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Abstract

We study spectral properties of the discrete Laplacian H on the half space Z‘f‘l =
Z? x Z, with a boundary condition 1 (n, —1) = Atan(wa - n + 0)1(n,0), where « € [0, 1]%.
We denote by Hy the Dirichlet Laplacian on Zf’l. Whenever « is independent over ratio-
nals o(H) = R. Khoruzenko and Pastur [KP] have shown that for a set of a’s of Lebesgue
measure 1, the spectrum of H on R\ o(Hj) is pure point and that corresponding eigen-
functions decay exponentially. In this paper we show that if « is independent over rationals
then the spectrum of H on the set o(Hj) is purely absolutely continuous.

*To appear in Letters in Mathematical Physics



1 Introduction

Let d > 1 be given and let Z4™ = Z9xZ, , where Z; = {0,1,2,...}. We denote the points in Z%™
by (n,z),n € Z¢, z > 0. Let V : Z% — R be given function and let H be the discrete Laplacian on
[?(Z%) with the boundary condition ¢(n, —1) = V(n)y(n). When V = 0 this operator reduces
to the Dirichlet Laplacian which we denote by Hy. We recall that o(Hy) = [-2(d + 1),2(d + 1)]
and that the spectrum of Hj is purely absolutely continuous.

The operator H acts as

_ 2jn—n ++Hz—a'|= w(n', :U,) if x >0,
(Hy)(n,7) = { 1/)(|n, 1)| —:|Z‘n|_n1/|+:1 ¥(n,0) +V(n)y(n,0) if z=0, (L.1)

where |n| = $7_; |n;|. Note that operator H can be viewed as the Schrédinger operator
H=Hy+V, (1.2)

where the potential V acts only along the boundary 9Z%+! = Z?. More precisely, (V¢)(n,z) =0
if x > 0 and (V4)(n,0) = V(n)y(n,0). For many purposes, it is convenient to adopt this point
of view and we will do so in the sequel. Since Hj is bounded, the operator H is properly defined
as a self-adjoint operator on [*(Z4t?).

The spectral theory of operators H in the cases where V is a random or almost periodic
function has been studied in [AM], [BS], [G], [G1], [JL], [JM], [JMP], [KP], [P], [M]. The principal
physical motivation is to understand the formation and propagation properties of surface waves
in regions with corrugated boundaries. For additional information on this program we refer the
reader to a review article [JMP].

The Maryland model is the family of operators on (?(Z%) of the form h = hy + V(n), where

Vi(n) = Vagr = Man(ra - n +6), (1.3)

ho is the usual free Laplacian on Z¢, o = (o, 9,...,a4) € [0,1]% and § € [0,7]. To avoid

singular cases, we will assume that for a given «, @ is chosen so that Vn,
ma-n+60#0 modn/2. (1.4)

The Maryland model has been extensively studied in [FP], [FGP], [FGP1],[GFP], [PRG], [S1],
[S2]. We recall that o = («,...,qq) is independent over rationals if for any choice of rational

numbers rq....,r4 € Q,

> ko € Q.
k

It is not difficult to show that if « is independent over rationals then for any A # 0 and a.e.
6 € [0,7], o(h) = R (see e.g. [CFKS]). We say that a has typical Diophantine properties if there
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exists constants C, k > 0 such that
In-a—m|>Cln| ™", (1.5)

for all n € Z¢ and m € Z. The set of a’s in [0, 1]¢ for which (1.5) holds has Lebesgue measure
1. If & has typical Diophantine properties then o(h) = R for any 6 which satisfies (1.4), the
spectrum is pure point, the eigenvalues of h are simple and the corresponding eigenfunctions decay
exponentially, see [FP] or [CFKS]. Thus, in any dimension and for typical «, the deterministic
potential (1.3) is strongly localizing.

The surface Maryland model is a family of operators on [?(Z%"!) defined by (1.1)-(1.3),

Hupy) = Hy+ Vopa.

Notation. In the sequel, whenever the meaning is clear within the context, we will drop sub-
scripts a, 0, \. Thus, we write H for H, g, etc. We will also use the shorthand ¢4 = 2(d+ 1), so
o(Hy) = [—cq, cq]-
An easy Weyl's sequence argument yields that for any o € [0, 1], and any # which satisfies (1.4),
o(Hy) C o(H). If « is independent over rationals, the standard argument (see e.g. [CFKS]| or
[JMP1]) yields that for a.e. § € [0, 7], o(H) = R.

Since the potential V' models strongly corrugated boundary, it is natural to expect that
the spectrum of H outside o(Hp) is dense pure point for any « which satisfies (1.5). Indeed,

Khoruzenko and Pastur [KP] have proven the following result.

Theorem 1.1 Assume that o has typical Diophantine properties. Then for any A # 0 and 0
which satisfies (1.4), o(H) = R and the spectrum of H on the set R\ (—cq, cq) is pure point. On

this set, the eigenvalues are simple and the corresponding eigenfunctions decay exponentially.

In this paper, we study the spectrum of H on the set o(Hy). One can show (see [JMP], [JMP1])

that for any « € [0, 1], the wave operators

Of =s— lim el g=itHto,
t—Foo

exist for a.e. @ € [0, 7], and consequently, that [—cy, ¢4] C 04.(H). This is not a surprising result:
Due to the free propagation along the z-axis, the operator H should have some absolutely
continuous spectrum. There where various speculations that H might have some point spectrum
on (—cq, ¢q), and if o is “extremely well approximated” by rationals even some singular continuous

spectrum. Thus, the following result comes perhaps as a surprise.

Theorem 1.2 If a € [0,1]¢ is independent over rationals then for any A\ # 0 and 0 which
satisfies (1.4), the spectrum of H on the set (—cy,cq) is purely absolutely continuous.
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The relation between this result and the program of [JMP] will be discussed in [JMP1].
Acknoweldgments We are grateful to Y. Last, L. Pastur and B. Simon for useful discussions.
The research of the first author was supported by NSERC and of the second by NSF. Part of
this work was done during the visit of the second author to University of Ottawa which was
supported by NSERC.

2 Dimension reduction

One of the basic ideas used in practically all works on the spectral theory of operators (1.1) is to
“integrate” the xr-variable and to reduce the d+1-dimensional spectral problem to a d-dimensional
problem, which will depend non-linearly on the spectral parameter E. In this section we carry
out this dimension reduction for the surface Maryland model, and lay the ground for the proof
of Theorem 1.3

The first steps follow closely Section 2 in [JM]. We give details for readers convenience. We
recall that the points in Z%™ are denoted by n = (n,z), n € Z%, x € Z,. Let z € C, Im(z) # 0,
be given and let

R(m,n,2) = (0, (H —2) '0q).

These matrix elements satisfy the equation
R(m, (n,z+1);2)+R(m, (n,x—1);2)+ > R(m,(n',2);2) = 0mn+2R(m, (n,);2) (2.6)
In—n'|+=1
if x > 0, and
R(m,(n,1);2)+ Y R(m,(n',0);2) + (V(n) — 2)R(m, (n,0); 2) = dmn, (2.7)
In—n'|4=1

if x = 0. If m = (m,0) is the point on the boundary, Equation (2.6) can be “integrated”.
This is most conveniently done in the Fourier representation associated to the variable n. Let
T = R/27Z be the circle and T the d-dimensional torus. We denote the points in T? by
¢ = (¢1,...,¢q), and by d¢ the usual Lebesgue measure. In the sequel we will use the shorthand
®(p) = X¢_, 2cos ¢ Let
FP(Z) o (T © P(Z,)
be a unitary map defined by the formula
N 1 .
(F)(n,x) = (o, z) = W > (n,x) exp(in - ¢).

neczd

In the new representation, Equations (2.6) and (2.7) are (recall that m = (m,0))
R(m, (¢, 2 +1;2)) + R(m, (¢, 2 — 1); 2) + (2(¢) — 2) R(m, (¢, 2); 2) = 0, (2.8)

4



and
R(m, (¢, 1); 2) + D(¢) R(m, (¢,0); 2) + VR(m, (¢,0); 2) — zR(m, ($,0);2) = em(d),  (2.9)
where €,(¢) = F(6mn) = (271)"¥2exp(im - ¢). It follows from Equation (2.8) that if x > 0,
R(m, (¢, 2); 2) = R(m, (¢,0); 2)r(¢, 2)", (2.10)

where r(¢, z) is the root of the quadratic equation

1
X+ +®0(¢) =2 (2.11)

such that |r(¢,z)| < 1. The other root is given by 7(¢,z) = 1/r(¢$, z). Substituting (2.10) into
(2.9) and using that r + ® — 2 = —F, we get the equation

—R(m, (¢,0); 2)7(¢, ) + VR(m, (6,0): 2) = en(0). (2.12)
Let
R(m,n;z) = R((m,0),(n,0);2) = (§um.), (H — Z)_I(S(n,[])),
R(m,¢;2) = R((m,0),(4,0);2),
and

jnz) = [ e (0, 2)ds.

Aplying F~! to (2.12) we get that matrix elements R(m, n; z) satisfy the equation

= J(n =k, 2)R(m, k; 2) + V(n)R(m, n; 2) = by (2.13)

The above construction is of course applicable to any V. To proceed we have to use the particular
structure of the potential V. Note that

1 — exp(—2mia - n — 2i0)

V(n) = )\tan(ﬂa "N+ 9) = _>\21 + eXp(—Q?TiOé n— 229)

Multiplying both sides of Equation (2.13) by 1+ exp(—2mia - n — 2if) and applying F again, we

get after simple algebra
e MR (m, ¢ — 2ma; 2)[Ni — 7(§ — 2ma, 2)] = R(m, ¢; 2)[F(, 2) + Ai] = B (9)

where

hin (@) = em (@) + exp(—2i0)en, (¢ — 2ma).



In the sequel we will assume that A > 0. Similar analysis applies if A < 0. It follows from
Equation (2.11) that if Imz > 0 then Im 7(¢, z) > 0 (write 7 in polar form). Thus, if Im(z) > 0

and

R(m, ¢; 2) = R(m, ¢; 2)[Xi + (¢, 2)], (2.14)
we arrive at the equation
e 'R(m, ¢ — 2ma; 2)7(¢ — 27, 2) — R(m, ¢; 2) = hmn(9), (2.15)
where L
(6, 2) = %&23

For latter applications, the following simple observation is critical. Recall that A > 0. Let
R* =0, 00).

Lemma 2.1 1. IfIm(z) > 0 then V¢ € T?, |y(¢,2)| < 1.

2. Let |E| < 2(d+ 1) and let O be an open set inside {¢p € T : |®(¢) — E| < 2}. Then
tp(p,e) = (o, E + ie) is a continuous function on O x RT, and for any (¢,c) in this set,
lte(o,e)| < 1.

Proof: Since Im7(¢, z) > 0, an elementary computation yields Part 1. It follows from Equation
(2.11) and basic complex analysis that 7(¢, E' + ic) is continuous in variables ¢ and € on the set
O x R*, and that for ¢ € O, Im7(¢, E) > 0. This yields Part 2. O

Finally, the proof of Theorem 1.2 will be based on

Proposition 2.2 Assume that for any E € (—cq,cq), and any 0 which satisfies (1.4),

lim sup ) IR(0, ¢, E + ic)|d¢ < oo.
T

e—0

Then the spectrum of H on (—cq, cq) is purely absolutely continuous.

Proof: Let H, be the cyclic subspace generated by the vector d¢, ) and H. It is easy to show
(see e.g. [JL]) that the linear span of H,’s is dense in [*(Z4*'). Let U,, be the unitary operator
of translation by the vector (ng,0). If ¢/ = 6 — 2w« - ny then

(Otno.0), (Hapx = 2) " 0(no0)) = (80.0)s Ung (Hapr = 2) " UnoO0,0))
= (5(0,0)7 (Ha,ﬂ’,/\ - Z)_I(S(o,())).

This argument and Fatou’s theorem (see e.g. [RS] or [S3]) yield that H has purely absolutely

continuous spectrum on (—cy, ¢g) for all @ satisfying (1.4) if for such #’s and all E € (—cq, ¢q),

A(E) = limsup|(60,0), (H — E — ig) "8(0,0))| < 0.

e—0



Note that
(610.0), (H — E — ie) L0) = (27) 2 /T R0, ; E +ie)dg.
It follows from Relation (2.14) that

IR(0, ¢, E +ie)| < Z|R(0, ¢; E + i),

>

and we have that

A(E) < limsup(2m)™ d/2/d| (0, 63 B + ic)|deb

e—0

< limsup(27) ¥2\7! / R(0, ¢; E + ic)|do.

e—0

The statement follows. O

3 Proof of Theorem 1.2

We are now ready to finish the proof of Theorem 1.2. We will use the shorthand R(¢,z) =

R(0, 65 2).
Let E € (—cq, cq) be given and let £ > 0. It follows from Equation (2.15) that

IR(¢, E +ic)| < 2(21)~ Y% 4 |y(¢ — 27wa, E + ig)| - |R(¢ — 27a, E + ig)]. (3.16)
Integrating over T we get that
| 1R E+io)ldo < 202+ | [y(6,B+i0)| - [R(6, E +ie)|ds.

Let
C) ={peT:|0(¢) - B|<2}, CF ={peT":|0(g) - E| >2}.

We will use the shorthand Cy = 2(27)%2. Splitting the integrals we get that
Anmwimw@|u—wwlwmab¢<%+/@ (6, E +i2)| - (11(6, E + )| — 1)dg
E
Since |y(¢, E + ig)| < 1,

/cm \R(6, E +ic)| - (1 — |7(o, E + i) )do < Co. (3.17)

Let O be an open set such that its closure is properly contained in CS). Then it follows from
Part 2 of Lemma 2.1 that there exists constant C' > 0 such that for any ¢ € O and 0 < e < 1,

1= [y(¢, E+1g)| = C >0,
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and from Relation (3.17) that
[ IR0, + ie)ldo < Co/C.

Let T, : T? +— T? be the translation map, T, (¢) = ¢ + 27y. For any positive integer m let
Om = Thna(O). Tt follows from Equation (3.16) that

L [R(6.E + )| < Co+ Co/C.

1

for all 0 < € < 1, and arguing inductively, that

/O IR(¢, E +ie)|dp < mCy + Co/C.

m

Since « is independent over rationals, T, is ergodic, and the open sets O,, cover T¢. Picking a

finite subcover, we derive that

limsup | IR(¢, E + ic)|dp < 0.
T

e—0

Theorem 1.2 now follows from Proposition 2.2.
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