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Abstract

We refine an abstract result of the authors [JP3] concerning the pbsdivity of en-
tropy production of.!—asymptotically AbeliarC*-dynamical systems and apply the new
result to a model describing finitely many free Fermi gas reservoirs colyyléocal inter-
actions. In particular, assuming that the reservoirs are initially not at ézgnaeratures or
chemical potentials, we show that there is a dense set of local interaaicinhst the en-
tropy production of the system is strictly positive for sufficiently small nemzcoupling.
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1 Introduction

For notational purposes we start with a brief review of aertespects of algebraic nonequi-
librium quantum statistical mechanics. Our terminologgtendard [BR1, BR2] and we shall
assume that the reader is familiar with results describgtiénreview [JP3] and in the recent
lecture notes [AJPP].

Our starting point is &*-dynamical systeniO, 7y) with 7¢ = e'%. To avoid discussion of
trivial cases, we shall always assume thas a not a trivial dynamics, i.e., thag # 0. For any
S C OwedenoteS,s = {A €S| A= A"} ForV € O andX € R setyy = §o + 1AV, -]
and denote by, = v the perturbedC*-dynamics. We shall assume a strong form of
ergodicity (L'-asymptotic Abelianness) @0, 7,y/) in the following form:

(A1) There exists a norm densesubalgebrad c O with the property: For any
V € A there exists\yy > 0 such that

| vl <o,

[e.9]

holds for all|A\| < Ay andA € A.
A well-known consequence of (Al) is that for € A..r and|\| < Ay the strong limits
fy)%V = tlgtnoo T)T\f' o 7—87

£ _ 1 —t ot
ayy = lim 75" o7y,
t—+oo

exist and are-automorphisms o®. Moreover,(v},) ™! = a3y .

Letw be a givenry-invariant reference state @. LetV € A, and|A| < Ay. Then for all
AeO,

lim w(rhy (4)) = Wi (A),

wherews;, = woafy,. The statesy;, arer,y-invariant andvy;, is sometimes called non-equi-
librium steady state (NESS) of the locally perturbed quamtlynamical systeniO, 7y, w)
[Ru1l].

Concerningu, we shall assume the following:

(A2) Forall A;, Ay, A3 € O,
lim w(TE (AN TE(A)TE(A3)) = w(ADw(Ag)w(As).

mini;,gj |t1‘7t]"4>oo
(A3) There exists &*-dynamics; on O such thatv is a(s, —1)-KMS state. More-
over, A C Dom (d.), whered, is the generator of. We shall assume thatis
non-trivial, i.e., thav, # 0.
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Assumption (A2) and the first part of (A3) imply that the syst@), 75, w) has the property of
return to equilibrium: For alb-normal stateg andA € O,

lim 5(7(A)) = w(A),

[t]—o0
see [JP]. The second part of (A3) ensures that the entropluption observable
O\y = /\5§(V),
is well defined for allV € A..;. The entropy production of the NESS,, is defined by

EP(W,J\FV) = W,J\FV(C’A\/)-

Denote byEnt(-|-) the relative entropy of Araki with sign and ordering conventof
[BR2]. The entropy balance equation

Ent(wo 75y |w) = —/0 w(myy (oav)) ds, (1.2

holds [JP2]. This relation implies
EP(W,J\FV) Z 07

[Ru2, JP2]. From the point of view of non-equilibrium statiat mechanics, the perturbed sys-
tem is thermodynamically non-trivial iff the entropy pradion of its NESS is strictly positive.

Suppose that the unperturbed system is initially in themagaiilibrium, namely thab is a
(10, B)-KMS state onO for somes € RU {+oo}. If 8 € R\ {0}, thend. = —Bdy, ory =
S (—BAV) and sincevy,, is Tyy-invariant,Ep(wy,) = 0 forall V € A and|A| < Ay. The
cases’ = +oo,0 are not possible under our assumptionsg K= +oo, then the first part of
(A3) and Proposition 5.3.19 in [BR2] imply thai is trivial, i.e., thatd, = 0. If 3 = 0, then the
first part of (A3) implies that is trivial, i.e., thatj. = 0.

On physical grounds one expects thavifs not a thermal equilibrium state, théip(wy;,)
is strictly positive for a large class of perturbatioxig, and this is the question we shall address
in this note.

The next assumption concerns the rate of convergencérgf, (o, )) to its limiting value

Wiy (oav)-
(A4) ForallV € Ag,

1 t
Cy = sup X/ (w(Tsy (oav)) — wiy (oav)) ds| < oo.
0

0<|A|<Ay,t>0

Theorem 1.1 Suppose that (A1)-(A4) hold and that w is not a (1, 3)-KMS state for some
B € R\ {0}. Thenthereexistsaset V C A Such that:
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1. Visnorm-densein A (@and hencein Ogee).

2. For all V e V thereexists Ay, > 0 such that
Ep(wi’v) >0,

for 0 < |\ < Ay.

The proof of Theorem 1.1 is given in Section 2 and is based endbults and heuristics de-
scribed in [JP3] (see in particular Theorem 4.7 in this fee).

In the rest of this introduction we shall describe an apgilicaof Theorem 1.1 to statistical
mechanics of open Fermi systems. We shall consider the savdelras in [JOP]. All our
results and proofs will heavily rely on the results of [JOP].

A free Fermi gas is described by th&-dynamical systeniO, 75) where:

(i) © = CAR(h) is the CAR algebra over the single particle Hilbert spice

(i) 7t is the group of Bogoliubow-automorphisms generated by the single particle Hamilto-
nianhyg,

7o(a™(f)) = a” (" f),
wherea*(f)/a(f) are the creation/annihilation operators associated te h and a*
stands for eithes or a*.

Let O be ther,-invariantC*-subalgebra oD generated bya*(f)a(g) | f, g € b} and1. Phys-
ical observables are gauge invariant and hence elemefts of
We make the assumption:

(B1) There exist a dense vector subsp@ce h andp > 0 such that the functions
R >t [t(f,e"g),
areinLY(R,dt) forall f,g € D.

This assumption implies that has purely absolutely continuous spectrum.
Let A C O be the collection of the elements of the form

K ng
A= "T] e (fey)alges) + €1, 1.2)
k=1 j=1
whereK, ny, ..., ng are finite withn = max; n;, > 2, ¢ € C, and

FA) ={fejogrj|k=1,....,K;j=1,...,n5} CD.
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To indicate the dependence Af and7n on A we will denote them by 4 andn 4. It is easy
to see that4 is a*-subalgebra oD containing all the elements of the formi(f)a(g) with
f,g € D as well asl. SinceD is dense ir it follows that.4 is a norm dense-subalgebra of
0.

To each paid, B € A we associate the constant

@W?/ max_|(f, )] dt.

oo fEF(A),geF(B)

ForA € Awe write/, = (44 and set
My = Ka (max {L,[|f||| f € (A},
_1 (2ﬁA — 2)2HA72
(2m4 — 1)2na—1"
The following result was proven in [JOP] (see also [Ro, BM1, AR)2, FMU]):
Theorem 1.2 Supposethat (B1) holds. Then:
1. Forall Ve Agrand A € A,

Ag = (QWAMAEA)

o 2M
swp [ Vs e < 5
A<y S —c0 Vv

In particular, Assumption (A1) holds.

g v " 1
(2ny — 2)0y '

2. Foral V e Ay and A € A the functions
A= i (A) € O, A= oy (A) € O,

areanalytic for |A| < Ay.

Let T be a self-adjoint operator din satisfying0 < 7" < 1 and [T, ei"] = 0 for all ¢.
In what followsw is the gauge invariant quasi-free statesdrgenerated by’. The statev is
To-invariant and is dry, 3)-KMS state onD for somes € R \ {0} if and only if

1
1+ efho’
Assumption (B1) implies that for alt,,--- , A, € O,

l\im | w(rg' (A1) -+ 75" (An)) = w(Ay) -+ w(Ay),

min;; [¢;—tj|—o0

and so (A2) holds. Assumption (B1) also implies that O is a (7, 3)-KMS state onO for
somes € R\ {0} if and only if

T —

1
- 1+ eB(ho—n)’
for someu € R.
Our final assumption is
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(B2)Ker T = Ker (1-T) = {0} andT # 1/2. Moreover, ifhy =logT(1—-T)"!
thenD C Dom (hy) andhyD C D.

If ¢ is the group of Bogoliubow-automorphisms o) generated byi;, thenw is the unique
(¢, —1)-KMS state onO and a(s, —1)-KMS state or0. SinceT” # 1/2, ¢ is non-trivial, and so
(B2) implies (A3). In particular, the entropy production ebgblec, is well-defined for all
V e Ar and) € R, andoyy € At

Theorem 1.3 Supposethat (B1) and (B2) hold for some p > 1 and that w isnot a (7, 5)-KMS
stateon O for any 5 € R\ {0}. Thenthereexistsaset V C Ayq; such that:

1. Visnorm-densein A (and hencein Ogee).
2. Forall Ve Vand0 < |A] < Ay,
Ep(wyy) > 0,
except possibly for a discrete set of A's which can accumulate only at {£+\y }.
. ForalV e Vand W € Ay there exists ey > 0 suchthat V 4+ el € V for all

|€| < €Eyw.

This theorem can be applied to the open quantum system&dtid[JOP]. Suppose that
for someM > 2,

M M
1
h=Db:  =Dh  T=-D g (1.3)
j=1 Jj=1

whereh;’s are self-adjoint operators on the Hilbert subspdges); € R\ {0}, andy; € R.
We denote by, the orthogonal projections ontg. The subalgebra®; = CAR(b;) describe
reservoirsk; which are initially in equilibrium at inverse temperaturgsand chemical poten-
tials 11;. The perturbatior\l” describes the interaction between the reservoirs (andjlpgs
self-interactions within the reservoirs) and allows foe flow of heat and charges within the

system. Clearly,
M
— & si(n
j=1

and

oA = — Z@ — 1;J;),
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where

_ )\ZZ ( - CL* sz gm)) {a*(ihjpjfkl)a(gkl) -
LD A +a*(fu)a(ihip;gu) } ( 11 a*(fki)a(gki)> )

1=l+1

3
e

k=1 l=1

(1:[ a*(fri)a 91%)) {a*(ip; frr)a(gm)
i=1 +a*(fr)a(ipjgn) } < H “(fri)a gk1)> .

i=l+1

The observabl®,/.J; describe the heat/charge flux out of the reserf®ir The conservation

laws y y
ijv@j) =0, ZW,J\FHJJ) =0,
j=1 j=1

hold, and the strict positivity of the entropy productiorpiies that the NESS,, carries non-
vanishing fluxes.
A consequence of Theorem 1.3 is:

Corollary 1.4 Suppose that i, and 1" have the form (1.3) and that either the 3;’s are not all
equal or the 3;u;'s are not all equal. Suppose also that (B1) holds for some p > 1 and that
p; D C D and h;p,D C D for all 5. Then all conclusions of Theorem 1.3 hold.

Remark. For specific interaction§” one can compute, (o) to the first non-trivial order
in A and hence establish the strict positivity of entropy praduncby a perturbative calculation
[FMU, JP4, AS]. Theorem 1.3 and Corollary 1.4 complement seshlts by establishing the
strict positivity of the entropy production for a generiafoebation\V.

We finish with some concrete examples to which Corollary ldiep. LetZl = Z, x
7o', whereZ, = {0,1,---}. If b; = (2(Z%) or bh; = ((Z%) andh; is the usual discrete
Laplacian on these spaces, then one can alwaysisd that Corollary 1.4 holds. One can
take D to be the vector space of compactly supported functions it 5 andbh; = ¢2(Z%)
ord; > 2 andh = ((Z%¥). In the continuous case, if, = L2(R%) or h; = L2(R%) and
h; = —A (with Dirichlet boundary condition in the case ]Eﬁf), again one can always fird
so that Corollary 1.4 holds. One can taRdo be the vector space 6f* compactly supported
functions ifp, = L?(R%) andd; > 5 orp; = L2(R?) andd; > 2.

Acknowledgments. The research of V.J. was partly supported by NSERC and parntsoivork
was done during his visit to CPT-CNRS.
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2 Proof of Theorem 1.1

Throughout the proof we shall freely use the well known priaps of the relative entropy
functional discussed in Section 1.4 of [OP]. We denoteNjythe set of allo-normal states on
0.

Proposition 2.1 Let V € Ay and 0 < |\ < Ay be such that Ep(w),) = 0. Then the
following hold:

(i) Wiy € No.
(i) wyy = wyp-

Proof. SinceV and)\ are fixed, we shall not use the subscriptsthroughout the proof. Hence
— + _  *

T = Thv, W" = Wy, etc.

As a consequence of Assumption (A4) and of the entropy balagaoation (1.1) the condi-
tion Ep(w™) = 0 implies the lower bound

—o00 < —Cy|A| < Ent(wo 7" |w) <0, (2.4)

for t > 0. It follows that the set of statelso o 7" |t > 0} is weaK-precompact inV,, and the
limiting statew™ is w-normal. This proves (i). Relation

Ent(wo 7' |w) = Ent(w|wo 77",
and the weakupper semi-continuity of the relative entropy yields

Ent(w|w™) > limsup Ent(w|wor™ ") > %gg Ent(wo 7! |w) > —c0. (2.5)

t——+oo

Thusw isw™-normal and hencd/, ¢ N,,- (see e.g. Theorem 2.30 in [P]). Since the dynamical
systems system®), 7y, w) and (O, 7,w™) are isomorphic(O, 7,w™) also has the property of
return to equilibrium: For alh € N~ andA € O,

lim n(t"(A)) = w (A).

[t| =00

Takingn = w* we deduce (ii)O

Proposition 2.2 Let V' € A,.; be such that for some sequence \,, — 0, A, # 0,
Ep(w;’nv) =0.

Then -
/_ WV, 7(AY]) dt =0,

o0

forall A € A.
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Proof. Since for|]\| < Ay andA € A

w(Ad) = wiy (v (4) = lim wyy(r5(4)),

t—=+oo

we have -
w(A) — wh, (4) = FiA / Wk (V7 (A)]) dt,

and hence -
i) i) = ix [ o) d

—0o0

wheres(t) = sign(t). Taking\ = \,,, we deduce from Proposition 2.1 that

/OO w;\“nv([V, Te(A)]) dt = 0. (2.6)

As in the proof of Proposition 2.Ep(wfnv) = 0 implies

—Cy |\ <Ent(wory |w) <0
for t > 0 and the weakupper semi-continuity of the relative entropy yields

Ent(wy, v |w) = O(|Aal).

This estimate and the entropic inequality

||W;\an - uJHQ < —QEnt(W,J\rnv |w),
yield that

Tim [,y = || =0. (2.7)

Relations (2.6), (2.7), Assumption (Al) and the dominatedveayence theorem imply the

statementl

Proof of Theorem 1.1 Assume that the statement does not hold. Then there Bxist A
ande > 0 such that for allV € A, satisfying||Vy — W|| < e there exists al{f’-dependent)
sequence,, — 0, A, # 0, such thaEp(wy ;) = 0. Proposition 2.2 yields that

| wwrgapa—o 2.8
LetV € A be givenand led < s < ¢/||V]|. TakingWW =V, + sV in (2.8), we derive that
forallAe A

o0

/_OO W[V, T(A)]) d + s/ W[V, () dt = 0. 2.9)

o0 —0o0
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Since the first term in (2.9) is vanishing, we deduce thatfioVac A andA € A,

/ WV, (A d = 0,

and soforall4, B € A,
/ w([A, 7(B)]) dt = 0. (2.10)

o0

By the well-known result of Bratteli, Kishimoto and Robinsor¢§BKR] and Theorem 5.4.20
in [BR2]), (A1), (A2) and (2.10) imply thab is a (7, 3)-KMS state for somef € R U {+o0}.
Our assumptions exclude the cages +oo, 0, and the result followsX

3 Proof of Theorem 1.3

Throughout this subsectignis the constant in Assumption (B1). In the first two proposisio
we assume only that > 0. Set(t) = /1 + t2,

l :/ max (£)°|(f,e"g)|dt,
vo= [ max @716

and _
_1 (2ny — 2)#v 2

(2ﬁv — 1)2ﬁv—1.

>\V,p = (2ﬁvaeV7p>

Proposition 3.1 Suppose that (B1) holds for some p > 0 and let V' € A,y. Then for all
0<A<Ay,andA e A,

sup [0 1Vt (AN e < .

IAISA JO

Proof. This proposition is a consequence of the arguments usee jordof of Theorem 1.1 in
[JOP]. We shall use freely the terminology and estimateh®&ection 2.1 in [JOP].
Let 7,, be the set of all rooted trees with the nodeghe root),1,--- ,n. A functionT :
{0,...,n} — {0,...,n} is called a climber of orden if 7'(0) = 0 and7'(j) < j for all
j € {1,...,n}. There is one-one correspondence between climbers arebirbees. We set
= |T71({0})| — Landr; = |T-'({j})| for j € {1,...,n} (r; is the number of childs of the
nodej). ToT € 7, we associate the constant

n—1

— (2714)! (2my)!
N(T
(T) = 2nA—7"O'H (2ny —r; — 1)V
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if ro < 2m4 andr; < 2ny — 1, otherwiseN (7)) = 0. Set

max e rv),ger(a) | (f, €0g)| fork =0,
Gk(t) = MV o
maxy e rv) |(f,e""0g)] fork > 0.
In [JOP] the following estimate was established:
H[VJAV )| <MAZ\)\|” 1 ZN / HGT(j)(ST(j)—Sj)d81"'d8n,1.

TeTn 0=sn<sp—1--<s0=t j=1

Let T € 7, let k be the smallest integer such th&t(n) = 0, and letj, = T'(n), | =

0,---,k (s0jo =nandj, = 0). Sinced = s, < sj, <--- <s;, =t, wehave
k-1 k—1 k—1
t= 5]1+1 SJl 5]l+1 SJz <k <Sjl+1 - sz>7
=0 =0 =0
and so

k—1
t H GT(JZ ST(j) — SJZ ) <K H ST(ji) — S]l> Gr ]l)(ST(]I) sz)‘
=0

Hence, we can estimate

| eI sl de < Ay n
0

n=1

where

n

In Z N(T) / H(ST(j) - Sj>pGT(j) (ST(j) - Sj) dSO T dsn—l-

TeTn 0=8$n<sn_1-<so<o0 I~}

Applying the Botvich-Guta-Maassen integral estimate [BGNIthe same way as in Section
2.1 of [JOP] we deduce that

o0

sup g N1, < oo,
N<Avp =1

and the statement follows]
The next theorem establishes the rate of approach to the BESIS of independent interest.

Theorem 3.2 Suppose that (B1) holdsfor somep > O andlet V € A,;. Thenforall A € A
and0 < A < Ay,

sup |w(may (4)) — wiy (A)] = O(() ™).

[Al<A
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Proof. The identity
ot oTi (A) — it oTh (A) = i)\/ 7o S([V, 75 (A)]) ds, (3.12)
t

and thery-invariance otv yield that

Wity (A) — w(rly(4)) = iA / (Vi (A)) ds.

Hence,

sup [w(myy (4)) = wiy (4)] < A{t)™7 sup / OO(S)’J IV, 73v (A)]] ds,
[Al<A IA<A Jt

and the statement follows from Proposition 371.

Proof of Theorem 1.3. Let V be the set of all' € A, such that for somé < |A| < Ay,
Ep(wy,,) > 0. By Part (2) of Theorem 1.2 the function— Ep(wy,) is analytic for|\| < Ay,
and so for anyi’ € V the entropy production can vanish only for a discrete sek’®fin
| = Av, vl

To prove thatV is dense ind,; we shall use Theorem 1.1. As we have already discussed,
(B1)-(B2) imply that (A1)-(A3) hold, and we only need to verifyat (A4) also holds.

For a givenV € A, the observable

1

A= XU)\V7

does not depend okhand belongs tod. Sincep > 1, Theorem 3.2 yields that for all < A <
)\V,pu

sup
[A[SAt>0

/0 (S (A)) — wi (A)) ds| < oo

Hence, Theorem 1.1 holds aids norm dense itd,. ;. This proves Parts (1) and (2).
To prove (3), leV, W € Ay Setn = max(ny, nw ), K = Ky+Kw, F = F(V)UF (W),

(= max |(f, e g)| dt,
| i)

and _
-1 <2ﬁ _ 1)271—1

M = (27K (max {1, £ £ € FHT) - Ge—oms

The proof of Theorem 1.1 in [JOP] gives that for dlle A,

sup / 1V, 7 s (Al i < 0,

A< vws el <1
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and -
lim sup / 1V e (A) — Tl (A dt = 0.

0w

The estimate

[wxivsew (O +em) =iy (oa)] < el 6 (W + @iy pan) (0av) = Wiy (0av)]
< [Ae] ||f5<(W)||+M|/0 IV, v semy (0av) = Taw (vl dt,

implies that ifw,y (o)) > 0 for some0 < |\ < Ay, thenw;’(erEW)(aA(VJrEW)) > 0 for e
small enough. Hence, If € V andWW € Ay, then fore small enough} + W € V. O
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