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Abstract

Let G be a simple countable connected graph and let Hy be the discrete Laplacian
on 2(G). Let T' C G and let V =3, . V(n)(6n|-)6n be a potential supported on T,
We study scattering properties of the operators H = Hy + V. Assuming that the
wave operators W*(H, Hy) exist, we find sufficient and necessary conditions for their
completeness in terms of a suitable criterion of localization along the subspace [2(T).
We discuss the case of random subspace potentials, for which these conditions are
particularly natural and effective. As an application, we discuss scattering theory
of the discrete Laplacian on the half-space G = Z¢ x Z. perturbed by a potential
supported on the boundary T' = Z% x {0}.



1 Introduction

Let G be the set of points (a.k.a. vertices) of a simple countable connected graph and
let p: G xGwr {0,1,2,...} be the distance on this graph. Note that since the metric
p fully determines the edges of the graph (which can be identified with unordered pairs
(n,m) € G x G having p(n,m) = 1), we can think of the graph as being the metric space
(G, p). We assume here that the degree of points in the graph is bounded, namely,

v :=sup#{m: p(m,n) =1} < oc.
Let Hy be the discrete Laplacian on H := [(G), defined by,
(Hop)(n) = > (m).
p(m,n)=1
H, is a bounded self-adjoint operator and ||Hp|| < . Let I' C G and let
V=Y V(n)(6a] )5n,
nel

where the V(n) are real numbers, d,,(m) = ., and (- |-) denotes the scalar product in
H. V is a self-adjoint operator which acts non-trivialy only along the subspace I?(T).
(Explicitly, (V)(n) = V(n)y(n) for n € T and (V4)(n) = 0 for n ¢ I'.) We call such V'
a subspace potential.

In this paper we study scattering properties of the operators

H=H,+V. (1.1)

The abstract model (1.1) is a natural and technically convenient generalization of many
different specific models discussed in recent literature [BBP, CS, JL1, JL3, JM3, MV1,
MV2].

Let us recall some well-known facts. If A is a self-adjoint operator on a Hilbert space
$ and ¢, € §H, then for Lebesgue a.e. £ € R, the limits

(6l(A= B =10) ') = lim(6] (A=~ E—i0) *¥)
exist and are finite and non-zero. We denote by 1g(A) the spectral projection of A onto

a Borel set ©. A bounded operator B is called A-smooth on O if there is a constant C'
such for all € Ran1g(A),

[ IBe o)t < clol
R

If © =R, we simply say that B is A-smooth.



Let A and B be self-adjoint operators and assume that the wave operators

o T itB ,—itA
U™ :=s tginooe e " lg(A),
exist. One easily shows that Ran U* C 1g(A). The wave operators U* are called complete
on © if Ran U* = 1¢(B). The wave operators U= are complete on © iff the wave operators
s— lim el*e™P14(A)
t—+oo
exist. .

Let H, be the cyclic space spanned by H and d,, n € T, and let H be the closure of
the linear span of the subspaces H,. If H = H, we say that {0, }ner is a cyclic family for
H. Tt is not difficult to show (see the proof of Proposition 3.1 in [JL1]) that H does not
depend on the choice of V. Thus, assuming that {6, }ner is a cyclic family for Hy also
implies that it is a cyclic family for H. From hereon we indeed assume that {4, },cr is a
cyclic family for Hy and thus for H.

Let R > 0 be a positive integer and

Fr={negG:pnT) <R}

(Note that 'y = I".) We denote by 1 the orthogonal projection on I?(T'z).
Our main result is:

Theorem 1.1 Let © C R be an open set. Consider the following assumptions:

(a) The operator Hlg(H) has purely absolutely continuous spectrum.
(b) 1, is Hy-smooth on ©.
(c) The wave operators

W* =s— lim e " o14(H,),
t—to0

exist.
(d) There is a set D dense in Ran 1g(Hy) such that for ¢ € D, ||[1;e7Hog|| = O([t|72).
(e) For Lebesgue a.e. E € © and alln € T,

Im (6,|(H — E —i0) " '6,) > 0.

Consider the following statements:
(1) For Lebesgue a.e. E € © and alln €T,

D" Im (6a](H — E —i0)7'6,)|” < o0.

mel';

(2) For a dense set of ¢ € Ranlg(H),

/ 11,67 ¢||2dt < oo.
R



(3) The wave operators W* are complete on ©.

If (a) holds, then (1) = (2). If (e) holds, then (2) = (1). If (b) holds, then (2) = (3).
If (b), (¢) and (d) hold, then (3) = (2). Hence, if (a)—(e) hold, then (1) & (2) < (3).

Remark 1. The same result holds if Hj is replaced by Hy + Uy, where

Uy =Y Us(n)(6a]-)5n

neg

is an arbitary background potential.

Remark 2. Since {0, }ner is a cyclic family for H, (2) = (a). Similarly, if either (b) or
(d) holds, then Hyle(Hy) has purely absolutely continuous spectrum.

Remark 3. The assumption that © is an open set is used only in the proof of implication
(2) = (3), all the other results hold for any Borel set © of positive Lebesgue measure. If
in (b) we assume that 1; is Hyp-smooth, then (b) and (2) imply (3) for any Borel set © of
positive Lebesgue measure.

Theorem 1.1 is based on a simple physical principle already used in some special cases
in [JL3]. If the spectrum of H in © is purely absolutely continuous, then wave packets
with energies in © must propagate. If propagation along the subspace [?(T") is supressed,
then the wave packets must propagate into [2(I")L. Theorem 2.1 quantifies this heuristic
principle and further asserts that under fairly general assumptions the “localization within
the subspace” is the only physical mechanism relevent to the completeness of the wave
operators.

The assumptions (a) and (e) of Theorem 1.1 concern the interacting Hamiltonian H
and could be difficult to check in practice. However, due to results in [JL2], for random
subspace potentials (a) and (e) can be reduced to assumptions on Hy which can be easily
verified in concrete models. Let us describe the random model and this result in detail.

Let €2 be the set of all boundary potentials,

Q=R'= XR,
r

and let B the Borel o-algebra in 2. The model is specified by a choice of a probability
measure P on (2, B). For simplicity, we will consider only the product measures

P:X,U,n,
Tr

where each p, is a probability measure on R. Note that p, is the probability distribution
of the random variable Q 5 V' — V(n). We say that the random variable V' (n) has density
if the measure y,, is absolutely continuous w.r.t. Lebesgue measure. By construction, the
random variables {V'(n)},er are independent.

The following result is an easy consequence of the main theorem in [JL2| (we will
outline its proof in Section 3.1).



Proposition 1.2 Assume that the random variables {V (n)}ner have densities and let
© C R be a Borel set of positive Lebesque measure. Consider the assumption:
(g) The operator Hyle(Hy) has purely absolutely continuous spectrum and for Lebesgue
a.e. £ €0,
> Im (6,/(Ho — E —i0)7'6,) > 0. (1.2)
nel
If (g) holds and the assumption (c) of Theorem 1.1 holds with probability one, then the
assumptions (a) and (e) hold with probability one.

On a technical level, Theorem 1.1 is a variant of Kato’s theory of smooth perturbations.
Its main interest lies in applications to random subspace potentials. The scattering theory
of random Schrodinger operators has received considerable attention in recent literature.
Models that have been studied include slowly decaying random potentials [B, CK, Kr,
RoSh], sparse random potentials [HK, MV1, MV2], and surface random potentials [JL1,
JL3|. Theorem 1.1 can be effectively applied to Anderson models with surface and sparse
random potentials. We will discuss the surface model in the next section. The analysis of
sparse random potential models is more technical and is based on a fusion of techniques
developed in this paper and in [JL1, MV1, MV2]. The scattering theory of sparse random
potentials will be discussed in a continuation of this paper.
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2 Surface random potentials

We consider the same model as in [JL1, JL3]: Let d > 1 be given and let G = Z% x Z,,
where Z, = {0,1,---}. We denote points in G by n = (ny,...,n4+1). We consider
the usual metric on G, p(n,m) = |n — m|y, where |n|; = max; |n;|. The spectrum of
the corresponding discrete Laplacian Hy is purely absolutely continuous and o(Hy) =
[—2(d+1),2(d + 1)].

Let T'={n € G:nqg1 =0} =9G, let V be a potential supported on I', and

H=Hy+V. (2.3)

This particular model is motivated by the physics of disordered surfaces (see [JMP, KP]).
It is obviously an example of the abstract subspace model discussed in the previous section.

We briefly review what is known about the scattering theory of the model (2.3),
refering the reader for details and additional information to the original literature. In
[CS, JL1] it was proven that for all V' the wave operators

W* =5~ lim efe tHo
t—=+oo



exist. This implies that o(Hy) C 0, (H). The question of completeness of the wave
operators W¥ has been studied in [JL1]. In this work the notion of resonant spectrum
R(H) has been introduced, and it was shown that the wave operators are complete on the
set 0(Hy) \ |(H). In [JL1] one can also find various estimates on the location of R(H)
(for example, if |V|| < 1, then R(H) = 0).

The resonant spectrum is characterized by the property that the projection 15 is H-
smooth on any compact subset of o(H) \ R(H). This is a restrictive condition and in
many interesting situations o(Hy) C R(H). It is also known that in general the wave
operators may not be complete on o(Hy) NR(H) [JL1, MV1]|. The current paper was
partly motivated by the question under what conditions one may expect the completeness
of the wave operators on o(Hy) NR(H).

For the model (2.3), it was shown in [JL1] that {d,}.er is a cyclic family for H,
(and hence for H) and that the conditions (b), (c¢) and (d) of Theorem 1.1 hold. Hence,
Theorem 1.1 and Remark 3 after it yield:

Theorem 2.1 Let © C o(H,) be a Borel set of positive Lebesgue measure. Consider the
assumptions:

(a) The operator Hlg(H) has purely absolutely continuous spectrum.

(b) For Lebesgue a.e. E € © and alln € T, Im (§,|(H — E —i0)7%§,) > 0.

Consider the statements:

(1) For Lebesgue a.e. E € © and alln € T

D [Im (5,|(H — E —i0) "0 < oc.

mel

(2) For a dense set of ¢ € Ranlg(H),

/||11e_”H¢||2dt < 0.
R
(3) The wave operators W= are complete on ©.

Then (2) = (3). If (b) holds, (2) = (1). If (a) holds, then (1) = (2). If (a) and (b)
hold, then (3) = (2). Hence, if (a) and (b) hold, then (1) & (2) & (3).

We now assume that V' is a random subspace potential. An explicit computation (see
[JL2]) shows that for all n € I and E € int o(H,),

Im (6,|(Hy — E —i0)714,) > 0.

Hence, Proposition 1.2 and Theorem 1.1 yield:



Theorem 2.2 Assume that the random variables {V (n)}ner have densities and let © C
o(Hy) be a Borel set of positive Lebesgue measure. Then the following statements are

equivalent:
(1) FordP @ dE-a.e. (V,E) € Q x O and for alln €T,

D Im (6,[(H — E —i0)7'6,)|” < o0.

mel

(2) For P-a.e. V there is a dense set of ¢ € Ran1lg(H) such that

/ 1o~ g2t < oo.
R

(3) The wave operators W= are P-a.s. complete on ©.

The following corollary follows easily from Theorem 2.2 and Proposition 3.1 in [JL1].

Corollary 2.3 Assume that the random variables {V (n)}ner have densities and let © C
o(Hy) be a Borel set of positive Lebesgue measure. Assume that for dAPQdE-a.e. (V,E) €
Q2 x0O and for alln €T,

limui)nf |(0n|(H — E — i)™ 6,,) > < 0. (2.4)
€ mel

Then the wave operators W= are P-a.s. complete on ©.

The condition (2.4) should be compared with the well-known Simon-Wolff localization
criterion [SW]. For comparison, we also recall the following result proven in [JM1, JM2]:
if {V(n)}ner have densities, © C R\ 0(Hy), and for dP @ dE-a.e. (V, E) € Q x O and all
nel,

. N

h%nfm%; |(6n](H — E —i€)7'6,)* < o0, (2.5)
then the spectrum of H in © is P-a.s. pure point. If suppu, = R for at least one n, then
the condition (2.5) is also necessary for H to have P-a.s. pure point spectrum in O.

We now discuss an application of Theorem 2.2. For simplicity, we assume that all the
measures /i, are the same and equal to p, and that du = p(z)dz.

Theorem 2.4 Assume that d +1 = 2. Let Uper be a periodic potential supported on I’
and H = Hy + Uper + AV, V € Q, where X is a real constant. Assume that (z)*p(z) €
L'(R) N L®(R) for some a > 2/3. Then there is a constant A > 0 such that for |A| > A,
the wave operators W= are P-a.s. complete.



Theorem 2.5 Assume that d+1 = 2 and let H = Hy+ AV, V € Q. Assume that
(z)ep(x) is in L'(R) for some a > 2/3 and in L°(R) for some o > 5/3. Then there is a
constant A > 0 such that for |A\| < A the wave operators W* are P-a.s. complete.

In [JM1] it was shown that under the conditions of these theorems the spectrum of H
outside o(H,) is P-a.s. dense pure point with exponentially decaying eigenfunction (for
related results see [AM, G, JM2]).

Assume now that Uy = 0 and let suppu be the support of the probability measure pu.
Then, for P-a.e. V,

o(H) =0(Hy) U{[2d,2d] + = + z 'z € suppy, |z| > 1},

see [JL1]. For example, if y is Gaussian, then o(H) = R P-a.s. (In this case, the
resonant spectrum of H is also equal to R P-a.s.) Thus, Theorems 2.4 and 2.5 provide (to
the best of our knowledge) the first non-trivial examples of Anderson type Hamiltonians
H = Hy+V which have P-a.s. dense point spectrum outside o(Hy), purely a.c. spectrum
in 0(Hp), and the scattering between H and H, is complete.

Theorems 2.4 and 2.5 are closely related to the results of [JL3]. There it was shown
that under the same conditions, for all ¢ € H and R > 0,

1T —itH 2
Tlg%oﬁ/TlE(HlRe 1y dl?) dt = 0. (2.6)

(E stands for the expectation). A consequence of (2.6) is that the operators H have P-a.s.
no surface spectrum in o(Hy), see [KP, JL3, JMP].

The proof of (2.6) is based on the following estimate proven in [JL3]: under the
conditions of either Theorem 2.4 or Theorem 2.5, forn € I', R > 0 and 2/3 < s < 1,

sup B D |(0n|(H — E—ie)™'6,)[" | < o0.
E€R,e#£0 meTx
This estimate and Fatou’s lemma yield that for dP ® dF a.e. (V) F) € Q x R,

s/2
( Z |(5m|(H —FE - 10)16n)|2>

mel'rp
<) (Gml(H = E—i0)7'6,)|° < oo.
mel' g

By Theorem 2.2, the last estimate implies that the wave operators W+ are P-a.s. com-
plete, and Theorems 2.4 and 2.5 follow.



3 Proofs

3.1 Preliminaries

Proof of Proposition 1.2. By the remark before Theorem 1.1, we may assume that H
is spanned by H and {d, }ner for all V. One also easily verifies that the subspaces H,
and H,, are not orthogonal for all V' and n,m € G. The condition (1.2) ensures that ©
is contained in an essential support of the absolutely continuous spectrum of Hy. The
existence of wave operators implies that the operators H | Ran W= and H, | Ran 1¢(H,)
are unitarily equivalent. Hence, with probability one, © is contained in an essential
support of the absolutely continuous spectrum of H and the proposition follows from
Corollaries 1.1.1 and 1.1.3 in [JL2]. O

The next lemma holds for an arbitrary subspace potential V.

Lemma 3.1 For any m,n € I', the spectral measure vs,, 5, for H and 6,,,0,, is real-
valued.

Proof. Let C(R) be the set of all real-valued, bounded, continuous functions on R. The
measure v, , 5, is real-valued iff for all f € C(R), (6,,|f(H)J,) is a real number. Note first
that for any positive integer k, (0,,|(Ho + V)¥4,) is a real number. It follows that for any
polynomial p with real coefficents, (J,,|p(H)d,) is a real number. Assume now that the
potential V' is bounded. Then o(H) is a compact set and, by an approximation argument,
for all f € C(R), (0,,|f(H)dy) is a real number.

If V' is unbounded, let V;(5) = V(j) if |j| < ¢, otherwise V;(j) = 0. Set Hy = Hy+ V,.
Then H, — H in the strong resolvent sense and this implies that for any f € C(R),
f(Hg) — f(H) strongly. Hence,

is a real number. O
One consequence of this lemma is the identity
Im (6,,|(H — E —i0)7%6,) = Im (6,|(H — E —i0)"'6,,),

which we will often use in the sequel.
We also recall the following well-known result (see, e.g., [S]).

Lemma 3.2 Let p be a finite reqular complexr measure and dp = fdE+dpging its Lebesgue
decomposition. Then for Lebesgue a.e. E € R,

f(E)zlimW_l/R( edp(z)

€l0 x—E)?+¢e
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Combining the last two lemmas we derive

Lemma 3.3 The absolutely continouous part of the spectral measure v, 5, s equal to
7 Im (6,,|(H — E —i0)714,)dE.

3.2 Proof of Theorem 1.1

Theorem 1.1 follows from Propositions 3.4 and 3.5 below.
In Proposition 3.4 we use the same notation as in Theorem 1.1. In particular, (b)-(d)
refer to the assumptions of Theorem 1.1. We assume that H is spanned by H and {6, }ner-

Proposition 3.4 Let © C R be an open set. Consider the following statements:
(1) For a dense set of ¢ € Ranlg(H),

/R 1o 6|12t < oo. (3.7)

(2) The wave operators

W* =5~ lim e"foe 14 (H)
t—too

exist.
If (b) holds, then (1) = (2). If (b), (c) and (d) hold, then (2) = (1).

Proof. The proof is a based on the arguments used in [JL1, JL3, JM3] in the analysis
of some specific examples of the abstract model (1.1). These arguments have their roots
in Kato’s theory of smooth perturbations.

Assume first that (b) holds. To prove that (1) = (2) it suffices to show that for any
¢ € Ran1g(H) for which (3.7) holds, the limits

s itHo ,—itH
tl}inooe e "o (3.8)
exist. In what follows we fix ¢.
Note first that _
lim 1ge "¢ = 0. (3.9)
[t| =00

To prove this relation, let . _
w(t) := ™1y H g,

Then, by (3.7), [ ||w(¢)||*dt < co. Since ||w'(t)|| < 2||Hol, it follows from Exercise 62 in
[RS] that limy_,. w(t) = 0.
We adopt the shorthand 15 :=1 — 1;. Let T" be a linear operator defined by

Top=— Y O0m ifnerl,

mgl,p(m,n)=1
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Téy= Y. 6m, i neli\T,

mel,p(m,n)=1

and 79, =0 if n € T';. A simple calculation yields

Obviously, ||T|| < 2||Hy|| and T1; = 1,T.
Let I = [a,b] C © and let v be a simple closed curve in the complex plane that
separates [a,b] and R\ © and encloses I. Then, for any ¢ € H,

1p\o(Ho)e o 15e ™1, (H)y =
_ (2ri)"! ]{ Lo (Ho)e ™ (Hy — 2) " (Holg — 1gH)(H — 2)"e 1, (H)y dz,
v
see the proof of Theorem XIII.31 in [RS]. Hence, for some constant C,
| 1r\o (Ho)e o 15eH 1, (H)1p|| < Cf |11.(H — 2)~te ™1, (H)y|| dz.
v
Set

U(z,t) == 1,(H — 2)"te ™ 1;(H)p.

The vector-valued function ¢(z,t) is uniformly bounded on 7 x R and has a uniformly
bounded derivative in t. Moreover, for all z € vy, £(z,t) is square-integrable in ¢. It follows
that limy e £(2,t) = 0 and so

sl oo (H)e 01,0711 1) =

Since © is a countable union of closed intervals, we conclude that

s — lim ].R\@(Ho)eitHOlae_itH].@(H) =0. (311)

t—+o0

We are now ready to prove that the limits (3.8) exist. Let
((t) == Llo(Ho)e™ P 15e " ¢,

By (3.9) and (3.11), it suffices to show that lim; ,. ((¢) exist. Let ¢ € H be arbitrary.
It follows from (3.10) that

4 (160) = ite 16 (HopulTe ),
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and so, for ¢t > s,

1/2

wlew-cen < ( [ t e 0 ) " (/ t 1ol

Since 1y is Hyp-smooth on O, there is a constant C' such that for all ¢ € H,

/ 11177010 (Ho)9h|[*dt < Cly|*.
R

Hence, for some constant C,

t ' 1/2
I — ¢l < C ( / ||11e—”H¢||2dT) |

By (3.7), the sequence ((t) is Cauchy as ¢t — %00, and the limits lim;_,, o, ((¢) exist. This
finishes the proof that if (b) holds, then (1) = (2).

Assume now that in addition, (c) and (d) also hold. If (2) holds, then W* : Ran 1¢(Hp)
Ran 1g(H) are norm-preserving bijections. Hence, it suffices to show that for all 1) € D,

/ |1ie W Hy||*dt < cc. (3.12)
R
By (3.8), _ _
W* = lim eltHlae_ltHO,
t—o0
and so
© d . .
W+¢ o ¢ — / d_elTHlﬁe_lTHOw
0 T
= i/ elTH e T Hoy,dr,
0
Hence,
[Le W H|? = |1, W e o2
< L(t) + 2|[1e7 "oy |2,
where

00 2
2 < ¢ ( [ e mpar)
0
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By the definition of D, L(t) = O(|t|72), and (3.12) follows. O

We have used the assumption that © is an open set only in the proof of the estimate
(3.11). If 1; is Hy-smooth this estimate is not needed and the proposition holds for any
Borel set ©.

The next proposition is of an independent interest and we prove it in a more general
setting.

Proposition 3.5 Let A be a self-adjoint opeartor on a Hilbert space $) and {6, }ner a
countable orthonormal set in §). Assume that {0, }ner is a cyclic family for A. Let © C R
be a Borel set of positive Lebesque measure. Consider the following assumptions:

(a) The operator Alg(A) has purely absolutely continuous spectrum.

(b) The spectral measure for A and 6, 6, is real-valued for all n,m € F.

(c) For Lebesgue a.e. E € © and alln € F,

Im (6,|(A — E —i0)7'8,) > 0.

Consider the following statements:
(1) For Lebesgue a.e. E € © and for alln € F,

D I (8,/(A = E —i0)™'6,)|” < o0.

meF

(2) For a dense set of ¢ € 19(A)9,

[ 1Gmle™¢)Pdt < oo (3.13)

If (a) and (b) hold, then (1) = (2). If (b) and (c) hold, then (2) = (1).

Proof. We first assume that (a) and (b) hold and show that (1) = (2). For n € F let
9, be the cyclic space spanned by A and §,,. It suffices to show that for all n there is a
dense set of ¢ € 1g(A)$,, for which (3.13) holds. In what follows we fix n.

Let

Q= {E €0: ) [Im(6,[(A— E—i0)"'6,)|" < j} :
meF

The set {x(A)le,(A)d, : x € L®(R),j > 0} is dense in 1¢(A)$, and so it suffies to show
that (3.13) holds for ¢’s in this set. In what follows we fix ¢ = x(H)1e,(H)d,.
The spectral theorem and the assumption (b) yield,

(Gunle4g) = / ety (B)r"Tm (5,1 (A — E — i0)~16,)dE.
0;
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Hence
/ |(Op|e " ¢)|?dt = 271 / Ix(E)|?Im (6,(A — E —i0)76,,)|?dE,
R @]‘

and

meF meF

S [ Gl o) = 3 20 [ ()i 5o = B = 10) 6, PAE

< 4(d + 157 Ixlloo-

Assume now that (b) and (c) hold. Assume that (2) holds but (1) does not (note that

(2) implies (a)). Then there is n € F and a Borel set © C © of positive Lebesgue measure
such that for £ € O,

D [Im (6,/(A — E —i0)7'6,)|” = o0.

meF

By assumption (c), 1g(H)$, is a non-trivial subspace of §). Let v, be the spectral
measure for A and 6,,. By the spectral theorem, for every ¢ € 15(A)$,, there is a Borel
function x, € L*(R, dvs, ) such that

(616) = / X6 (E)2dvs, = 7 / xo(E) P (3,|(A — F — 10)'6,)dE.  (3.14)

Obviously, if ¢ # 0, then x4(E) # 0 for a set of E’s in © of positive Lebesgue measure.
Moreover,

(6|e ) = 771 / e "y (E)Im (6,,|(A — E —i0)7'5,)dE,
(S

and so for all non-zero ¢ € 15(A)9,,

> /R |(Gmle ™) Pdt = 2771 Y /@ X (E)[*[Im (3,|(A — E —10) '0,)[*dE

meF meF

This contradicts (2). O
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