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Abstract

We study self adjoint operators of the form Hω = H0 +
∑

ω(n)(δn| · )δn, where
the δn’s are a family of orthonormal vectors and the ω(n)’s are independent random
variables with absolutely continuous probability distributions. We prove a general
structural theorem which provides in this setting a natural decomposition of the
Hilbert space as a direct sum of mutually orthogonal closed subspaces that are
almost surely invariant under Hω and which is helpful for the spectral analysis of
such operators. We then use this decomposition to prove that the singular spectrum
of Hω is almost surely simple.
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1 Introduction

Let H be a separable Hilbert space and H0 a bounded self adjoint operator on H. Let
{δn}n∈N be a set of orthonormal vectors in H, where N is either finite or a countable
infinite set. Let {pn}n∈N be absolutely continuous (w.r.t. Lebesgue measure) Borel prob-
ability measures on R and consider the probability space (Ω, dP ), where Ω = RN and
dP =

⊗

N dpn. For each ω ∈ Ω, we define

Vω :=
∑

n∈N

ω(n)(δn| · )δn, Hω := H0 + Vω. (1.1)

We call families of self adjoint operators of the form {Hω}ω∈Ω, Anderson type Hamiltonians
[JL1]. They are a conceptually and technically convenient generalization of many specific
models of discrete random Schrödinger operators discussed in the literature, including
the standard Anderson model on Zd, models with decaying, sparse, or surface random
potentials, models on Bethe lattice, etc.

We denote by Hω,ψ, the cyclic subspace generated by Hω and a vector ψ ∈ H. This
subspace is the closure of the linear span of the set of vectors {(Hω− z)−1ψ : z ∈ C \R}.
By the spectral theorem, the operator Hω � Hω,ψ is unitarily equivalent to the operator of
multiplication by the parameter on L2(R, dµω,ψ), where µω,ψ is the spectral measure forHω

and ψ. In the sequel, µω,ψ,ac and µω,ψ,sing denote, respectively, the absolutely continuous
and the singular parts of µω,ψ (w.r.t. Lebesgue measure). For notational simplicity, we
write Hω,n for Hω,δn , µω,n for µω,δn , etc.

For any subset M ⊆ N , we let Hω,M denote the cyclic subspace generated by Hω and
the family of vectors {δn}n∈M. This subspace is the closure of the linear span of the set
∪n∈MHω,n. For every pair n,m ∈ N , we define

En,m := {ω : Hω,n 6⊥ Hω,m}.

Let

S := {n ∈ N : for P -a.e. ω, µn,ω is not equivalent to the Lebesgue measure on R},

where we say that two Borel measures are equivalent if they have the same sets of zero
measure. Our first result is the following general structural theorem for Anderson type
Hamiltonians.

Theorem 1.1 (1) For every ω ∈ Ω, Hω,N is equal to the cyclic subspace generated by

H0 and {δn}n∈N , and is thus completely independent of ω.

(2) For every pair n,m ∈ N , P (En,m) ∈ {0, 1}.
(3) The relation n ∼ m iff P (En,m) = 1 is an equivalence relation on S.

(4) Let S0 ≡ N \ S and let Sk, k = 1, 2, . . . be the equivalence classes generated by ∼
within S. Then for every k ≥ 0, there exists a closed subspace HSk

⊆ H, such that for

P -a.e. ω ∈ Ω, Hω,Sk
= HSk

.

(5) For every k,m ≥ 0, k 6= m, for P -a.e. ω ∈ Ω, Hω,Sk
⊥ Hω,Sm

.
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We note that in many cases, S = N (in particular, this is clearly the case whenever
the spectrum of Hω is almost surely not equal to R). Moreover, as we discuss further
in Section 3 below, there are many natural cases, including all of the above mentioned
discrete random Schrödinger operators, where ∼ is an equivalence relation on N , even if
S 6= N . In such cases, one can prove a slightly simpler variant of Theorem 1.1, in which ∼
is an equivalence relation on N and where all of the Sk’s are equivalence classes generated
by ∼. In the event that N \ S 6= ∅ and that ∼ is not an equivalence relation on all of N ,
one can still view the set N \ S as a special equivalence class along side the equivalence
classes generated by ∼ within S. We thus see that, in either case, Theorem 1.1 provides
a division of the set N into ω-independent equivalence classes. Each such equivalence
class has an associated subspace of Hω,N , which is the cyclic subspace generated by Hω

and the set of δn vectors corresponding to this class. (4) implies that these subspaces
coincide, P -a.s., with some ω-independent subspaces. (4) and (5) together then imply
that these ω-independent subspaces are mutually orthogonal and that they are P -a.s.
invariant under Hω. Thus, Theorem 1.1 gives an ω-independent decomposition of H as a
direct sum of mutually orthogonal closed subspaces which are P -a.s. invariant under Hω.

Recall that the main results of [JL1] were obtained for Anderson type Hamiltonians of
the form (1.1), under the additional assumption that P (En,m) = 1 for every pair n,m ∈ N .
The current paper is, in fact, a natural continuation of [JL1]. Part of the importance of
Theorem 1.1 is that it allows one to apply the results of [JL1] to the more general setting
considered here by essentially applying them independently to the restrictions of Hω to
the different invariant subspaces associated with the equivalence classes generated by ∼.

We note that by item (1) of Theorem 1.1, the invariant subspace Hω,N is non-random
and that if Hω,N 6= H, then Hω � H⊥

ω,N = H0 � H⊥
ω,N . Thus, our interest here is only

in Hω � Hω,N . Therefore, in what follows we identify Hω with Hω � Hω,N , namely, we
assume that {δn}n∈N is a cyclic family for Hω. This involves no real loss of generality. We
denote by Hω,sing and Hω,ψ,sing the subspaces associated, correspondingly, with the singular
spectra of Hω and Hω � Hω,ψ. Recall that Sk, k = 1, 2, . . . , denote the equivalence classes
generated by ∼ within S. Our main result is the following:

Theorem 1.2 Let ψ =
∑

k≥1 akδnk
, where nk ∈ Sk, ak 6= 0, and

∑

k a
2
k < ∞. Then for

P -a.e. ω,

Hω,sing = Hω,ψ,sing.

Remark 1. This says that, with probability one, the singular spectrum of Hω is simple
and ψ is a cyclic vector for Hω � Hω,sing.
Remark 2. If P (En,m) = 1 for every pair n,m ∈ N , then one can take ψ = δn for
any n. This is the case, for example, if N is the set of vertices of a connected graph of
a bounded degree, H = `2(N ), the δn’s are delta function vectors on N , and H0 is the
associated discrete Laplacian ((H0ψ)(n) =

∑

|n−m|=1 ψ(m), where |n−m| is the distance
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on the graph between n and m). The special case N = Zd corresponds to the Anderson
model. A natural case to have in mind where P (En,m) = 0 for some pairs is where N is
the set of vertices of the union of two or more connected graphs which are disconnected
from each other. In such a case, Theorem 1.2 says that the singular spectrum of Hω is
still almost surely simple, but one needs to take some linear combination of delta function
vectors from the different disconnected components of N in order to get a cyclic vector
for Hω � Hω,sing.

Theorem 1.2 is motivated, in part, by the following result of [JL1]:

Theorem 1.3 (Theorem 1.1 of [JL1]) Assume that P (En,m) = 1. Then the spectral

measures µω,n and µω,m are P -a.s. equivalent and the operators Hω � Hω,n and Hω � Hω,m

are thus P -a.s. unitarily equivalent.

In this paper we prove

Theorem 1.4 Assume that P (En,m) = 1. Then for P -a.e. ω,

Hω,n,sing = Hω,m,sing.

As we shall see below, Theorem 1.2 follows fairly easily from Theorem 1.4. Similarly to
[JL1], the proof of Theorem 1.4 can be naturally reduced to the special case N = {1, 2}.
We study this special case using some standard tools of rank one perturbation theory
[Si2] and Poltoratskii’s theorem concerning the ratios of Borel transforms of measures
[Po, JL3]. We note that our proof of Theorem 1.4 relies heavily on the full strength of
Poltoratskii’s theorem.

For the case of pure point spectrum and a single class of equivalence, Theorem 1.2 has
been essentially proven by Simon in [Si1]. Theorem 1.2 is thus an extension of Simon’s
result. In particular, it extends it to singular continuous spectrum. We note that while
the random part (Vω) of Hω may be considered as the main generator of its spectral prop-
erties, it is also possible to consider Anderson type Hamiltonians where the random part
is “very small.” In particular, one can consider cases where Vω is almost surely a trace
class operator with an arbitrarily small trace norm. From this perspective, spectral prop-
erties which must hold for Anderson type Hamiltonians may be interpreted as “generic”
properties of self adjoint operators, because any spectral property of a self adjoint opera-
tor that cannot occur with positive probability for Anderson type Hamiltonians must be
very unstable—as it would be almost surely “removed” by a “tiny” random perturbation.
From this point of view, Theorem 1.2 can be interpreted as saying that singular spectrum
is “generically simple.” It is thus connected with the many known results concerning the
non-genericity of degenerate eigenvalues. As far as we know, Theorem 1.2 is the first
result establishing (in some sense) the non-genericity of degenerate singular continuous
spectrum.

4



We note that, since Vω may be a trace class operator, Hω and H0 may have the
same absolutely continuous spectrum with the same multiplicity. Thus, since H0 may
have absolutely continuous spectrum of arbitrary multiplicity, no general statement can
be made regarding the multiplicity of the absolutely continuous spectrum of Hω. The
simplicity of the singular spectrum is thus the strongest possible statement that one can
make regarding spectral multiplicity for general Anderson type Hamiltonians.

Another potentially interesting aspect of Theorem 1.2 is that it provides a new criterion
for the existence of absolutely continuous spectrum for Anderson type Hamiltonians.
Explicitly, in order to prove that an Anderson type Hamiltonian has some absolutely
continuous spectrum (P -a.s.), it suffices to prove that its spectrum is not simple (with
any positive probability). Moreover, for cases with a single class of equivalence, it suffices
to show that for some n, δn is not a cyclic vector with positive probability. These criteria
do not refer to any specific energy ranges (mobility edges) and could thus be potentially
easier to establish than, e.g., the detailed picture of Anderson delocalization suggested by
the physics literature for the Anderson model on Zd.

We note that (multidimensional) Anderson type Hamiltonians with singular continu-
ous spectrum have been constructed recently by Last-Simon [LS]. Theorem 1.2 establishes
the simplicity of the spectrum for these models.

We finish this discussion with some technical remarks. First, the assumption that the
ω(n)’s are completely independent can be relaxed. It suffices that for each n, the condi-
tional probability distribution of ω(n), given any {ω(m)}m6=n, is absolutely continuous,
and (if N is infinite) that the tail σ-field of the sequence {ω(n)}n∈N is trivial (so that
Kolmogorov’s 0-1 law can be applied). Second, the assumption that H0 is bounded can
also be relaxed. With the single exception of item (1) of Theorem 1.1, our results (namely,
items (2)–(5) of Theorem 1.1 and Theorems 1.2 and 1.4) hold with the same proofs also
for an unbounded self adjoint H0, as long as Hω � Dom(H0)∩Dom(Vω) is essentially self
adjoint for P -a.e. ω. We note that this condition is non-other than the natural condition
to ensure that Hω makes sense as a self adjoint operator in this case. Regarding item (1)
of Theorem 1.1, we note that if H0 is unbounded, then a deterministic statement for all

ω is not likely to be valid, since (if N is infinite) there will usually be some ω’s in RN for
which Hω will not be self adjoint. However, our proof of this statement shows that Hω,N

is equal to the cyclic subspace generated by H0 and {δn}n∈N for every ω for which both
Hω � Dom(H0)∩Dom(Vω) and H0 � Dom(H0)∩Dom(Vω) are essentially self adjoint. A
natural case where this clearly holds is when Vω is bounded. If H0 � Dom(H0)∩Dom (Vω)
is not essentially self adjoint, one can still use an argument similar to our proof of item
(4) of Theorem 1.1 below (namely, using rank one perturbations and Kolmogorov’s 0-1
law) to show that for P -a.e. ω ∈ Ω, Hω,N coincides with some non-random subspace.
However, we cannot exclude in this case that the almost sure Hω,N is strictly contained in
the cyclic subspace generated by H0 and {δn}n∈N . We also note that, similarly, if we do
have that both Hω � Dom(H0)∩Dom(Vω) and H0 � Dom(H0)∩Dom(Vω) are essentially
self adjoint, then one can use an argument similar to our proof of item (1) of Theorem
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1.1 below to prove a slightly stronger variant of item (4) of Theorem 1.1, namely, that for
every k ≥ 0, for P -a.e. ω ∈ Ω, Hω,Sk

coincides with the cyclic subspace generated by H0

and {δn}n∈Sk
.

The rest of this paper is organized as follows. In Section 2 we give some preliminaries
and in Section 3 we prove Theorem 1.1. In Section 4 we prove a theorem about rank one
perturbations and in Section 5 we prove a theorem about rank two perturbations, which
is a simple consequence of the theorem we prove in Section 4. Finally, in Section 6 we
prove Theorems 1.4 and 1.2.
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2 Preliminaries

Throughout the paper we will use the shorthand C± := {z : ±Im z > 0}. The Borel
transform of a complex valued measure µ on R is defined by

Fµ(z) =

∫

R

dµ(x)

x− z
, Im z 6= 0.

If f ∈ L1(R, dµ), then fµ denotes the measure defined by (fµ)(S) =
∫

S
fdµ. We will

need the following celebrated result of Poltoratskii [Po, JL3]:

Theorem 2.1 Let µ be a complex valued measure on R and f ∈ L1(R, dµ). Then

lim
ε↓0

Ffµ(E + iε)

Fµ(E + iε)
= f(E)

for µsing-a.e. E.

We will also need the celebrated theorem of F. & M. Riesz [Ri]:

Theorem 2.2 If µ is a non-vanishing complex valued measure on R and if Fµ(z) van-

ishes on C+, then |µ| is equivalent to the Lebesgue measure on R.

In the literature one can find many different proofs of Theorem 2.2. For example, three
different proofs are given in [Ko]. To the best of our knowledge, however, it has not been
previously noticed that the F. & M. Riesz theorem is an easy consequence of Poltoratskii’s
theorem. Since this fact is of some independent interest, we include the proof below.

Proof of Theorem 2.2. We first prove that |µ| is absolutely continuous w.r.t. Lebesgue
measure. Write µ = h|µ|, where |h(E)| = 1 for all E. By Poltoratskii’s theorem,

lim
ε↓0

|Fµ(E + iε)|

|F|µ|(E + iε)|
= |h(E)| = 1,

6



for |µ|sing-a.e. E. Since limε↓0 |F|µ|(E + iε)| = ∞ for |µ|sing-a.e. E, we must have that
limε↓0 |Fµ(E + iε)| = ∞ for |µ|sing-a.e. E. Thus, if |µ|sing 6= 0, Fµ cannot vanish in C+,
and we conclude that |µ|sing = 0.

To prove that |µ| is equivalent to the Lebesgue measure on R, we need to show that

ImF|µ|(E + i0) = lim
ε↓0

∫

R

ε d|µ|(x)

(x− E)2 + ε2
> 0 (2.2)

for Lebesgue a.e. E. Since, for any measure ν,

Fν(E + iε) =

∫

R

(x− E) dν(x)

(x− E)2 + ε2
+ i

∫

R

ε dν(x)

(x− E)2 + ε2
, (2.3)

we see that if ImF|µ|(E + i0) = 0 for some E, then Fµ(E + i0) = Fµ(E − i0) (in the
sense that any one of these limits exists if and only if the other exists and then they are
equal). Since µ is non-vanishing and Fµ vanishes on C+, Fµ is non-vanishing on C−, and
by well known results about boundary values of analytic functions [Ko], Fµ(E−i0) 6= 0 for
Lebesgue a.e. E. Hence, if ImF|µ|(E+i0) = 0 on a set of positive Lebesgue measure, then
Fµ(E+i0) 6= 0 on a set of positive Lebesgue measure and this contradicts the assumption
that Fµ vanishes on C+. 2

Another fact that we need is:

Lemma 2.3 Let µ be a finite positive Borel measure on R and let f ∈ L2(R, dµ). Then

for Lebesgue a.e. E ∈ R for which ImFµ(E + i0) = 0, Ffµ(E + i0) = Ffµ(E − i0).

Proof. By the Cauchy-Schwartz inequality and (2.3), we have

∣

∣

∣

∣

∫

R

εf dµ(x)

(x− E)2 + ε2

∣

∣

∣

∣

≤

√

∫

R

ε|f |2 dµ(x)

(x− E)2 + ε2

∫

R

ε dµ(x)

(x− E)2 + ε2

=
√

ImF|f |2µ(E + iε) ImFµ(E + iε) .

(2.4)

Since lim supε→0 ImF|f |2µ(E + iε) < ∞ for Lebesgue a.e. E ∈ R, we see that the last
expression in (2.4) goes to zero as ε→ 0 for Lebesgue a.e. E ∈ R for which ImFµ(E+i0) =
0. Thus, by (2.3) again, we see that for an appropriate set of E’s

lim
ε↓0

Ffµ(E + iε) = lim
ε→0

∫

R

(x− E)f dµ(x)

(x− E)2 + ε2
= lim

ε↓0
Ffµ(E − iε).

2

We also need:
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Lemma 2.4 (the spectral averaging lemma) Let µ be a Borel probability measure on

R, let A denote the operator of multiplication by the parameter on L2(R, dµ), let 1 denote

the constant function 1(x) = 1 ∀x ∈ R, and for every λ ∈ R, let µλ be the spectral

measure for the vector 1 and the operator A+ λ(1| · )1 on L2(R, dµ). Then for any Borel

set S ⊆ R,
∫

R

µλ(S) dλ = |S|,

where | · | denotes Lebesgue measure.

Proof. This is an immediate consequence of Theorem I.8 of [Si2]. 2

In our proofs we will deal with functions on the probability space and with subsets
of it that are defined through the spectral theory of Hω. It is not difficult to show that
all of the functions and sets which appear in our paper are measurable. We give below
two of the relevant measurability arguments, largely as an example of how these can be
obtained. The others are left to the reader. For definitions and basic results concerning
measurability for random self adjoint operators, we refer the reader to [CL].

Lemma 2.5 Let 1ω,ψ be the orthogonal projection onto Hω,ψ. Then the map ω → 1ω,ψ is

measurable.

Proof. Let {zk} be an ordering of points in C \ R whose both coordinates are rational
numbers. Let φk,ω = (Hω − zk)

−1ψ. Obviously, φk,ω 6= 0, the linear span of the set {φk,ω}
is dense in Hω,ψ for all ω, and the functions ω → φk,ω ∈ H are measurable. Let {uk,ω}
be an orthonormal basis of Hω,ψ obtained from {φk,ω} by the Gram-Schmidt procedure.
Then the functions ω → uk,ω are measurable. Since, for any φ ∈ H,

1ω,ψφ =
∑

k

(uk,ω|φ)uk,ω,

the function ω → 1ω,ψ is measurable. 2

Lemma 2.6 Let ψ, ϕ ∈ H. Then the sets

Ω1 := {ω : Hω,ψ ⊥ Hω,ϕ} and Ω2 := {ω : Hω,ψ,sing = Hω,ϕ,sing}

are measurable.

Proof. Let {φi} be a countable dense set in H. Then

Ω1 = {ω : (1ω,ψφi|1ω,ϕφj) = 0, ∀i, j},

and the set on the r.h.s. is measurable by the previous lemma.
Let 1sing(Hω) be the projection on Hω,sing. The map ω → 1sing(Hω) is measurable (see

[CL]). Let 1ω,ψ,sing be the projection on Hω,ψ,sing. Then, 1ω,ψ,sing = 1sing(Hω)1ω,ψ and so
the function ω → 1ω,ψ,sing is measurable. Finally, the measurability of Ω2 follows from

Ω2 = {ω : (φi|1ω,ψ,singφj) = (φi|1ω,ϕ,singφj), ∀i, j}.

2
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3 The relation ∼

We recall the following well known result (see, e.g., the proof of Corollary 1.1.3 in [JL1]):

Proposition 3.1 Assume that for P -a.e. ω, µω,n,ac is equivalent to the Lebesgue measure

on R. Then µω,n,sing = 0 for P -a.e. ω, namely, n 6∈ S.

Proof of Theorem 1.1. (1) We assume here that both Hω � Dom (H0) ∩ Dom(Vω)
and H0 � Dom (H0) ∩ Dom(Vω) are essentially self adjoint. (This clearly holds if H0 is
bounded.) Let H0,N denote the cyclic subspace generated by H0 and {δn}n∈N . Without
loss of generality, we assume that N = {1, 2, . . . }, and for every n ∈ N , we define

H(n)
ω = H0 +

∑

1≤p≤n

ω(p)(δp| · )δp,

H̃(n)
ω = H0 +

∑

p>n

ω(p)(δp| · )δp.

For all z ∈ C \ R and n, k ∈ N , we have

(H(n)
ω − z)−1δk = (H0 − z)−1δk −

∑

1≤p≤n

ω(p)(δp|(Hω − z)−1δk)(H0 − z)−1δp,

(H̃(n)
ω − z)−1δk = (Hω − z)−1δk +

∑

1≤p≤n

ω(p)(δp|(H̃
(n)
ω − z)−1δk)(Hω − z)−1δp,

and thus
(H(n)

ω − z)−1δk ∈ H0,N , (H̃(n)
ω − z)−1δk ∈ Hω,N .

If N is finite, then there is an n for which H
(n)
ω = Hω and H̃

(n)
ω = H0, and so we see

that H0,N = Hω,N . Otherwise, our assumption that both Hω � Dom(H0)∩Dom(Vω) and

H0 � Dom(H0)∩Dom (Vω) are essentially self adjoint implies that limn→∞H
(n)
ω = Hω and

limn→∞ H̃
(n)
ω = H0, where both limits are in the strong resolvent sense. Thus, we have

(Hω − z)−1δk = lim
n→∞

(H(n)
ω − z)−1δk ∈ H0,N ,

(H0 − z)−1δk = lim
n→∞

(H̃(n)
ω − z)−1δk ∈ Hω,N ,

and so H0,N = Hω,N .
(2) First, note that Hω,n 6⊥ Hω,m iff there exists z ∈ C\R such that (δn|(Hω−z)−1δm) 6=

0. Let ω ∈ En,m and let z be such that (δn|(Hω − z)−1δm) 6= 0. Let p ∈ N and

Hω,λ = Hω + λ(δp| · )δp. (3.5)

9



Then

(δn|(Hω,λ − z)−1δm) = (δn|Hω − z)−1δm) − λ(δn|(Hω − z)−1δp)(δp|(Hω,λ − z)−1δm)

= (δn|Hω − z)−1δm) − λ
(δn|(Hω − z)−1δp)(δp|(Hω − z)−1δm)

1 + λ(δp|(Hω − z)−1δp)
,

(3.6)

where the second equality in (3.6) is obtained by applying the first equality to the case
n = p and then using the resulting expression for (δp|(Hω,λ− z)−1δm). Hence, there exists
at most one λ such that (δn|(Hω,λ − z)−1δm) = 0. Since the random variable ω(p) has
density, the event En,m is independent of ω(p) for all p ∈ N . If N is finite, this yields the
statement. If N is infinite, then En,m is measurable w.r.t. the tail σ-field of the sequence
{ω(p)} and Kolmogorov’s 0-1 law yields that P (En,m) ∈ {0, 1}.

(3) Let
Rn,m := {ω : (δn|(Hω − z)−1δm) 6= 0 for some z ∈ C+}.

Obviously, Rn,m ⊆ En,m. By the same argument as in the proof of (2), we see that
P (Rn,m) ∈ {0, 1}. If P (En,m) = 1 and P (Rn,m) = 0, then, by Theorem 2.2, µn,ω,ac and
µm,ω,ac are equivalent to the Lebesgue measure on R for P -a.e. ω, and thus, by Proposition
3.1, n,m ∈ N \ S. Hence, for n,m ∈ S, P (En,m) = 1 iff P (Rn,m) = 1.

Consider now n,m, p ∈ S and assume that n ∼ p and p ∼ m. Let ω ∈ Rn,p∩Rp,m. Let
z ∈ C+ be such that (δn|(Hω− z)−1δp)(δp|(Hω− z)−1δm) 6= 0 (such z must exist, since the
the product of two non-vanishing analytic functions is a non-vanishing analytic function).
Then (3.6) again yields that there exists at most one λ such that (δn|(Hω,λ−z)−1δm) = 0.
Let δ(p) ∈ Ω = RN be the sequence with δ(p)(p) = 1 and δ(p)(n) = 0 for n 6= p. Then for
every ω ∈ Rn,p ∩ Rp,m, ω + λδ(p) ∈ Rn,m for Lebesgue a.e. λ. Since the random variable
ω(p) has density, the Fubini theorem yields that P ((Rn,p ∩ Rp,m) \ Rn,m) = 0. Since
P (Rn,p ∩Rp,m) = 1, we have P (Rn,m) = 1 and so n ∼ m. This shows that ∼ is transitive.
Since it is obviously symmetric, we see that it is an equivalence relation.

(4) Consider any k ≥ 0. We first show that for any n ∈ Sk and m ∈ N \ Sk,
P (En,m) = 0. For n,m ∈ S, this is immediate from the definition of ∼. If k = 0 and
P (En,m) = 1, then, by Theorem 1.3, µω,n and µω,m are P -a.s. equivalent and so µω,m must
be equivalent to the Lebesgue measure on R with positive probability. Thus, m /∈ S and
it follows that m ∈ S0 = Sk. Similarly, m ∈ S0 and P (En,m) = 1 imply k = 0. Thus, we
see that in either case, n ∈ Sk and m ∈ N \ Sk imply P (En,m) = 0.

For every ω ∈ Ω, p ∈ N , and λ ∈ R, let Hω,λ be given by (3.5) and let Hω,λ,Sk
be the

cyclic subspace generated by Hω,λ and {δn}n∈Sk
. Similarly to 3.6, we have for any n ∈ N ,

(Hω,λ − z)−1δn = (Hω − z)−1δn − λ
(δp|(Hω − z)−1δn)

1 + λ(δp|(Hω − z)−1δp)
(Hω − z)−1δp. (3.7)

Consider now n ∈ Sk. If p ∈ Sk, we see from (3.7) that Hω,λ,Sk
⊆ Hω,Sk

for every ω ∈ Ω and
λ ∈ R. By considering υ = ω+λδ(p), this also implies Hω,Sk

= Hυ,−λ,Sk
⊆ Hυ,Sk

= Hω,λ,Sk
,
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and so we see that for p ∈ Sk, Hω,λ,Sk
= Hω,Sk

for every ω ∈ Ω and λ ∈ R. If p /∈ Sk, then
P (En,p) = 0, and so we have (δp|(Hω−z)−1δn) = 0 for P -a.e. ω, for every z ∈ C\R. Thus,
we have in this case that (Hω,λ− z)−1δn = (Hω− z)−1δn for P -a.e. ω, for every z ∈ C \R,
and so we conclude that Hω,λ,Sk

= Hω,Sk
for P -a.e. ω, for every λ ∈ R. Therefore, for

any p ∈ N , we have that Hω,λ,Sk
= Hω,Sk

for P -a.e. ω, for every λ ∈ R. That is, the
projection on Hω,Sk

is a measurable function of ω which is P -a.s. independent of ω(p) for
any p ∈ N . Thus, Kolmogorov’s 0-1 law yields the required statement.

(5) Consider k,m ≥ 0, k 6= m. For every n ∈ Sk and p ∈ Sm, we have P (En,p) = 0, and
so for P -a.e. ω, Hω,n ⊥ Hω,p. Thus, we clearly obtain that for P -a.e. ω, Hω,Sk

⊥ Hω,Sm
.

2

We note that the only thing which is (possibly) preventing ∼ from being an equivalence
relation on all of N is the possibility that in some cases where Hω,n 6⊥ Hω,m, we would
nevertheless have (δn|(Hω − z)−1δm) = 0 for all z ∈ C+ (in which case we must have
that (δm|(Hω − z)−1δn) doesn’t vanish on C+, and so P (Rn,m) need not be symmetric
in n and m). This can prevent the relation ∼ from being transitive. Indeed, it is not
difficult to construct examples (albeit with an unbounded H0) with N = {1, 2, 3}, where
1 ∼ 2 and 2 ∼ 3, but 1 6∼ 3. Fortunately, the F. & M. Riesz theorem, Theorem 2.2,
along with Proposition 3.1, assure us that this kind of “anomaly” can only happen in
cases where µω,n and µω,m are both equivalent to the Lebesgue measure on R. Thus, one
can simply consider the class S0 ≡ N \ S as a special equivalence class. This class is
different from the other classes Sk, k = 1, 2, . . . , in that for k ≥ 1, we have P (En,m) = 1
for every n,m ∈ Sk, whereas we may have P (En,m) = 0 for n,m ∈ S0, so that Hω,S0

may
consist of “disconnected” components and Hω � Hω,S0

may be a more complex object than
Hω � Hω,Sk

for k ≥ 1. Since, however, for n ∈ S0, µω,n must be almost surely equivalent to
the Lebesgue measure on R, the spectral properties of Hω � Hω,S0

are essentially known
(in particular, it must have purely absolutely continuous spectrum, P -a.s., and it thus
plays no role for the singular spectrum of Hω) and so, from the perspective of spectral
theory, there is not much loss here.

We further note that ∼ is, in fact, an equivalence relation on all of N in the following
cases (even if N \ S 6= ∅):
(a) The spectral measure for H0 and the pair of vectors δn,δm is real-valued (namely, a
signed measure) for every pair n,m ∈ N .
(b) δn ∈ Dom(Hj

ω) for all n ∈ N , j ≥ 0 and P -a.e. ω.
The case (a) is seen immediately from equation (2.3), since one sees that in this case,
(δn|(Hω − z)−1δm) = (δn|(Hω − z)−1δm), where · denotes complex conjugation. For a
proof of (b), see Lemma 5.10 in [JL2]. In any of these cases, one clearly has a slightly
simpler variant of Theorem 1.1, in which ∼ is an equivalence relation on N and where all
of the Sk’s are equivalence classes generated by ∼.

We also need the following fact:

Proposition 3.2 Let n,m ∈ S and suppose that n 6∼ m. Then for P -a.e. ω, the measures

11



µω,n,sing and µω,m,sing are mutually singular.

Proof. We decompose the probability space Ω along the n-th coordinate, Ω = R × Ω̃,
Ω̃ = RN\{n}, dP = dpn ⊗ dP̃ , dP̃ =

⊗

N\{n} dpj, and we write ω = (λ, ω̃), where λ ∈ R

and ω̃ ∈ Ω̃. Similarly to equation (3.6), we have for every p ∈ N and z ∈ C \ R,

(δp|(H(λ,ω̃)− z)
−1δm) = (δp|H(0,ω̃)− z)

−1δm)−λ
(δp|(H(0,ω̃) − z)−1δn)(δn|(H(0,ω̃) − z)−1δm)

1 + λ(δn|(H(0,ω̃) − z)−1δn)
.

(3.8)
Since P (En,m) = 0, we must have (δn|(Hω− z)−1δm) = 0 for P -a.e. ω, for every z ∈ C\R,
and so by setting p = n in (3.8), we see that we must also have (δn|(H(0,ω̃) − z)−1δm) = 0

for P̃ -a.e. ω̃, for every z ∈ C \ R (otherwise, the r.h.s. of (3.8) cannot vanish for more
than one value of λ). Setting now p = m in (3.8), we conclude that for P̃ -a.e. ω̃, for every
z ∈ C \ R, (δm|(H(λ,ω̃) − z)−1δm) is independent of λ. Now let

Sω,m ≡ {E ∈ R : lim sup
ε↓0

|(δm|(Hω − E − iε)−1δm)| = ∞},

then for every ω, Sω,m is a Borel set of zero Lebesgue measure which supports µω,m,sing.
Since, for P̃ -a.e. ω̃, (δm|(H(λ,ω̃) − z)−1δm) is independent of λ, we see that S(λ,ω̃),m is also

independent of λ, namely, for P̃ -a.e. ω̃, S(λ,ω̃),m = S(0,ω̃),m for every λ ∈ R.
By Fubini’s theorem,

∫

Ω

µω,n,sing(Sω,m) dP (ω) =

∫

Ω̃

[
∫

R

µ(λ,ω̃),n,sing(S(0,ω̃),m) dpn(λ)

]

dP̃ (ω̃).

Noting that µ(λ,ω̃),n is the spectral measure for H(0,ω̃) + λ(δn| · )δn and δn, and that the
measure pn is absolutely continuous w.r.t. the Lebesgue measure, we have, by Lemma 2.4,

∫

R

µ(λ,ω̃),n,sing(S(0,ω̃),m) dpn(λ) = 0

for all ω̃ ∈ Ω̃. Hence,
∫

Ω
µω,n,sing(Sω,m) dP (ω) = 0, and it follows that µω,n,sing ⊥ µω,m,sing

for P -a.e. ω. 2

4 Rank one perturbations

The starting point of this and the next section is a self adjoint operator A on a separable
Hilbert space H and two orthonormal vectors ψ, ϕ ∈ H, which are a cyclic family for A.
Namely, we assume that the linear span of the set of vectors

{(A− z)−1ψ : z ∈ C \ R} ∪ {(A− z)−1ϕ : z ∈ C \ R}
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is dense in H.
In this section we consider the family of operators

Aλ = A+ λ(ψ| · )ψ, λ ∈ R.

The vectors ψ, ϕ are a cyclic family for Aλ, for all λ ∈ R. We denote by Hλ,ψ and Hλ,ϕ

the cyclic subspaces generated by Aλ and, correspondingly, ψ and ϕ. These subspaces are
not orthogonal for all λ iff they are not orthogonal for λ = 0. Note, also, that Hλ,ψ = Hψ

for all λ.
Recall the following result of [JL1]:

Theorem 4.1 (Theorem 2.4 of [JL1]) Let µλ,ψ and µλ,ϕ be the spectral measures for

Aλ and, correspondingly, ψ and ϕ. Assume that the cyclic subspaces Hλ,ψ and Hλ,ϕ are

not orthogonal. Then for Lebesgue a.e. λ ∈ R, µλ,ψ is absolutely continuous w.r.t. µλ,ϕ.

Remark. We note that there is a minor error in the proof of Theorem 4.1 in [JL1].
Explicitly, Proposition 2.1 of [JL1] is not correct as stated. It should have been formulated
with the additional condition that the total variation of the complex spectral measure µϕ,ψ
of the two vectors is not equivalent to the Lebesgue measure on R. This means that, in
essence, Theorem 4.1 is proven in [JL1] under the assumption that (ψ|(A − z)−1ϕ) and
(ψ|(A − z)−1ϕ) do not vanish identically in C+, which is stronger than assuming just
Hλ,ψ 6⊥ Hλ,ϕ. However, if either (ψ|(A− z)−1ϕ) or (ψ|(A− z)−1ϕ) vanishes identically in
C+ and if Hλ,ψ 6⊥ Hλ,ϕ, then by Theorem 2.2, µλ,ψ,ac and µλ,ϕ,ac are both equivalent to
the Lebesgue measure on R, and so, by Proposition 3.1, µλ,ψ is equivalent to the Lebesgue
measure on R for Lebesgue a.e. λ, and we see that Theorem 4.1 holds. Thus, Theorem
4.1, as well as all of the other results of [JL1] (which are mainly its consequences), are
correct as stated.

Let Hλ,sing and Hλ,ψ,sing be the subspaces associated, correspondingly, with the singular
spectra of Aλ and Aλ � Hλ,ψ. Our goal in this section is to prove:

Theorem 4.2 Assume that the subspaces Hλ,ψ and Hλ,ϕ are not orthogonal and that for

Lebesgue a.e. λ ∈ R, the measures µλ,ψ and µλ,ϕ are equivalent. Then, for Lebesgue a.e.

λ ∈ R, Hλ,sing = Hλ,ψ,sing.

Proof. Let 1sing(Aλ) be the projection on Hλ,sing. To prove the statement, we need to
show that for Lebesgue a.e. λ, 1sing(Aλ)ϕ ∈ Hλ,ψ,sing. We use similar notations to those
in the proof of Theorem 2.4 of [JL1]. In particular, for φ1, φ2 ∈ H and z ∈ C\R, we write
Gλ(φ1, φ2, z) ≡ (φ1|(Aλ − z)−1φ2).

From the operator identity A−1 − B−1 = B−1(B − A)A−1, we have

Gλ(φ1, φ2, z) = G0(φ1, φ2, z) − λG0(φ1, ψ, z)Gλ(ψ, φ2, z). (4.9)
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By setting φ1 = φ2 = ψ in (4.9), we get

Gλ(ψ, ψ, z) =
G0(ψ, ψ, z)

1 + λG0(ψ, ψ, z)
, (4.10)

and similarly, by setting φ1 = ψ, φ2 = ϕ, we get

Gλ(ψ, ϕ, z) =
G0(ψ, ϕ, z)

1 + λG0(ψ, ψ, z)
. (4.11)

By setting in (4.9) φ1 = φ2 = ϕ, and then using both (4.10) and (4.11), we obtain (see
[JL1])

Gλ(ϕ, ϕ, z) = G0(ϕ, ϕ, z) − λ
G0(ϕ, ψ, z)G0(ψ, ϕ, z)

G0(ψ, ψ, z)
Gλ(ψ, ψ, z). (4.12)

Without loss of generality, we assume that G0(ϕ, ψ, z) and G0(ψ, ϕ, z) do not vanish iden-
tically in C+ (otherwise, Theorem 2.2 and Proposition 3.1 would imply that for Lebesgue
a.e. λ ∈ R, µλ,ψ and µλ,ϕ are both equivalent to the Lebesgue measure on R, and so
Hλ,sing = Hλ,ψ,sing = ∅ for Lebesgue a.e. λ ∈ R). Let S0 be the set of all E ∈ R for which
the limits G0(ψ, ψ, E + i0), G0(ψ, ϕ, E + i0), G0(ϕ, ψ, E + i0), and G0(ϕ, ϕ, E + i0) exist,
are finite, and G0(ψ, ψ, E + i0) 6= 0, G0(ϕ, ϕ, E + i0) 6= 0. By well-known results about
boundary values of analytic functions [Ko], the set R \ S0 has Lebesgue measure zero.

By Lemma 2.3, we see that for Lebesgue a.e. E where G0(ψ, ψ, E + i0) ∈ R, we must
also have G0(ψ, ϕ, E + i0) = G0(ψ, ϕ, E − i0). We define S1 to be the subset of S0 where
either G0(ψ, ψ, E+i0) /∈ R or else G0(ψ, ϕ, E+i0) = G0(ψ, ϕ, E− i0). Then the set R\S1

has Lebesgue measure zero.
Recall that µλ,ψ,sing is supported on the set

S2 := {E : G0(ψ, ψ, E + i0) = −λ−1},

a fact which can be easily seen from (4.10) (or see, e.g., [Si2]). The set S2 need not be
contained in S1. However, by Lemma 2.4,

∫

R

µλ,ψ,sing(R \ S1) dλ = 0,

and so for Lebesgue a.e. λ ∈ R, µλ,ψ,sing is supported on S2 ∩ S1. Hence, by using (4.10)
and (4.11), we see that for Lebesgue a.e. λ ∈ R, for a.e. E w.r.t. µλ,ψ,sing,

lim
ε↓0

Gλ(ψ, ϕ, E + iε)

Gλ(ψ, ψ, E + iε)
= lim

ε↓0

G0(ψ, ϕ, E + iε)

G0(ψ, ψ, E + iε)

=
G0(ψ, ϕ, E + i0)

G0(ψ, ψ, E + i0)
= −λG0(ψ, ϕ, E + i0).

(4.13)
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In the sequel, φψ denotes the projection of a vector φ on the cyclic subspace Hψ = Hλ,ψ.
We identify Hψ = L2(R, dµψ), ψ = 1. Then, by Theorem 2.1, for every λ ∈ R,

lim
ε↓0

Gλ(ψ, ϕ, E + iε)

Gλ(ψ, ψ, E + iε)
= (1sing(Aλ)ϕ)ψ(E)

for a.e. E w.r.t. µλ,ψ,sing. This and (4.13) yield that for Lebesgue a.e. λ ∈ R, for a.e. E
w.r.t. µλ,ψ,sing,

(1sing(Aλ)ϕ)
ψ

(E) = −λG0(ψ, ϕ, E + i0). (4.14)

Let
dµλ,ϕ = fλ,ϕ,ψ dµλ,ψ,

be the Lebesgue decomposition of µλ,ϕ w.r.t. µλ,ψ (which is known to exist for Lebesgue
a.e. λ ∈ R by our assumption that µλ,ϕ and µλ,ψ are equivalent for Lebesgue a.e. λ ∈ R).
Theorem 2.1 yields that for Lebesgue a.e. λ ∈ R, for a.e. E w.r.t. µλ,ψ,sing,

lim
ε↓0

Gλ(ϕ, ϕ, E + iε)

Gλ(ψ, ψ, E + iε)
= fλ,ϕ,ψ(E).

Since limε→0 |Gλ(ψ, ψ, E + iε)| = ∞ for a.e. E w.r.t. µλ,ψ,sing, it follows from (4.12) that
for Lebesgue a.e. λ ∈ R,

lim
ε↓0

Gλ(ϕ, ϕ, E + iε)

Gλ(ψ, ψ, E + iε)
= −λ

G0(ϕ, ψ, E + i0)G0(ψ, ϕ, E + i0)

G0(ψ, ψ, E + i0)

= λ2G0(ϕ, ψ, E + i0)G0(ψ, ϕ, E + i0),

for a.e. E w.r.t. µλ,ψ,sing. It thus follows that for Lebesgue a.e. λ ∈ R, for a.e. E w.r.t.
µλ,ψ,sing,

fλ,ϕ,ψ(E) = λ2G0(ϕ, ψ, E + i0)G0(ψ, ϕ, E + i0).

Since G0(ψ, ψ, E + i0) is real for a.e. E w.r.t. µλ,ψ,sing (in fact, equal to −λ−1), we have

G0(ϕ, ψ, E + i0) = G0(ψ, ϕ, E − i0) = G0(ψ, ϕ, E + i0)

for Lebesgue a.e. λ ∈ R, for a.e. E w.r.t. µλ,ψ,sing. Thus, by using (4.14), we see that for
Lebesgue a.e. λ ∈ R,

dµλ,ϕ,sing(E) = λ2|G0(ψ, ϕ, E + i0)|2 dµλ,ψ,sing(E)

= |(1sing(Aλ)ϕ)ψ(E)|2 dµλ,ψ.sing(E).

Hence, for Lebesgue a.e. λ ∈ R, 1sing(Aλ)ϕ ∈ Hλ,ψ,sing. 2
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5 Rank two Perturbations

Let A, H, ψ, and ϕ be as in the previous section. For (λ, η) ∈ R2, we define

Aλ,η = A + λ(ψ| · )ψ + η(ϕ| · )ϕ.

The vectors ψ, ϕ are a cyclic family for Aλ,η, for all (λ, η) ∈ R2. We denote by Hλ,η,ψ

and Hλ,η,ϕ the cyclic subspaces generated by Aλ,η and, correspondingly, ψ and ϕ. These
subspaces are not orthogonal for all (λ, η) ∈ R

2 iff they are not orthogonal for λ = η = 0.
We denote by Hλ,η,sing the subspace associated with the singular spectrum of Aλ,η.

Similarly, we denote by Hλ,η,ψ,sing and Hλ,η,ϕ,sing the subspaces associated, correspondingly,
with the singular spectra of Aλ,η � Hλ,η,ψ and Aλ,η � Hλ,η,ϕ.

Recall the following theorem of [JL1], which is an easy consequence of Theorem 4.1.

Theorem 5.1 (Theorem 2.5 of [JL1]) Let µλ,η,ψ and µλ,η,ϕ be the spectral measures

for Aλ,η and, correspondingly, ψ and ϕ. Suppose that the cyclic subspaces Hλ,η,ϕ and

Hλ,η,ψ are not orthogonal. Then for Lebesgue a.e. (λ, η) ∈ R2, the measures µλ,η,ψ and

µλ,η,ϕ are equivalent.

In this section we prove

Theorem 5.2 Assume that the subspaces Hλ,η,ψ and Hλ,η,ϕ are not orthogonal. Then

for Lebesgue a.e. (λ, η) ∈ R2,

Hλ,η,sing = Hλ,η,ψ,sing = Hλ,η,ϕ,sing.

Proof. Let

F1 := {(λ, η) : Hλ,η,sing = Hλ,η,ψ,sing} , F2 := {(λ, η) : Hλ,η,sing = Hλ,η,ϕ,sing} .

By Theorem 5.1, for Lebesgue a.e. (λ, η) ∈ R2, the measures µλ,η,ϕ and µλ,η,ψ are equiva-
lent. Fubini’s theorem and Theorem 4.2 thus yield that for Lebesgue a.e. η, the relation

Hλ,η,sing = Hλ,η,ψ,sing,

holds for Lebesgue a.e. λ. Thus, by Fubini’s theorem again, the set F1 has full Lebesgue
measure in R2. A similar argument shows that F2 has full Lebesgue measure in R2 and
so we conclude that F1 ∩ F2 has full Lebesgue measure in R2. 2
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6 Proofs of the main theorems

Proof of Theorem 1.4. Without loss of generality, we may assume that N = {n ∈
N : n < N}, where N is either finite or ∞, and that n = 1, m = 2. We will use the
decompositions Ω = R

2 × Ω̃, ω = (λ, η, ω̃),

dP (ω) = (dp1(λ) ⊗ dp2(η)) ⊗ dP̃ (ω̃).

Let Ω0 be the set of all ω’s such that Hω,1 and Hω,2 are not orthogonal. Then, by
Fubini’s theorem, there exists a set Ω̃0 ⊂ Ω̃ such that P̃ (Ω̃0) = 1 and for every ω̃ ∈ Ω̃0,
the subspaces H(λ,η,ω̃),1 and H(λ,η,ω̃),2 are not orthogonal for p1 ⊗ p2-a.e. (λ, η) ∈ R

2 (and

hence for all (λ, η) ∈ R2). Theorem 5.2 yields that for every ω̃ ∈ Ω̃0, for Lebesgue a.e.
(λ, η) ∈ R

2,
H(λ,η,ω̃),1,sing = H(λ,η,ω̃),2,sing. (6.15)

Since p1 ⊗ p2 is absolutely continuous w.r.t. the Lebesgue measure on R2, (6.15) holds for
every ω̃ ∈ Ω̃0, for p1 ⊗ p2-a.e. (λ, η) ∈ R2. By Fubini’s theorem, again, the relation

Hω,1,sing = Hω,2,sing

holds for P -a.e. ω. 2

Proof of Theorem 1.2. The linear span of the set ∪n∈SHω,n,sing is dense in Hω,sing for
P -a.e. ω. Since Hω,n,sing = Hω,m,sing P -a.s. if n ∼ m, and Hω,n,sing ⊥ Hω,m,sing P -a.s. if
n 6∼ m, we have, for any choice of nk ∈ Sk,

Hω,sing =
⊕

k

Hω,nk,sing

for P -a.e. ω. By Proposition 3.2, if k 6= j, then the measures µω,nk,sing and µω,nj ,sing are
mutually singular for P -a.e. ω. This implies that for P -a.e. ω,

Hω,ψ,sing =
⊕

k

Hω,nk,sing,

and so Theorem 1.2 follows. 2
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[JL3] V. Jakšić, Y. Last, A new proof of Poltoratskii’s theorem, J. Funct. Anal., in press

[LS] Y. Last, B. Simon, in preparation

[Po] A.G. Poltoratskii, The boundary behavior of pseudocontinuable functions, St. Pe-
tersburg Math. J. 5 (1994), 389–406
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