
turn of the century
 by the Sommerfeld school in the study of the propa�
gation properties of the radio waves around the earth surface� These are
the electromagnetic waves that propagate along the surface of a dielectric
subspace or the interface between the two half�spaces with di�erent dielec�
tric constants and decay exponentially with the increase of the distance
from surface �intersurface�� These solutions are now known as the surface
polaritons or the surface plasmons �the latter correspond to the limiting
case c ��
 where c is the velocity of light� ����
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The natural analogue of the Rayleigh problem
 in the case of inhomo�
geneous �and in particular
 randomly inhomogeneous� media
 is a model
of an inhomogeneous elastic half�space� The common wisdom of the lo�
calization theory suggests that in the case of a randomly inhomogeneous
elastic medium occupying the whole space Rd� d � �
 delocalized �ex�
tended� states exist for low and high frequencies
 and localized states exist
for an interval ��window�� of intermediate frequencies �if the disorder is
large enough�� In the case of half�in�nite random inhomogeneous media
the above picture should be complemented by the surface solutions which
are delocalized �propagating� with respect to the transverse coordinates
 if
the inhomogeneity is weak enough �or if their frequency is small enough��

The above picture assumes the positive solution of a hard problem
 the
proof of the existence of delocalized states in a randomly inhomogeneous
media� We will consider in this note a class of simpler problems where sim�
ilar phenomena is expected to emerge� A typical example is the boundary
value problem for the Laplace equation�

��Xu � Eu� X � �x� �� � Rd
� � fx � 	� � � Rd��g������

with the boundary condition

�u

�x
jx��� V ���u�	� ��� � � Rd������
�

If V ��� is a constant
 V ��� � a
 then the eigenvalue problem can be
solved by separation of the variables� Its solutions can be explicitly identi�
�ed as follows�

�i� If a � 	 then the solutions are

u�X�K� �
�

d���d�k� � a��

�����
ei���k cos kX � a sin kX�������

where K � �k� �� � Rd� E � k� � �� � 	�
�ii� If a � 	 then we have two classes of solutions�

u��X�K� �
�

d���d�k� � a��

�����
ei���k cos kX � a sin kX�������

where K � �k� �� � Rd� E � k� � �� � 	
 and

u��X��� �
�

d�d��jaj

�����
ei���jajx������

where � � Rd��� E � �� � a� � �a��

Thus for a � 	 we have analogues of the volume and the surface waves�
the only di�erence between ���������
� and the Rayleigh problem is that
the spectral parameter can be negative�

This note is an introduction to the programwhose goal is to understand
the structure of the solutions of the eigenvalue problem ���������
� in which
V is a quasi�periodic or random function� In the next section we give
a more precise description of the program� the explicitly solvable model
V ��� � const will serve us as a guide� In the Section � we present some
rigorous results concerning the discrete analog of the model ���������
��
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�� Generalities� We begin by reformulating the boundary value prob�
lem ���������
� in terms of spectral theory�

Let us recall that the spectrum of an abstract selfadjoint operator H
consists of the absolutely continuous
 singular continuous and pure point
components� 	�H� � 	ac�H�

S
	sc�H�

S
	pp�H�� Typically
 the given op�

erator H is a di�erential or �nite di�erence operator and it is generally
accepted that generalized eigenfunctions corresponding to 	ac�H� describe
the propagating waves and particles� A typical example is the Schr�odinger
operator in L�

�
Rd
�

 whose potential decays at in�nity� If this decay is

fast enough
 then the absolutely continuous spectrum of this operator is
R�� the respective eigenfunctions are superpositions of the incident plane
waves and scattered spherical waves �the Sommerfeld solutions��

The boundary value problem ���������
� de�nes the selfadjoint operator
HV acting in the space L�

�
Rd
�

�
� Thus
 we can reformulate the results

������������V ��� � a� as follows�

�i� a � 	� The spectrum of HV is R� and is purely absolutely con�
tinuous� The respective eigenfunctions are given by ������ They
are the plane waves with respect to the longitudinal coordinates
� � Rd�� and the standing waves with respect to the transverse
coordinate x � 	� This system of eigenfunctions is orthonormal
and complete
 i�e�Z

Rd

�

u�X�K��u�X�K��dX � 
�K� �K���

Z
Rd

u�X��K�u�X��K�dK � 
�X� �X���

�ii� a � 	� The spectrum of HV is the interval ��a���� � R�
 and
is again purely absolutely continuous� The generalized eigenfunc�
tions are given by ����� and ������ we call them respectively the
volume �bulk� and the surface �grazing� solutions �waves�� These
eigenfunctions satisfy the relations�Z

Rd

�

u��X�K��u��X�K��dX � 
�K� �K���

Z
Rd

�

u��X����u��X����dX � 
��� � ����
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R
d

�

u��X�K�u��X���dX � 	

Z
Rd

u��X��K�u��X��K�dK �

Z
Rd��

u��X�� ��u��X�� ��d� � 
�X� �X���

Thus
 the volume waves fu��X�K� � K � Rdg and the surface waves
fu��X��� � � � Rd��g generate two orthogonal subspaces� In other words

the spectrum of HV 
 for V ��� � a � 	
 consists of two �layers� �channels�
�	��� and ��a����� The �rst corresponds to the volume waves ����� and
the second to the surface waves ������ There is no scattering between the
volume channel and the surface channel�

We now mention a few other problems which have a similar structure
of the spectrum�

The Schr�odinger operator in Rd with a surface potential�
We consider the Schr�odinger equation

Hu � ��Xu� 

�x�V ���u � Eu��
���

on Rd �
�
X � �x� �� j x � R� � � Rd��

�

 where 
�x� is the Dirac 
�

function� For simplicity
 we assume that the surface potential V ��� is
bounded� Let

Gz�XjY � � �H � z����XjY �� gz�X � Y � � ���� z����XjY ��

for the complex spectral parameter z
 Imz �� 	� The Green formula yields

Gz�XjY � � gz�X � Y �� 


Z
Rd��

gz�x� � � ��V ���Gz�	� �jY �d��

setting x � 	 in this formula we obtain an integral equation for Gz�	� �jY ��

Gz�	� �jY � � gz�y� � � �� � 


Z
Rd��

gz�	� � � ��V ���Gz�	� �jY �d��

On the other hand
 the Green formula for the Green function of the problem
���������
�
 and the Green function

g�N�z �XjY � � gz�x� y� � � �� � gz�x � y� � � ���

of the Neumann problem �corresponding V � 	 in ���
�� yield the same
integral equation since

g�N�z �	� �j	� �� � 
gz�	� � � ���

Thus the spectral problems ���������
� and �
��� are equivalent�



ON THE PROPAGATION PROPERTIES OF SURFACE WAVES �

Discrete boundary value problem� On the half�space

Zd� � fX � �x� ��� x � �	���� � � Zd��g�

we consider the spectral problem

u�x� �� �� � u�x� �� �� � ��d��u��x� �� � Eu� x � 	��
�
�

u���� �� � V ���u�	� ����
���

Here

��d��u���� �
X

��Zd�� �j���j��

u�����
���

is the discrete Laplacian in Zd��� This boundary value problem is the
natural discrete analogue of ���������
��

Discrete Schr�odinger operator with a surface potential� The respect�
ive operator is de�ned by the �nite�di�erence equation in

Zd � f�x� ��� x � Z� � � Zd��g�

��du� 

�x�V ���u � Eu�

where 
�x� is the Kronecker 
�symbol�
Discrete Schr�odinger operator with the �subspace� potential� We de�

compose Zd as

Zd � Zd� � Zd� � fX � �x� ��� x � Zd� � � � Zd�g�

and consider the �nite�di�erence equation

��du� 
�x�V ���u � Eu��
���

where


�x� �
d�Y
j��


�xj��

The potential is now concentrated on the subspace Zd� � If d � �
 d� � �

d� � 
 this model can be regarded as a model of the thin �lm� for d � �

d� � 

 d� � � it can be regarded as a model of the line inhomogeneity� We
call the latter case the polymer problem� The case d � �
 d� � �
 d� � 

and V depending only on �� reduces to d � 

 d� � d� � � and can be
regarded as a model of the grating �the linear interferometer��
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It is easy to show that all these problems with V � const have the
surface �subspace� solutions which decay exponentially as jxj 	 � and
which are the plane waves in ��variable
 i�e� propagate along the subspace
Zd� �

Similar results are also known for the case where V ��� is periodic �see
�������

The goal of our program is to analyze the spectral and scattering
properties of the above models in the cases where the function V ��� is
quasi�periodic and random� to analyze the structure of the generalized
eigenfunctions of the models and to study their propagation properties�
to understand to what extent the simple division of spectra into the �vol�
ume� channel and �surface� channel persists after replacing the constant
boundary condition with a function of the above type�

For the rest of this note we will discuss only the discrete boundary
value problem� In the next section we present some rigorous result on the
model� To give the reader the taste of the results we are aiming to
 we
�nish this section with the following simple result� Recalling the property
of polynomial boundedness of generalized eigenfunctions of �nite�di�erence
operators
 we de�ne the set S of the surface �subspace� solutions for the
model �
��	� by

S �

�
uE�x� �� �

sup
��Zd�

�� � j�ja���
X

x�Zd�

juE�x� ��j
� �� for some a � d

�
�

�
���

We also introduce

	S � fE � uE � Sg�

Proposition ���� Let H� � �d and let HV be the selfadjoint oper�
ator de�ned by ������� Let 	�HV � and 	�H�� � 	ac�H�� � ��
d� 
d� be
their spectra� Then 	�HV �n	�H�� 
 	S and the corresponding generalized
eigenfunctions decay exponentially as jxj 	 ��

The proof of this proposition follows from�

�i� The Green formula

uE�x� �� �
X

��Zd�

gE�x� � � ��V ���uE�	� ���

�ii� The polynomial bound

juE�X�j � C��� � jXj
d������ 
 � 	�

which is valid for almost all E with respect to the spectral measure
of HV �

�iii� The exponential decay of the �free� Green function gE�X�
 E ��
	�H���
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�� Discrete boundary value problem� In this section we present
some rigorous results concerning the discrete boundary value problem �
����
�
��� introduced in Section 
� We would like to emphasize in advance that
our understanding of the problem is limited� we have only a few results
to announce here� We plan to present a more complete analysis of the
problem in ��� and �����

Let V ��� � gv���� where v���
 � � Zd��
 are independent
 identically
distributed random variables with continuous density p�v�� The parameter
g measures the strength of the coupling between waves �quantum particles�
and the random corrugated surface of the medium� The boundary value
problem �
�����
��� can be alternatively de�ned as the spectral problem for
the operator

HV u�x� �� � u�x� �� �� � u�x� �� �� �
X

j����j��

u�x� ���� if x � ��

HV u�	� �� � u��� �� �
X

j����j��

u�	� ��� � gv���u�	� ���

Here the subscript V stands for the usual random parameter �random real�
ization of the potential�
 see e�g� ��	�� The case where the random potential
v��� is nonzero only along certain parts of the boundary �Zd

� is of the in�
dependent interest� for the sake of brevity we will not discuss such models
here�

In the case where the random variables v��� are degenerate
 v��� � a

the spectrum of the operatorHV is absolutely continuous and �lls the union
of two intervals

	�HV � � ��
d� 
d�� ��
�d� �� � E��ga�� 
�d� �� � E��ga���

there E��ga� � ga� �ga���
 jE��ga�j � 

 is the only eigenvalue of the one
dimensional boundary value problem u�x����u�x��� � Eu�x�
 u���� �
gau�	� �this eigenvalue exists if jgaj � ��� As in the continuous case
 these
intervals correspond to two �channels�
 volume waves and surface waves�
If the surface channel exists �jgaj � ��
 then it has a �tail� lying outside of
	�H��� The generalized eigenfunction associated to the �volume channel�
do not decay in any direction� the ones associated to the the �surface
channel� are exponentially decaying in the x�variable�

Our goal is to understand how is the structure of spectrum a�ected
after the replacement of the constant potential along the boundary with
the random one�

The standard ergodicity argument �see e�g� ���
 or ��	��
 yields that
there are closed sets �ac��pp��ac 
 R so that for a�e� V 
 	ac�HV � � �ac

	sc�HV � � �sc
 	pp�HV � � �pp� In particular
 for a�e� V

	�HV � � �ac ��sc ��pp � ��
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In fact
 it is not too di�cult to explicitly identify the set �� If V is the
support of density function p�v�
 namely the closure of the set fv � p�v� ��
	g
 then

� � ��
d� 
d�� f��
�d� ��� 
�d� ��� �E��gV�g

where X � Y � fx� y� x � X� y � Y g�
It is a characteristic feature of the model that the operator HV always

has lots of absolutely continuous spectra
 due to the free propagation along
the x�axis�

Theorem ���� If
R
R
jvjp�v�dv �� then �ac � ��
d� 
d��

The basic idea of the proof is to show that there is a dense set of vectors
D 
 l��Zd

�� so that the limit

s� lim
t��

exp�itHV � exp��itH��u� u � D�

exists
 see e�g� ����� By the Cook criterion
 it su�ces to show thatZ �

�

k�HV �H�� exp��itH��ukdt �������

for each u � D� Clearly
 ����
� will follow ifX
��Zd��

jv���jj�
n� exp��itH��u�j ������
�

for almost all V and all u � D� One establishes ������ by passing �rst to
the Fourier variables in the ��variables �see the discussion below�
 and then
using integration by parts
 judicious choice of the set D
 and Borel�Cantelli
lemma� The details will be presented in ����

Further discussion of the spectral properties of HV is based on the
Fourier transformed form of HV � The operator HV is unitarily equivalent
to operator bHV which acts on l��Z��
L��T d���� We denote the variables
on that space by �x� �� � �x� ��� ��� � � ��d���
 and its elements by bu�x� ���
Let

���� � 

d��X
i��

cos��i��

The operator bHV is given by

bHV bu�x� �� � bu�x� �� �� � bu�x� �� �� � ����bu�x� ��� x � ��bHV bu�	� �� � bu��� �� � g��vV u��	� ���

It is not too di�cult to show that integrable solutions of the equation

bHV bu�x� �� � Ebu�x� �������
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have the form

bu�x� �� � bu�	� �� x��E �

the function  ��E is determined by the relations

 ��E �
�

 ��E
����� � E and 	 �  ��E � ��

In particular
 if E � ��
d� 
d�
 we may assume that the function bu�	� �� is
supported on the set

f� � T d�� � j�����Ej � 
g�

It follows from ������ that function bu�	� �� satis�es the equation
bu�	� �� ����E � �g��vV u����������

This equation plays the central role in our discussion� As an illustration

we will prove the following result �recall that the set V is support of the
density function p�v���

Proposition ���� a� Suppose that V 
 ��a� a� for some a � 	� If
jgj � ��a then HV has no eigenvalues in ��
d� 
d��
b� Suppose that V 
 �a� b� for some constants 	 � a � b� If ga � �ga��� �
�d� 
	 then HV has no eigenvalues on ��
d� 
d��
Remark� The above results are in fact deterministic�
Remark� A much stronger version of these results will be presented in
�����
Remark� The part a� yields that there are no eigenvalues on ��
d� 
d� as
long as there is no spectrum outside the spectrum of Laplacian� The part
b� yields that as long as the spectrum outside ��
d� 
d� is separated from
��
d� 
d� by a gap
 then there are no embedded eigenvalues in ��
d� 
d��
Proof
 The equation ������ yields thatZ

Td��

jbu�	� ��j�j ����Ej�d� � jgj�
Z
Td��

j��vV u��	� ��j
�d��

Assume that u is normalized as

� �

Z
Td��

jbu�	� ��j�d� � X
��Zd��

ju�	� ��j��

The result follows immediately from the following two elementary esti�
mates�

 ��E �  
��
��E � �d� 
�

� � g�
X

��Zd��

jvV ���j
�ju�	� ��j� � sup

�
 �����E�� �
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We now turn to the analysis of the structure of the �tail� part of the
spectrum ofHV 
 given by �n��
d� 
d�� Let RV �X�X

��E�i�� be the matrix
elements of the resolvent �HV � z��� for z � E � i�� Let X� � �	� ��� be
�xed point on the boundary �Zd

� and let jEj � 
d� Then

bRV �X�� �x� ���E� i�� � bRV �X�� �	� ���E� i��� ��E�i��
x������

Here  ��E�i� is the analytic continuation of the function  ��E from the
part of the real axis jEj � 
d to the upper half�plane fw j Im�w� � 	g�
For � � Zd�� let D��� E � i�� be the inverse Fourier transform of  ��E�i��
Obviously
 for each jEj � 
d there is CE � 	 and ��E� � 	 so that

sup
�	�

jDE��� E � i��j � CE exp����E�j�j�������

The resolvent equation restricted to the boundary �Zd
� becomes

�D�� � ��� E � i�� � �d�� � gv����RV ��	� ���� �	� ���E � i�� �

�
�� � ��� � E � i��RV ��	� ���� �	� ���E� i���

On this way we have obtained a �d � ���dimensional eigenvalue problem
which
 however
 depends non�linearly on the spectral parameter E� Never�
theless
 the techniques developed in the spectral theory of random operators
can be properly adapted to handle the problem in the strong localization
regime and we have �see ����
��
��

Theorem ���� Suppose that density p�v� satis�es supv�R jp�v�j ���
Then for �
 � 	 there is g�
� � 	 so that the estimate

sup
�	�

jRV ��	� ���� �	� ���E � i��j � CE����V exp����E�j� � ��j�������

holds for jgj � g�
�	 each �xed jEj � 
d � 
 and for a�e� V � The same
estimate holds for each �xed g if jEj is taken large enough	 jEj � E��g��
Remark� The result holds under more general condition on density p�v��
Remark� Naturally
 the constant ��E� in ������ may di�er from the one
in Theorem ���� For notational simplicity
 we will always use the letter
��E� for the E�dependent constant �guring in the exponential decay of the
quantity in question�
From the estimate ������ and relation ������ it follows that under the con�
ditions of the Theorem ���
 the resolvent kernel of HV satis�es

sup
�	�

jRV �X�� X�E � i��j � CV�X��E exp����E�jX� �Xj���

in the large coupling!high energy regime described in the Theorem ����
The Simon�Wol�"s theorem ���
 ��	�� yields the following result�

Theorem ���� Under the conditions of Theorem ��� we have
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a� For each 
 � 	 there is g�
� � 	 so that for jgj � g�
�	

� � fE j jEj � 
d� 
g 
 �pp�

The corresponding eigenfunctions decay exponentially�

b� For each g �� 	 there is E�g� so that

� � fE j jEj � E�g�g 
 �pp�

The corresponding eigenfunctions decay exponentially�

Consider now the quasiperiodic potential

V ��� � g tan����� �� � �������

where � � ���� ���d��� is a Diophantine vector
 i�e�

j��� �� � �j � Cj�j


for all � � Zd��n f	g
 m � Z and some positive C and �� � � �	� �� is the
�randomness� parameter�

The potential ������ can model a quasiperiodically �strongly� corru�
gated surface� The Schr�odinger operator with a similar potential is ana�
lyzed in ��	�� This operator has pure point spectrum coinciding with R for
all g �� 	 and almost all � � �	� �� with respect to the Lebesgue measure�

Similarly
 for the surface potential ������ we have �����
Theorem ���� Let HV be the operator de�ned by ���������
� and

����
�� Then the spectrum of HV is R and its part lying outside 	�H�� �
��
d� 
d� is pure point for almost all � � �	� �� with respect to the Lebesgue
measure� The eigenvalues are simple and dense on R n ��
d� 
d� and the
corresponding eigenfunctions decay exponentially in ��

Combining Proposition 
�� �which naturally also holds for the model
�
�����
���� and Theorems ��� and ��� we conclude that in the strong lo�
calization regime the eigenfunctions are the surface solutions of respective
equation and that they decay exponentially not only in the transverse co�
ordinates x but also in the longitudinal coordinates �� In other words
 in
the cases treated in Theorems ��� and ��� the surface waves are localized
by strong #uctuations of the random potential�

On the other hand
 according to Theorem ���
 the absolutely contin�
uous spectrum �lls the interval ��
d� 
d� for all strengths of the coupling�
Thus we are naturally lead to the following questions�

�I� Is the spectrum of HV purely absolutely continuous for g small$
�II� What is the nature of the spectrum on the interval ��
d� 
d� for

the intermidate and large values of g$ Do we have embedded
eigenvalues in a�c� spectrum$
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�III� Do surface solutions exist on the interval �
d� 
d�$ Are they propa�
gating$ What are the respective conditions$

Concerning �I�
 if d � � and the random potential is placed only along a line
�the polymer case�
 then the conjecture can be established using a version
of Kato"s smooth perturbation theory ���� Concerning �III�
 the answer is
a�rmative if d � � and i�i�d� random variables v���� ��� do not depend on
��� Indeed
 in this case the dependence of solutions on �� is harmonic and
the corresponding energies belong to the absolutely continuous spectrum
of HV � On the other hand
 since the analogue of the respective non�linear
spectral problem ������ is one�dimensional
 one might hope to obtain some
informations modifying the existing techniques of ��d random Schr�odinger
operator theory� In ��� we modify and extend the technique developed in
����
 ����
 to prove �for the model �
�����
���� that if d � 
 then under
general conditions and for any g we have � � fE � jEj � �g 
 �pp� This
allows us to prove that if v���� ��� does not depend on �� then 	S����� �� ��
�� The corresponding solutions propagate along ���axis and exponentially
decay in �� and x�
Note
 The question �I� and a part of the question �II� are recently resolved
in �����
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