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Abstract� We study spectral properties of the discrete LaplacianH� on the half space Z�
� � Z�Z�

with a random boundary condition ��n���� � V��n���n� ��� Here� V��n� are independent and

identically distributed random variables on a probability space ���F � P �� We show that outside

the interval 	�
� 
� �the spectrum of the Dirichlet Laplacian� the spectrum of H� is P �a�s� dense

pure point�

� Introduction

This paper is a part of the program introduced in �JMP	
 This program is concerned with
spectral and scattering theory of the discrete Laplacian on a half�space with a random
boundary condition
 We refer the reader to �JMP	 for the history of the problem and
additional information
 In this section we de�ne the model� review some of the known
results and state theorems which will be proven in this paper
 At the end of the section we
will sketch some of the main ideas involved in the proofs of our theorems
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Let d � � be given and let Zd��
�  Zd�Z�� where Z�  f�� �� � � �g
 We denote the points

in Zd��
� by �n� x�� n � Zd� x � Z�
 Let ���F � P � be a probability space and V�� � � �� a

random process on Zd such that V��n� are independent and identically distributed random
variables with density p�x�
 We denote by V the support of the probability measure p�x�dx

Let H� be the discrete Laplacian on l��Zd��

� � with the boundary condition ��n���� 
V��n���n� ��
 If V�  �� this operator reduces to the Dirichlet Laplacian which we denote
by H�
 The operator H� acts as

�H����n� x� 

���
P
jn�n�j��jx�x�j�� ��n

�� x�� if x � ��

��n� �� �
P
jn�n�j��� ��n� �� � V��n���n� �� if x  ��

where jnj� 
Pd

j�� jnjj
 Note that operator H� can be viewed as the random Schr�odinger
operator

H�  H� � V�� ��
��

where the random potential V� acts only along the boundary �Zd��
�  Zd
 For many

purposes� it is convenient to adopt this point of view and we will do so in the sequel
 Since
H� is bounded� the operator H� is properly de�ned as a self�adjoint operator on l��Zd��

� �


It follows from the standard argument �see Section �
� of �CFKS	 for basic notions con�
cerning random Schr�odinger operators� that there are deterministic sets �� �pp� �ac and �sc

such that P �a
s
� ��H��  �� �pp�H��  �pp� �ac�H��  �ac� �sc�H��  �sc
 Obviously�
�  �pp ��ac ��sc
 We will use the usual notation �c  �ac ��sc� �s  �pp ��sc
 The set
� can be explicitly computed �see �JMP	� and for detailed proof �JL	�
 Let

S�V� �
�
E � a �

�

a
� E � ���d� �d	� a � V and jaj � �

�
� ��
��

Note that S�V� is a closed set and that S�V�  � if and only if V � ���� ��
 Recall that
��H��  ����d� ��� ��d� ��	
 Then

�  ��H�� � S�V�� ��
��

Note also that whenever V 	 �R n ���� �	� 
 �� the set � has parts lying outside ��H��


The �rst natural question concerning the spectral theory of H� is what is the structure
of the sets �pp� �ac� �ac
 We brie�y summarize the known results

�� For arbitrary boundary potential V � ��H�� � �ac�H��V �
 Therefore� ��H�� � �ac
 This
result is proven in �JL	

�� In �JL	 it is also shown that �s � fE � jEj � ��d� ��g
 In other words� the spectrum of
H� on ��H�� is P �a
s
 purely absolutely continuous
 For this last result to hold� we do not
need that the random variables V��n� are identically distributed � it su�ces that they have
densities
 We emphasize that these results are random � there are examples of potentials
V �which even satisfy limjnj�� V �n�  �� such that H� � V has eigenvalues embedded in
��H�� �MW	

�� Under some additional technical assumptions on the distribution function p�x� �e
g
 it
su�ces that p is compactly supported and in L��R��� there exists Ec � ��d � ��� which
depends on p only� such that

�c 	 fE � jEj � Ecg  ��

�



In other words� P �a
s
 the spectrum of H� is pure point outside the interval ��Ec� Ec	
 It is
also known that the corresponding eigenfunctions decays exponentially
 Similar results hold
in the �large disorder regime� � for any � � � there exists 	��� such that if kpk� � 	��� then
��
�� holds with Ec  ��d�����
 The corresponding eigenfunctions also decay exponentially

These results are proven in �AM	 and �G	
 For some related results see �BS	


In this paper� we are interested in improving the results of �� in d  �
 We will make the
following assumptions concerning the random potential V�

�H�� The topological boundary of V is a discrete set and p � L��R�

Our main result is

Theorem ��� Let d  � and assume that �H�� holds� Then

�c 	 fE � jEj � �g  ��

In other words� P�a�s� the spectrum of H� outside the interval ���� �	 is pure point�

Remark �� Our estimates give some control of the decay of the eigenfunctions of H�
 It
follows from our arguments that P �a
s
 the eigenfunctions corresponding to the eigenvalues
outside ���� �	 decay as

j�E���n� x�j � CE���k exp��
Ejxj��� � jnj��k� ��
��

for any k � �
 We expect that the estimate ��
�� is not optimal� and that the eigenfunctions
decay exponentially in the n�variable
 To establish such decay near the edges �� appears to
be a di�cult technical problem

Remark �� The condition that topological boundary of V is a discrete set is needed for
technical reasons and in some cases it could be relaxed
 For example� if the Lebesgue measure
of V is in�nite� the result holds under the assumption that int�V� 
 �


Combining �� above with Theorem �
� we obtain a complete description of the sets �ac�
�pp� �sc
 We always have

�ac  ���� �	� �sc  ��

If V � ���� �	 then �pp  �� otherwise �recall ��
���

�pp  � n ���� ��  S�V� n ���� ���

Similar results are proven in some cases where the boundary potential V is almost periodic
�JM�	� �KP	


Let us brie�y relate Theorem �
� to the discussion of the surface states presented in
�JMP	
 For any boundary potential V we de�ne the surface spectrum of the operator H��V
as the closure of the set of energies E for which the equation �H� � V �u�n� x�  Eu�n� x�
has a non�zero solution which satis�esX

n�Zd

�� � jnj��k
X
x��

ju�n� x�j� ��

�



for some k � �
 Roughly� the surface spectrum consists of the energies whose corresponding
generalized eigenfunctions have some decay in the x�variable
 We denote the surface spec�
trum by �surf�H��V �
 One can show �see �JMP	� that ��H��V �n��H�� � �surf �H��V �

An absolutely continuous surface spectrum exists if V is a constant or a periodic function
and maxn jV �n�j � �
 In this case� the generalized eigenfunctions are localized in the x�
direction and propagate along the boundary
 Theorem �
� asserts that if d  � and the
constant boundary condition is replaced with a random boundary condition� then all prop�
agating surface states with energies outside ���� �	 are localized by the random �uctuations
of the boundary
 This is physically the most interesting consequence of Theorem �
�
 An
interesting open question is whether there are any surface states with energies inside ��H��

This problem remains to be investigated in the future


In the rest of this section we sketch some of the basic ideas involved in the proof of
Theorem �
�


The �rst idea concerns dimension reduction ��AM	� �G	� �JMP	�
 Roughly speaking� �inte�
grating� the x�variable we will reduce the ��dimensional spectral problem to an ��dimensional
problem which will depend non�linearly on the spectral parameter E
 This reduction could
be done in any dimension
 For the latter applications� we will describe and prove this result
in the general setting


Let I be an open interval on the energy axis such that I 	 ��H��  �
 Let T 
R��Z be the circle and Td the d�dimensional torus
 We denote the points in Td by
�  ���� � � � � �d�� and by d� the usual Lebesgue measure
 In the sequel we use a shorthand
����  �

Pd
k�� cos �k
 Let ����E� be the solution of the quadratic equation

����E� �
�

����E�
� ����  E�

such that j����E�j � �
 Let

�j���E�  ����E� � ����� j�n�E� 
Z
Td

e�in���j���E�d�� ��
��

We will prove in Section � that there are constants C and 
� which depend only on the
distance of I from ��H��� such that for E � I�

jj�n�E�j � C exp��
jnj���

Let h��E� be the operator on l��Zd� de�ned by

�h��E����n� 
X
k�Zd

j�n� k� E���k�� ��
��

We de�ne one parameter family of random operators on l��Zd� by

h��E�  h��E� � V�� E � I� ��
��

Our argument will be based on the following variant of Simon�Wol theorem �SW	
 Let m
be the Lebesgue measure on R


�



Theorem ��� If for a�e� �E� �� � I � � with respect to the product measure m� P �

lim
���

k�h��E�� E � i����	�k �� ��
��

then �c 	 I  ��

We will prove this theorem in Section �


In comparison with the usual theory of random Schr�odinger operators� there are two
essential di�culties in studying the quantity k�h��E��E� i����	�k
 The �rst is that h��E�
is a long�range Laplacian� and the second is that h��E� depends on energy
 These di�culties
are successfully resolved in the high energy or large coupling regime adopting the techniques
of the multiscale analysis and the method of Aizenman�Molchanov �G	� �AM	
 Of course�
in general these results cannot be improved without major new insights into the theory of
random Schr�odinger operators


The case d  � is however special
 In this case� the operators h��E� act on l��Z�� and
there was a hope that the results of �� could be improved using some of the techniques speci�c
to the theory of one�dimensional Schr�odinger operators
 As a �rst part of this program� we
have investigated in �JM	 the long�range� one�dimensional random Schr�odinger operators of
the form h�  h� � V��n�� where V��n� is as in ��
��� and h� is a translation invariant
self�adjoint operator with some o �diagonal decay
 The simpli�cation is that h� now does
not depend on E�

�h����n� 
X
k�Z

j�n� k���k��

Note that again the spectrum of h� and its pp� sc� ac component are P �a
s
 deterministic
sets
 Furthermore� P �a
s
 ��h��  ��h�� � V


Before stating a theorem from �JM	 which will concern us here� we set some hypothesis
on h��
�H�� There is 	 � � such that �n� jj�n�j � C�� � jnj�����

�H�� The function �j��� 

P
n j�n� exp�in�� is even� real and strictly monotone on ��� 	


The following result was proven in �JM	


Theorem ��� Assume that Hypotheses �H�� and �H�� hold and that int�V� 
 �� Then for

a�e� �E� �� � R� � with respect to the product measure m� P �

lim
���

k�h� � E � i����	�k �� ��
��

In particular� P �a�s� the operators h� have pure point spectrum�

The techniques used in the proof of this theorem will play the central role in the proof of
Theorem �
�
 For this reason we brie�y review some of the basic steps of the argument


The proof of Theorem �
� is based on a geometric approach to localization in d  �
which goes back to �SS	� �KMP	� �M	� �M�	� �GJMS	
 The principal idea is to show that a

�



particle with given energy E� has to tunnel through an in�nite sequence of �barriers� to
reach in�nity
 This idea is formalized as follows
 Let E� be a given point in ��h�� � V� and
I a small open interval around E�
 Using the structure of the random potential V��n�� one
constructs P �a
s
 a sequence of intervals �barriers� Ik��� � Z� with centers ck��� and of
width lk���� such that ck���� � and lk���� as k � �� and such that

I 	 ��hIk����  �� ��
���

for all k
 Here� hIk��� is the restriction of h� to Ik��� with the Dirichlet boundary condition

For barriers to be e ective in preventing tunneling� we need that they are su�ciently long�
namely that !Ik��� � c�jkj� and they are not too far apart� namely that jck���j � ajkj� � for
some positive constants c� and a�
 Once such a geometric con�guration of the barriers is
given� the random parameter � is �xed� and plays no further role
 Thus� we drop subscript �
for the rest of this paragraph
 Let "k be the intervals between Ik and Ik���Mk  Ik�"k�Ik��

and hMk
the restriction of h toMk with the Dirichlet boundary condition
 One now constructs

an iterative expansion of the resolvent �h�E��� in terms of the resolvents �hMk
�E��� and

�hIk � E���
 At this point one encounters an analog of the �small divisor problem�
 The
contributions from �hIk � E��� are small due to ��
���
 Since we do not have any control
on the potential within "k#s� we need an apriory estimate on �hMk

� E��� which will make
use of the fact that the intervals Mk are not too long
 Such an estimate is obtained by
randomization of the energy E within interval I
 The end result is that for typical E � I
with respect to the Lebesgue measure� the size of the terms �hMk

�E��� is compensated by
�hIk �E���� and this will ultimately yield the estimate ��
��
 We remark that although the
ideas of the argument are intuitive and transparent� the technical details are involved


There are two basic mechanism which can yield Relation ��
���
 The �rst is that within
intervals Ik��� the absolute value of the potential is su�ciently large
 This argument is
applicable for example in the case where the Lebesgue measure of V is in�nite
 In this case�
the proof is somewhat simpler and we do not need Hypothesis �H�� for Theorem �
� to
hold
 In more general situations� however� to verify ��
��� we had to construct long periodic
approximations Vp�� of the random potential V� such that E� is in the spectral gap of the
operator h� � Vp��
 Since h� is long range� this construction is involved and technical
 It is
precisely in this construction that Hypothesis �H�� enters the game
 We refer the reader to
Sections � and � of �JM	 for details of the argument


In this paper we will use the techniques developed in �JM	 to show that under the as�
sumptions of Theorem �
� Theorem �
� holds
 Note that for �xed E 
� ���� �	� �j���E� is
real� even� analytic and strictly monotone on ��� 	 so will adopt the strategy of the proof of
Theorem �
�
 The main di�culty is that if h� depends on E� the randomization of energy
used to get an apriory estimate on �hMk

� E��� is not possible any more
 We replace this
step in the argument with a construction to which we will refer as a probabilistic reduction

More precisely� we will make suitable partitions of the probability space � which will �x
the positions of the �barrier� intervals Ik �the intervals for which an analog of ��
��� holds�

Within these partitions the random variables V��n� will be independent but not identically
distributed
 For �xed E the apriory estimate on �hMk

�E� � E��� will be obtained within
the partitions with the help of a Wegner type result already used in �AM	� �M�	
 For this

�



reason we need that p � L��R�� an additional condition which played no role in �JM	
 The
rest of the argument will follow closely �JM	


We have attempted to give complete proofs� except for the results which are verbatim
the same as in �JM	
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� Dimension reduction

In this section we prove Theorem �
�


Let V � Zd �� R be an arbitrary potential
 We denote by the same letter the induced
multiplication operator on l��Zd��

� � which acts as follows� �V ���n� x�  � if x � � and
�V ���n� ��  V �n���n� ��
 Let H  H� � V where H� is a Dirichlet Laplacian on Z

d��
� 
 We

recall that the points in Zd��
� are denoted by n  �n� x�� n � Zd� x � Z�
 Let

R�m�n$ z�  �	m� �H � z���	n��

If Imz 
 � and m is �xed� these matrix elements satisfy the equation

R�m� �n� x� ��$ z� �R�m� �n� x� ��$ z� �
P
jn�n�j���R�m� �n�� x�$ z�

 	mn � zR�m� �n� x�$ z��
��
��

if x � �� and

R�m� �n� ��$ z� �
X

jn�n�j���

R�m� �n�� �$ z� � �V �n�� z�R�m� �n� ��$ z�  	mn� ��
��

if x  �
 If m  �m� �� is a point on the boundary� Equation ��
�� can be �integrated�
 This
is most conveniently done in the Fourier representation associated to the variable n
 Let Td

and ���� be as in ��
��
 We de�ne a unitary map F � l��Zd��
� � �� L��Td� � l��Z�� by the

formula

�F����� x� � ����� x� 
�

���d��
X
n�Zd

��n� x�ein���

In the new representation� Equations ��
�� and ��
�� become �recall that m  �m� ����

�R�m� ��� x� ��$ z� � �R�m� ��� x� ��$ z� � ������ z� �R�m� ��� x�$ z�  �� ��
��

�R�m� ��� ��$ z� � ������ z� �R�m� ��� ��$ z� � dV R�m� ��� ��$ z�  em���� ��
��

where em���  F �	mn�  ����d�� exp�im ���
 It follows from Equation ��
�� that for x � ��

�R�m� ��� x�$ z�  �R�m� ��� ��$ z����� z�x� ��
��

�



where ���� z� is the solution of the quadratic equation

���� z� �
�

���� z�
� ����  z�

which satis�es j���� z�j � �
 Note that for any �xed �� ���� z� is an analytic function
in the second variable on the region C n ��H��
 Substituting ��
�� into ��
�� we get that
�R�m� ��� ��$ z� satis�es the equation

�R�m� ��� ��$ z������ z� � ����� � dV R�m� ��� ��$ z�� z �R�m� ��� ��$ z�  em���� ��
��

In the sequel we will use the shorthand

R�m�n$ z� � R��m� ��� �n� ��$ z�  �	�m���� �H � z���	�n����� ��
��

Let
�j��� z�  ���� z� � ����� j�n� z� 

Z
Td

e�in���j��� z�d�� ��
��

Let m and z be �xed
 Applying F�� to ��
�� we get that �n�X
k

j�n� k� z�R�m� k$ z� � �V �n�� z�R�m�n$ z�  	mn� ��
��

For any z � C n ��H�� we set

�h��z����n� 
X
k

j�n� k� z���k��

Note that h�z� is a bounded operator on l��Zd�
 Moreover� if z is real then h�z� is self�adjoint

We set h�z�  h��z� � V 
 It follows from ��
�� that if Imz 
 � then z 
� h�z� and

�	m� �h�z�� z���	n�  R�m�n$ z�� ��
���

We will need

Lemma ��� Let n � Zd and E 
� ��H�� be given� Then

lim
���

k�h�E � i��� E � i����	nk ��

if and only if

lim
���

k�h�E�� E � i����	nk ��

Proof� Note �rst that

k�h�E � i��� E � i����k � ���� k�h�E�� E � i����k � ����

The second inequality is obvious� and the �rst follows from ��
�� and ��
���
 It now follows
from the resolvent identity that

k�h�E � i��� E � i����	nk � k�h�E�� E � i����	nk �� � kh��E � i��� h��E�k���

k�h�E�� E � i����	nk � k�h�E � i��� E � i����	nk �� � kh��E � i��� h��E�k��� �

�



These inequalities combined with the simple estimate

kh��E � i��� h��E�k  sup
��Td

j����E � i��� ����E�j  O���

yield the lemma
 �
Remark� Since

�	�m���� �H � E � i����	�n����  �	m� �h�E � i��� E � i����	n��

we have that for a
e
 E with respect to the Lebesgue measure the limit

lim
���

j�	m� �h�E � i��� E � i����	n�j�

exists and is �nite
 Arguing as in the proof of Lemma �
� one can easily show that for a
e

E � R�

lim sup
���

j�	m� �h�E�� E � i����	n�j ��

This observation will be used latter


We are now ready for
Proof of Theorem ���� Let Hn be the cyclic subspace of l��Zd��

� � generated by the vector
	�n��� and the operator H�
 It is easy to show that Hn is the same as the cyclic subspace
generated by H� and 	�n���
 Furthermore� the linear span of �n�ZHn is dense in l��Zd��

� �

These two simple facts are proven in �JL	
 The Simon�Wol theorem yields that for a given
open interval I� �c 	I  � if for any n � Zd and for a
e
 �E� �� � I �� with respect to the
product measure m� P we have that

lim
���

k�H� � E � i����	�n���k
�  lim

���

X
k�Zd��

�

jR���n� ���k$E � i��j� �� ��
���

Since the family of operators H� is ergodic with respect to the usual shift operators on �
�see e
g
 Section �
� in �CFKS	�� it su�ces to establish ��
��� in the case n  ��� ��
 The
analysis of this section applied to V  V� yields that

X
k�Zd��

�

jR����� ���k� E � i��j� 
�

���d
X
x��

Z
Td

��� �R����� ��� ��� ��$E � i��
���� j���� z�j�xd�


�

���d

Z
Td

��� �R����� ��� ��� ��$E � i��
����

�� j����E � i��j�
�

Since I 	 ��H��  � there are positive constants c� and c� such that for � � Td� E � I and
� � � � ��

c� � ��� j����E � i��j���� � c��

Thus� ��
��� holds if and only if

lim
���

�

���d

Z
Td

��� �R����� ��� ��� ��$E � i��
���� d�  lim

���

X
k�Zd

jR���� k$E � i��j� ��

�



Finally� it follows from Lemma �
� that the second limit is �nite if and only if

lim
���

k�h��E�� E � i����	�k �� ��
���

We conclude that if for a
e
 �E� �� � I �� with respect to m�P Relation ��
��� holds then
�c 	 I  �
 Theorem �
� follows
 �

We �nish this section by collecting a few facts concerning the function j�n�E� which
we will use in the sequel
 Note that if n  �n�� � � � � nd�� and %n  �jn�j� � � � � jndj� then
j�n�E�  j�%n�E�
 We also have the following estimate�

Proposition ��� Let E 
� ��H�� be given� Then there are constants CE and 
E such that

jj�n�E�j � CE exp��a�E�jnj���

These constants can be chosen as follows� Let 
E be such that 
E�
��E  �jEj�����d� Then

a�E�  ln 
E� CE  ���djEj��� ��
���

Remark� The estimates ��
��� are crude� but they will su�ce for our purposes

Proof� We denote the points in Cd by z  �z�� z�� � � � � zd�
 Let � � Cd �� C�fg be de�ned
by

��z� 
dX

k��

�
zk �

�

zk

�
�

and let ��z� E� be the solution of the equation

��z� E� �
�

��z� E�
� ��z�  E�

such that j��z� E�j � �
 Parameterization zk  exp�i�k� and ��
�� yield that

j�n�E�  ��i�d
Z
T d
z�n�� ���z� E� � ��z�	 dz� ��
���

where T d  fz � �k� jzkj  �g� and z�n�� 
Q
z�nk��k 
 Without loss of generality we can

assume that nk � �
 Let S�  fz � jzkj � ��� 
�g
 If

�z � S�� j��z�� E�j � �� ��
���

then the function ��z� E� is holomorphic in S� in each variable separately� and continuous
and bounded on S� 
 It is a simple exercise to show that if 
E satis�es 
E�


��
E  �jEj�����d�

then ��
��� holds� and that on the boundary of S�E we have an estimate

j��z� E�j� j��z�j � jEj���

Interchanging the domain of integration in ��
��� we derive the proposition
 �

��



� Preliminaries

��� Path expansions and all that

In this section we collect a few technical results from �JM	 concerning the operators h�E� 
h��E� � V on l��Z�� where h��E� is given by ��
��� E is a �xed point outside ���� �	� and V
is an arbitrary potential
 For the proofs we refer the reader to Section � of �JM	


A path � connecting n and m is any sequence of sites �  �i�� i�� � � � ik� such that i�  n�
ik  m
 The length of this path is j� j  k
 To the path � we associate a sequence of bonds
�b  �b�� � � � � bk�� where

b�  �i�� i��� b�  �i�� i��� � � � � bk  �ik��� ik��

We write s � � if s is one of the sites of the path � � and b  �s� t� � �b if b is one of its bonds

We use the shorthand j�b�  j�s� t$E�� and

R�n�m$ z�  �	n� �h�E�� z���	m��

Let
j��E� 

X
n

jj�n�E�j�

Proposition ��� If Imz � j��E� then

R�n�m$ z�  �
	nm

z � V �n�
�
X
�

	Y
s��

�

z � V �s�



�

��Y
b��b

j�b�

� � ��
��

where the sum is over all paths connecting n and m� For each � � � the series converges

uniformly in the half�plane Imz � j��E� � ��

A similar result holds if the system is restricted to a box
 Let I � Z be an arbitrary set�
and let hD� �E� be the operator h��E� restricted to I with the Dirichlet boundary condition

This operator is obtained by removing the couplings between the points in I and Z n I� and
acts on l��I� according to the formula

�hD� �E����n� 
X
m�I

j�n�m�E���m�� ��
��

Remark� For latter applications� we remark that if E � � then hD� �E� � E and if E � ��
then hD� �E� � E

We de�ne the operator hI�E� on l��I� by the formula hI�E�  hD� �E� � V 
 We will refer to
hI�E� as the restriction of h�E�  h��E� � V to I with the Dirichlet boundary condition

For n�m � I we set RI�n�m$ z�  �	n� �hI�E�� z���	m�
 Then

RI�n�m$ z�  �
	nm

z � V �n�
�
X
�

	Y
s��

�

z � V �s�



�

��Y
b��b

j�b�

� � ��
��

��



where the sum is over all paths which connect n and m and belong to I
 If n or m 
� I we
set RI�n�m$ z�  �


Notation� In the sequel� we will use the shorthand hni  �� � n�����


Proposition ��� Let l be a positive integer and I an open interval such that I	 ���� �	  ��
Assume that

inf
E�I

distfE� ��hI�E��g  	 � ��

Then there is a constant C��l� which depends on 	 and l only� such that

sup
E�I

jRI�n�m$E�j � C��lhn�mi�l�

Remark� The decay of matrix elements RI�n�m$E� is probably exponential� but the above
weaker result will su�ce in our applications


We will also need

Proposition ��� Let l be a positive integer and I an open interval such that I	 ���� �	  ��
Let I � Z be such that for some 	 � �

inf
n�I�E�I

jv�n�� Ej  j��E� � 	�

Then

sup
E�I

jRI�n�m$E�j � C��lhn�mi�l�

where C��l depends on 	 and l only� Furthermore� there is a constant Cl which depends on l
only� such that for 	 � �� C��l � Cl�	�

Proposition ��� Let I	 be a sequence of �nite intervals such that I	 � Z as ��� and let

E be such that ��� E 
� ��h	�E��� Then� �n � Z�

lim
���

k�h�E�� E � i����	nk � lim inf
	��

k�hI��E�� E���	nk�

The �nal technical result we need is

Proposition ��� Let E� 
� ���� �	 be given� Then

lim
E�E�

sup
I�Z

khI�E�� hI�E��k  ��

��



Since this last proposition was not discussed in �JM	� we sketch its proof

Proof� It follows from Lemma �
� in �JM	 �see also �Ka	� Section �
�
� and Lemma �
� in
�SS	� that

sup
I�Z

khI�E�� hI�E��k �
X
n�Z

jj�n�E�� j�n�E��j�

Note that
j�n�E�� j�n�E�� 

Z
T

e�in������E�� ����E��	d��

If n 
 �� integrating by parts twice we arrive at the estimate

jj�n�E�� j�n�E��j � O�jE � E�j��n
��

The result follows
 �

��� Apriori estimates

The results of the previous section have to be complemented with an appropriate version of
Kolmogorov#s lemma �Proposition �
� in �JM	� for technique of �JM	 to work
 We however
cannot randomize energies E if h� depends on E� and this part of the argument will be
distinctly di erent from the one in �JM	
 The technical results which will be used instead of
Proposition �
� of �JM	 are described in this section


Let H� be a symmetric matrix �operator� on RN � and let ��� � � � � �N be independent
random variables on the probability space �%�� %F � %P �
 We de�ne random operators H� by the
formula

H�  H� �
NX
i��

�i����	i� ��	i�

We denote by h
���
kl the matrix elements of H� in the basis f	ig
 We make the following

hypotheses�
�A�� For any k� h

���
kk 
 �� and for any k and l� h

���
kk h

���
ll � �h

���
kl �

� 
 �

�A�� The random variables �i��� have densities pi which are uniformly bounded� i
e
 for
some � � � and all i� kpik� � �


We remark that Hypothesis �A�� is automatically satis�ed if H� � � or H� � � �and
this will be the case in our applications� recall the remark after ��
���
 We also remark that
without loss of generality we can take for our probability space %�  RN 
 Then %F is the
Borel ��algebra on RN � d %P 

Q
pi�xi�dxi� and if �  �x�� � � � � xN� then �i���  xi
 We

denote E�f� 
R
f���d %P ���


The �rst observation we need is

Lemma ��	 Assume that Hypothesis �A�� holds� Then � 
� ��H�� %P �a�s�

Remark� For this lemma to hold we only need that the random variables �i have densities

Proof� It su�ces to show that detH� 
 � %P �a
s
 This can be shown by induction as follows


��



Statement is obvious if N  �
 If N � �� expanding the determinant with respect to the
last row we can write

detH�  �N���R��� �D����

Here� R��� is the determinant of the matrix obtained from H� by removing the last row
and the last column
 By induction hypothesis� R��� 
 � %P �a
s
� and detH�  � implies
�N����D����R���  �
 Since �N and R�D are independent random variables�

%Pf� � detH�  �g � sup
a�R

%Pf� � �N���  ag  �� �

From this lemma it follows that H��
� exists %P �a
s
 We denote R��k� l�  �	k� H

��
� 	l�
 The

principal result of this section is

Theorem ��
 Assume that Hypothesis �A�� and �A�� hold� Let � � s � � be given� Then

for any k and l�
E �jR��k� l�j

s� � C�s� ���

where the constant C�s� �� depends on s and � only�

Remark �� The proof of this result is outlined in �M�	
 For reader convenience� we present
a detailed proof below

Remark �� For latter applications� it is critical that this theorem holds for random variables
which are not necessarily identically distributed

We will make use of the following consequence of Theorem �
�


Corollary ��� Assume that Hypothesis �A�� and �A�� hold� Then for any k and l�

%Pf� � jR��k� l�j � Mg � C����M� ��
��

%Pf� �
NX
j��

jR��k� j�j
� � Mg � C���N�M��	� ��
��

where the constant C��� depends on � only�

Proof� Relation ��
�� follows from Chebyshev#s inequality
 To prove ��
��� we note �rst that
if fxjg

N
k�� is a positive sequence and � � s � �� then

NX
j��

xsj �

�� NX
j��

xj

�As

� ��
��

Thus� if Xj���  jR��k� j�j�

%Pf� �
NX
j��

Xj���
� � Mg  %Pf� �

�� NX
j��

Xj���
�

�A��	

� M��	g

��



� %Pf� �
NX
j��

Xk���
��� � M��	g

�
�

M��	

NX
j��

E�Xj���
����

� C���N�M��	�

In the �rst estimate we have used ��
�� and in the second Chebyshev#s inequality
 �

The rest of this section is devoted to the proof of Theorem �
�


Let k and l be given
 We set

H�k�
� � H� �

P
i	�k �i����	i� ��	i  H� � �k����	k� ��	k�

H�k�l�
� � H� �

P
i	�k�l �i����	i� ��	i  H� � �k����	k� ��	k � �l����	l� ��	l�

Lemma ��� Assume that Hypotheses �A�� and �A�� hold� Then � 
� ��H�k�
� � and � 
�

��H�k�l�
� � %P �a�s�

Proof� Using induction with respect to N one argues in the same way as in the proof of
Lemma �
�
 �

In the sequel we will consider separately the cases k  l and k 
 l
 The �rst case is
simpler since an argument based on the rank one perturbation theory su�ces
 The second
case requires an argument based on the rank two perturbation theory


Case �� k  l

Let %R��i� j� be the matrix elements of �H

�k�
� 	��
 The identity

H��
� � �H�k�

� 	��  ��k���H
��
� ��	k� ��	k	 �H

�k�
� 	���

leads to the formula

R��k� k� 
%R��k� k�

� � �k��� %R��k� k�
�

Since �k��� and %R��k� k� are independent random variables�

E �jR��k� k�j
s� � sup

t�R

Z
R

�

jx� tjs
pk�x�dx�

Since � � s � � and kpkk� � �� decomposing
R
R

R

t���t����

R
Rn
t���t���� we easily estimate

E �jR��k� k�j
s� � � � ������ s��

This concludes the Case �

Case �� k 
 l

Let %R��i� j� be the matrix elements of �H

�k�l�
� 	��
 The identity

H��
� � �H�k�l�

� 	��  ��k���H
��
� ��	k� ��	k	 �H

�k�l�
� 	�� � �l���H

��
� ��	l� ��	l	 �H

�k�l�
� 	���

��



yields that for any i� j�

R��i� j�  %R��i� j�� �k���R��i� k� %R��k� j�� �l���R��i� l� %R��l� j��

Substituting i  k� j  k and i  k� j  l in this relation� we get after simple algebra

R��k� k�
h
� � �k��� %R��k� k�

i
�R��k� l��l��� %R��l� k�  %R��k� k��

R��k� k��k��� %R�k� l� �R��k� l�
h
� � �l��� %R��l� l�

i
 %R��k� l��

��
��

The random variables �k��� and �l��� are independent from the random variables %R��k� k��
%R��l� l� and %R��k� l�� and it is a simple exercise to show that

�� � �k��� %R��k� k���� � �l��� %R��l� l�� �k����l��� %R��k� l�
� 
 � %P � a�s�

This relation and Equations ��
�� yield that

R��k� l� 
%R��k� l�

�� � �k��� %R��k� k���� � �l��� %R��l� l��� �k����l��� %R��k� l��
�

We have used that %R��k� l�  %R��l� k�
 Let

"�  %R��k� k� %R��l� l�� %R��k� l�
��

We will prove below that
"� 
 � %P � a�s� ��
��

Assuming this� we �nish the proof of Theorem �
�


If ��
�� holds� then

R��k� l� 
%R��k� l��"�

��k��� � %R��l� l��"����l��� � %R��k� k��"��� %R��k� l���"�
�

�

Thus� we have a boundZ
�
jR��k� l�j

s d %P ��� � sup
a�b�c�R

Z
�

jajs

j��k��� � b���l��� � c�� a�js
d %P ����

We proceed to estimate the left�hand side of this inequality
 Let a� b� c be �xed
 Without
loss of generality we can assume that a 
 �
 We introduce new random variables ��k��� 
�k��� � b� ��l���  �l��� � c
 Clearly� ��k and ��l are independent random variables whose
densities satisfy k�plk� � �� k�pkk � �
 We introduce the following sets�

��  f� � ��k��� � a��� ��l��� � a��g�

��  f� � ��k��� � a��g� ��  f� � ��l��� � a��g�

��



Clearly� �� � �� � ��  %�
 We now haveZ
�

jajs

j��k�����l���� a�js
d %P ��� � �����a��s %P ����

� �����a��sminf�� a���g

� �����s�

Furthermore�Z
�

jajs

j��k�����l���� a�js
d %P ��� 

Z
Rn
�a���a���

�pk�x�dx
Z
R

jajs

jxy � a�js
�pl�y�dy

�
Z
Rn
�a���a���

jajs

jxjs
�pk�x�dx

Z
R

�

jy � a��xjs
�pl�y�dy

� �s �� � ������ s�	 �

The estimation of
R
�

is analogous to that of
R
�

 Thus� we arrive at the estimate

E �jR��k� l�j
s� 

Z
�
jR��k� l�j

s d %P ��� � �����s � �s���� � ������ s���

It remains to prove ��
��
 If N  �� "�  det�H��
�� 
 � �recall �A���
 If N � �� we will

use that

%R��k� k� 
Mkk���

detH�

� %R��l� l� 
Mll���

detH�

� %R��k� l�
� 

�
Mlk���

detH�

��

where Mij��� is the cofactor of the element hij��� of the matrix H�k�l�
� �all matrices are

computed in the standard basis f	ig�
 Thus� "� 
 � %P �a
s
 if

Mkk���Mll����Mlk���
� 
 � %P � a�s�

Let r 
 k� l
 Mkk��� is the determinant of the matrix obtained from %H� by removing the
k�th row and column
 Expanding this determinant with respect to the row which contains
�r� we get that

Mkk���  �r���M
���
kk ��� � Ekk����

The random variable �r��� is independent of M
���
kk ��� and Ekk���
 Note also that M

���
kk ���

is the determinant of the matrix obtained from %H� by removing the k�th and the r�th row
and column
 Similarly� we have that

Mll���  �r���M
���
ll ��� � Ell���

Mlk���
� 

h
�r���M

���
lk ��� � Elk���

i�
�

Here M
���
ll ��� is the determinant of the matrix obtained from %H� by removing the l�th and

the r�th row and columns� and M
���
lk ��� is the determinant of the matrix obtained from %H�

by removing the l�th row� the k�th column� and the r�th row and column
 Then

Mkk���Mll����Mlk���
�  �r���

�a��� � �r���b��� � c����

��



where
a��� M

���
kk ���M

���
ll ����M

���
kl ���

�

and �r��� is independent of a���� b��� and c���
 If

a��� 
 � %P � a�s�� ��
��

then
%Pf� � "�  �g � sup

a�b�c
a���

%Pf� � �r���
�a � �r���b� c  �g  ��

To establish ��
��� we pick r� 
 r� l� k� expand the determinants Mkk� Mll and Mlk with
respect to the r��row of the matrix H�� and continue inductively
 The algorithm terminates
after N � � steps� and in the last step we get that

M
�n���
kk ���M

�n���
ll ����M

�n���
lk ����  h

���
kk h

���
ll � �h

���
lk �

��

which is di erent from zero by Hypothesis �A��


� The main theorem

Let h��E� be given by ��
�� and V� be a random potential on Z such that V��n� are indepen�
dent� but not necessarily identically distributed random variables on some probability space
�%�� %F � %P �
 We assume that each random variable V��n� has density pn�x�
 Furthermore� we
assume
�A� There exist � � � such that �n� kpnk� � �

Let

h��E�  h��E� � V��n��

This operator is in general di erent from h��E� de�ned by ��
��


We will freely use the notation of the previous sections
 In this section we prove

Theorem ��� Let a � � be an integer and I  �c� d� an interval such that I 	 ���� �	  ��
Assume that �A� holds and that there exists an integer N � � such that� �n � �� the intervals

��aN�n � �� aN�n�� � �	�

contain sub�intervals I
n of the length l
n � n such that %P �a�s�

inf
E�I

distfE� ��hI��n���E�g  	 � �� ��
��

Then for a�e� �E� �� � I � %� with respect to the measure m� %P � and for any n � Z�

lim
���

k�h��E�� E � i����	nk �� ��
��

��



Remark� We emphasize that the intervals I
n are deterministic

Given the results of the previous section� the proof of Theorem �
� reduces to translating
line by line the arguments of Section � in �JM	
 To see how this translation is carried out�
we will reproduce here a part of the argument


The �rst observation we will need is that ��
�� and Proposition �
� yield that for any
positive integer l� E � I and p� q � I
n�

jRI�n���p� q$E�j � C��lhp� qi�l� ��
��

where C��l does not depend on E� I
n and �
 In this technical sense the intervals I
n are
the intuitive �barriers� discussed in the introduction


To simplify the notation� we will prove ��
�� only in the case n  �
 This is the case that
we will use latter


We begin by introducing several sequences of intervals
 Let In#s be as in the theorem�
In � �an� bn	� and let ln  jan� bnj��
 Let M�  �a��� b�	
 For n � �� we set Mn  �an� bn��	�
and for n � �� Mn  �an��� bn	
 Let "�  �b��� a�	
 For n � �� we set "n  �bn� an��	� and
for n � �� "n  �bn��� an	
 Note that for n � ��

Mn  In �"n � In��� ��
��

A similar relation for n � �

Notation� In the sequel we will drop subscript � whenever there is no danger of confusion

Thus� we write h�E� for h��E� etc


We denote by hMn�E� the restriction of h�E� to Mn with the Dirichlet boundary condi�
tion
 Let RMn�E�  �hMn�E��E��� be the resolvent of hMn�E� and RMn�p� q$E� its matrix
elements
 We �rst collect some apriori estimates on RMn�E�
 Let

x���n  an� x
���
n  bn� x

���
n  an��� x

�	�
n  bn���

Recall that hxi  �� � x�����
 We denote by Ln the number of points in Mn� Ln  !Mn


Proposition ��� Let E � I � 
 � � and l � � be �xed� Then for every � � � there is a

measurable set %���� � %� such that�

�� %P �%� n %�����  ��
�� For each � � %���� there is a positive integer n��
 such that for jnj � n��
 the following

estimates hold�

max
i�j

���RMn�x
�i�
n � p� x�j�n � q$E�

��� � �hni���hpi���hqi���� ��
��

max
i

X
q�Mn

���RMn�x
�i�
n � p� q$E�

���� � L	
nhni

	�����hpi	������ ��
��

max
jp�qj�ln��

jRIn�p� q$E�j � �hp� qi�l� ��
��

��



Given Theorem �
� and Corollary �
�� the proof of ��
�� and ��
�� reduces to a simple
application of Borel�Cantelli lemma
 Note that Hypothesis �A� and the remark after ��
��
imply that all conditions of Theorem �
� are satis�ed
 The estimate ��
�� follows from
Proposition �
�


Note that n��
 is not speci�ed uniquely
 To avoid some ambiguities� for given � � � and
� � %���� we de�ne n��
 as the smallest positive integer such that ��
�����
�� hold for all
jnj � n��



Proposition �
� gives information on the matrix elements of RMn
starting with a su��

ciently large index n which depends on �
 To circumvent some di�culties which arise from
this ��dependence� we introduce the sets

%�k�
 
k�

j��

f� � � � %���� and n��
  jg�

Since RMn�s� t$E� are measurable functions of �� the sets %�k�
 are measurable
 Clearly� if
i � k then %�k�
 � %�i�
 Furthermore� it follows from Proposition �
� that for each � � ��
�k��

%�k�
 is of full measure in %�
 Note that some of the sets %�k�
 might be empty
 However�
for each � � � there is k��� � � such that %�k�
 
 � if k � k���
 Let Cl be the constant from
Proposition �
� and let �recall that I  �c� d��

L  maxfjcj� jdjg� j��E� � Cl���

For given k and �� we introduce an auxiliary potential Vk�
 by the formula

Vk�
�n� 

�
L if n �Ms� jsj � k�
V �n� if n �Ms� jsj � k


The reasons for introducing this auxiliary potential are the following�
a� If � � %�k�
 and V is replaced by Vk�
 then the inequalities ��
�� and ��
�� hold for all n

b� If jnj � k then it follows from Proposition �
� and the choice of L that the inequality
��
�� holds for all p� q � In

Let

J	 �
�

j�jjj�	

Mj�

We denote by h	�k�
�E� the operator h��E��Vk�
 restricted to J	 with the Dirichlet boundary
condition
 We will prove below the following result


Proposition ��� Let E � I be given� Then there exists �� � � such that for k � k�����
� � %�k�
�� and i � �k

s��kMs�

lim sup
	��

X
n�J�

����	i� �h	�k�
��E�� E���	n�
���� ��

��



Let us show how Relation ��
�� �for n  �� follows from this proposition
 Denote for the
moment by Rk�
� the resolvent of the operator h��E��Vk�
�
 It then follows from Propositions
�
� and �
� that for � � %�k�
� and i � �k

s��kMs�

lim
���

X
n�Z

jRk�
��i� n$E � i��j� � CE�i�k�
� �� ��
��

Furthermore� it follows from the resolvent identity that

R��� n$E � i��  Rk�
���� n$E � i�� �
X

i�Ms�jsj�k

�L� V �i��R��� i$E � i��Rk�
��i� n$E � i���

Note that for a given ��
lim sup

���
jR��� i$E � i��j ��

for a
e
 E � R �recall the remark after the proof of Lemma �
��
 Thus� for a
e
 E � I and
a
e
 � � %�k���

jR��� n$E � i��j� � CE��

X
i�Ms�jsj�k

jRk�
��i� n$E � i��j� �

This inequality and ��
�� yield Relation ��
�� for n  �


The proof of Proposition �
� follows closely the proof of Proposition �
� in �JM	
 We just
sketch the main steps

Notation� In the sequel we will drop the subscripts k and �
 For example� we write
R	�n�m$ z� for the matrix elements of the resolvent �h	�k�
�E�� z���� etc


We will discuss Proposition �
� only in the case where i  �
 A similar argument applies
to the other values of i


Let � � � be given
 Let us recall the construction of the iterative expansion of the matrix
resolvent element R	��� n$ z� with respect to RMs
 Let � be any path in the expansion ��
��
which connects � and n� �  ��� n�� n�� � � � � nk� n�
 To such a path we associate a sequence
of bonds �b�� � � � � bl� and a sequence of blocks �Ms�� � � � �Msl� in the following way
 Let nk�
be the �rst of the nl#s which is not in the block M�
 Then let b�  �nk���� nk��
 We denote
the block to which nk� belongs by Ms� 
 Let nk� be the �rst of the nl#s� for l � k�� which is
not in Ms� � and let b�  �nk���� nk��
 We denote the block to which nk� belongs by Ms�
 If
nk� � Ms 	Mt then� by de�nition� k�  minfs� tg if s� t � �� and k�  maxfs� tg if s� t � �

We now continue inductively
 It is helpful to invoke the following picture
 The path � starts
in the block M�� and wanders for some time within this block
 It then leaves M� and jumps
to a di erent block Ms� 
 In the bond b� we record the site nk��� � M� at which the path
takes o � and the site nk� �Ms� at which it lands
 The path now wanders through Ms� and
then jumps to Ms�� etc
 The last bond bl  �nkl��� nkl� corresponds to the last entry into
the block Msl � Mn� which contains n
 Since neighboring blocks intersect� the paths can
land at the site which belongs simultaneously to two blocks$ in this case� by de�nition� we
say that the path landed in the block which is closer to �
 Clearly� the sequences fbig and
fMsig are not uniquely determined by the path � � great many paths � will determine the
same sequences of blocks
 Note that fbig� however� uniquely determines fMsig
 Let B be
the set of all sequences of bonds �b  fbig obtained in the above way


��



Regrouping the elements in the expansion ��
�� we get

R	��� n$ z�  	�n��V ���� z� �
X
�b�B

RM�
��� nk���$ z�j�nk��� � nk��RMs�

�nk� � nk���$ z� � � �

� � � RMsl��
�nkl�� � nkl��$ z�j�nkl�� � nkl�RMn�

�nkl� n$ z��

At this point� of course� this relation holds only for Imz � j��E�
 However� if z is arbitrary
and the series on the right hand side converges absolutely then its sum is R	��� n$ z�
 To
show this� for z � C we de�ne

R	��� n$ z�  	�n��V ���� z� �
X
�b�B

RM�
��� nk���$ z�j�nk��� � nk��RMs�

�nk�� nk���$ z� � � �

� � � RMsl��
�nkl�� � nkl��$ z�j�nkl�� � nkl�RMn�

�nkl� n$ z�� ��
��

whenever the sum converges absolutely
 We then have

Proposition ��� If z � C and if R	��� n$ z� is de�ned for all n � J	� then z 
� ��h	�z�� and
R	��� n$ z�  R	��� n$ z��

The proof is the same as in �JM	
 In the sequel� we will apply this proposition in the case
z  E � R


At this point one proceeds to prove the following statement
 Let E � I be given
 Then
there exists �� � � such that for k � k���� and � � %�k�
�� the formal series ��
�� converges
absolutely and X

m�J�

jR	��� m$E�j
� � C �

where the constant C depends only on C��l in ��
�� �in particular C does not depend on ��

Proposition �
� then follows from Proposition �
�


Let us consider a typical term in the formal expansion ��
���

RMsi��
�nki�� � nki��$E�j�nki�� � nki�RMsi

�nki� nki����$E��

We �x � � � and k � k���� and proceed to obtain a suitable estimate on

RMsi��
�nki�� � nki��$E�j�nki�� � nki��

We now use ��
�� and the path expansion of Section � to decompose RMsi��
in such a way

that the estimate ��
�� could be taken into the account
 The rest of the arguments is virtually
identical to the arguments in �JM	 and we leave details as an exercise for the reader
 We
note that since j�n�E� is decaying exponentially� the estimates of �JM	 could be substantially
improved
 Also� the argument of �JM	 �see the remarks at the end of Section � in �JM	� yields
the estimate

sup
���

j�	�� �h��E�� E � i����	n�j � C��E�k�� � jnj��k�

for any k � �
 This estimate and Simon�Wol theorem �SW	 will yield the decay of eigen�
functions described in Remark � after Theorem �
�
 We expect that this result is not optimal�
and we will not discuss it any further


��



� Probabilistic reduction

In this section we construct a partition of the probability space ���F � P � associated with the
model ��
��
 This partition� combined with the results of the Section � and some additional
technical results described in Section �� will allow us to reduce the proof of Theorem �
� to
Theorem �
�


We �rst recall the structure of ���F � P � �for details see e
g
 �CFKS	�
 Without loss of
generality we may assume that

�  RZ  �ZR�

Each � � � can be identi�ed with the real sequence f�igi�Z
 The ��algebra F is generated
by cylinder sets f� � �i� � B�� � � � � �in � Bng� where B�� � � � � Bn are Borel subsets of R
 If
d�  p�x�dx� the probability measure P is given by P  �Z�


Let J� and J� be two given disjoint open intervals and let J�  R n �J� � J��
 We will
assume that for i  �� �� ��

pi �
Z
Ji

p�x�dx � ��

Clearly� p� � p� � p�  �
 To each � � � we associate a sequence s���  fsig of �#s� �#s and
�#s as follows�

si 

�����
� if �i � J��
� if �i � J��
� if �i � J��

The sequence s��� is the skeleton of the event �
 We denote by S the set fs��� � � � �g

Let T be the ��algebra on S generated by the cylinder sets� and  a measure de�ned by
  �Zb� where bf�g  p�� bf�g  p� and bf�g  p�
 Note that if T � � �� S is de�ned
by T ���  s���� then T is a measurable transformation and for any measurable set F � S�
P �T���F ��  �F �


For any s � S let �s  f� � s���  sg
 Each �s is a measurable subset of �� �s	�s�  �
if s 
 s� and �  �s�S�s
 We remark that for any s� P ��s�  �
 Note that each �s has the
form

�s  �i�ZJsi�

Let s be given� and let ��i� be a probability measure on R with the density

p�i��x� � p��si p�x��Jsi
�x��

�in the sequel �A stands for the characteristic function of the set A�
 Note that

kp�i�k� � kpk��minfp�� p�� p�g� ��
��

Let Ps be a probability measure on � de�ned by

Ps  �i�Z�
�i��

��



Note that the measure ��i� is supported on Jsi and that Ps is supported on �s
 In this way
we obtain� for each s � S� a new probability space ���F � Ps�
 Note also that

P �A�s� � Ps�A��

is the usual conditional probability of event A given s


Lemma ��� For any A � F � the function P �A��� � S �� R is �measurable� and

P �A� 
Z
S
P �A�s�d�s��

Proof� If A is a cylinder set� the proof reduces to a simple computation
 The general case
follows by limiting argument
 �

We will also make use of

Lemma ��� Let C � I � � be a measurable set and

CE  f� � �E� �� � Cg� ��
��

Then f�E� s� � P �CE�s� is a measurable function on I � S�

Proof� If C  B � A then the previous lemma yields that P �CE�s�  �B�E�P �A�s� is a
measurable function on I � S
 The general case follows by limiting argument
 �

The stage is now set for our probabilistic reduction
 Let I be an open interval such that
I 	 ���� �	  � and

C  f�E� �� � I � � � lim
���

k�h��E�� E � i����	�k �g�

It is not di�cult to show that for �xed � the function k�h��E��E� i����	�k is measurable
on I ��
 Therefore� the set C is measurable
 According to Theorem �
�� Theorem �
� holds
if m� P measure of the set C is equal to jIj� the length of the interval I
 Let CE be given
by ��
��
 Lemmas �
� and �
� together with Fubini#s theorem yield thatZ

C
dE � dP 

Z
I
P �CE�dE 

Z
I
dE

Z
S
P �CE�s�d�s� 

Z
S
d�s�

Z
I
P �CE�s�dE�

and �nally� that Z
C
dE � dP 

Z
S
d�s�

Z
C
dE � dPs�

We summarize�

Theorem ��� Theorem ��� holds if for �almost all s and for a�e� �E� �� � I � � with

respect to m� Ps we have that

lim
���

k�h��E�� E � i����	�k ��

��



For the obvious reasons� we will refer to this result as the probabilistic reduction


We �nish this section with a probabilistic estimate which will allow us to construct long
periodic approximations of the random potential V�


Proposition ��� Let p � � and a be given integers such that p�a � � and p�a � �� Then

�a�s� there exists an integer n�s� such that the intervals

���pa�n�s��n � �� �pa�n�s��n�� � �	� n � ��

contain sub�intervals I
n of the length �np such that

si 

�
� if i � I
n� i � � mod p�
� if i � I
n� i 
� � mod p�

Proof� Let pa  b
 For any positive n let

I�k�n  ��bn � ��k � ��pn� �� bn � ��k � ����pn� �	� I
�k�
�n  I�k�n �

where � � k � �b�bn � ����np	� � and ��	 is the greatest integer part
 Let

An�k  fs � si  � if i � I
�k�

n� i � �mod p� and si  � if i � I

�k�

n� i 
� �mod pg�

Let r  minfp�� p�g
 One easily shows that �An�k� � r�np
 Let Bn be the event that no
An�k take place� Bn  S n ��kAn�k�
 It follows that

�Bn� � ��� r�np�
b�b
n�����np���  O����ra�

n

��

If ra � ��
P

n �Bn� �  and Borel�Cantelli lemma yields that �a
s
 only �nitely many
events Bn take place
 �

� Periodic approximations and gaps

In this section we collect a few additional results from �JM	 which will be used in the next
section to verify the hypothesis of Theorem �
�


Let p � � be a positive integer� � � � a positive parameter� and V
�p a periodic potential
of the form

V
�p�n� 

�
� if n � � mod p�
� if n 
� � mod p�

��
��

We set h
�p  h��E� � V
�p


The operator h��E� in the Fourier representation acts as the operator of multiplication
by the function �j���E�  ����E� � � cos�� which� for �xed E� is even� analytic and strictly
monotone on the interval ��� 	
 Thus� Hypothesis �H� of Section � in �JM	 is satis�ed
 We
will use the shorthand ek�p�E�  �j�k�p� E�
 Theorem �
� of �JM	 applied to h
�p�E� states
the following


��



Theorem 	�� Let jEj � � be given and assume that ���� ��� � ��h��E��� Then there exist

���E� � � and p��E� � � such that for � � � � ���E�� p � p��E�� and ek�p�E� � ���� ����

��h
�p�E�� 	 �ek�p�E�� ek�p�E� � 	
�k�p�E��  ��

for some 	
�p�E� � ��

We will also need a technical result from �JM	 �Proposition �
�� which asserts that the
conclusions of Theorem �
� are essentially una ected by Dirichlet decoupling
 Let again
jEj � � be given� and let Vp be a periodic potential with the period p
 Let hp�E�  h��E��Vp

For any positive integer L let hLp �E� be the restriction of hp�E� to the interval ���pL� �pL	
with the Dirichlet boundary condition
 We then have

Proposition 	�� Let �a� b� be an interval such that � 
� �a� b� and ��hp�E��	 �a� b�  �� Let
� � � and 	 � � be given small numbers� Then there exists �nitely many points r�� � � � � rk���
in �a � �� b� �� and a positive number L
�� such that for L � L
���

��hLp �E�� 	 �a� �� b� �� � �
k���
l���rl � 	� rl � 		�

The points rl and the numbers L��� and k��� depend only on �� 	 and E� Furthermore�

sup��� k��� � k� �� where k� depends only on � and E�

We will also make use of the following technical results


Lemma 	�� Assume that Hypothesis �H�� hold� Let E� � S�V� n ���� �	 be given� Then

there is �� � ��� 	 and a� � V such that

�j���� E�� � a�  E�� ��
��

Furthermore� there is a discrete set B � R n ���� �	 such that if E� 
� B then a� and ��
can be chosen so that a� is an interior point of V and that �j���� E�� is an interior point of

��h��E����

Remark� This lemma is the only place where we use Hypothesis �H��

Proof� ����E�� is the solution of the equation

����E�� � ������E�� � � cos�  E�� ��
��

which satis�es j����E��j � �
 If E� � S�V�� then �recall ��
��� there exists �� � ��� 	 and
a� � V� ja�j � �� such that a� � ��a� � � cos��  E�
 It now follows from ��
�� that

a� � ��a�  ����� E�� � ������� E���

Since the function x � ��x is strictly monotone on ����� we have that a�  ������� E��

Substituting back in ��
�� we derive ��
��


��



To prove the second part part of the lemma� note �rst that the function �j���E�� has two
extreme points� at �  � and �  
 Clearly� by wiggling �� and a� in ��
�� a little� one
can always achieve that a� is an interior point of V and that �j���� E�� is an interior point of
��h��E��� except possibly in singular cases where a� � �V and ��  � or 
 Let

B  fE � �j��� E� � a  E or �j�� E� � a  E for some a � �Vg� ��
��

Since �j��� E� and �j�� E� are analytic functions on C n ���� �	 and the set �V is discrete� we
derive that B is a discrete set as well
 �

� Proof of Theorem ���

Let B be given by ��
��� and let E� be such that jE�j � �� E� � S�V�� and E� 
� B
 We
will show that there exist an open interval I� � E� such that for a
e
 �E� �� � I� � � with
respect to m� P �

lim
���

k�h��E�� E � i����	�k �� ��
��

It then follows from Theorem �
� that �c 	 I�  �
 Since B is a discrete set� Theorem �
�
follows


It follows from Lemma �
� that there exist a� � V and �� such that �j���� E�� � a�  E�

Furthermore� a� and �� can be chosen so that a� belongs to the interior of V and �j���� E��
to the interior of ��h��E���
 Let � � � be such that �a�� �� a�� �� � V� and ��� �� such that
�j���� E�� � ���� ��� � ��h��E���
 Choose �� � � and p� � � such that Theorem �
� holds

Pick p � p� and k such that

j�j�k�p� E��� �j���� E��j � ����

and that k�p � ���� ���
 Choose � � � such that � � minf��� ���g� and let V
�p be the
periodic potential ��
��
 We now use Proposition �
�� For any � � � and 	 � � we can �nd
L����E�� such that for L � L����E�� the spectrum of the operator hL
�p�E�� �the restriction of
h��E�� � V
�p to ���pL� �pL	 with the Dirichlet boundary condition� satis�es

��hL
�p�E��� 	 �a � �� b� �� � �
k���
l�� �rl � 	� rl � 		�

where a  �j�k�p� E��� b  �j�k�p� E�� � 	
�k�p�E��
 Choose now �� 	 and x� � ������ ����

s
t
 x� �E�� a� � �a� �� b� ��� x� �E�� a� 
� �
k���
l���rl� 	� rl � 		
 This is certainly possible

since sup��� k��� � k� �� It follows that

inf
L�L����E��

distf��hL
�p�E��� � a� � x�� E�g � ��

Furthermore� it follows from Proposition �
� that

lim
E�E�

sup
L��

khL
�p�E�� hL
�p�E��k  ��

��



A simple perturbation argument �see Lemma �
� in �JM	� yields that there exist an open
interval I� � E� and 
 � � such that for any E � I� and x � �a� � x� � 
� a� � x� � 
��

inf
L�L����E��

distf��hL
�p�E�� � x� Eg  � � ��

where � does not depend on E and x
 This result can be rephrased as follows� There exist
� � � such that for any L � L����E�� and any potential V on I  ���pL� �pL	 which satis�es

V �n� � J� � �a� � x� � �� 
� a� � x� � �� 
� if n � � mod p�

V �n� � J� � �a� � x� � 
� a� � x� � 
� if n 
� � mod p�

we have that
inf
E�I�

distf��hI�E��� Eg  � � �� ��
��

We of course can choose 
 such that J� 	 J�  �
 From the construction� a� � x� and
a� � x� � � belong to �a� � ���� a� � ����
 Thus�

p� 
Z
J�
p�x�dx � �� p� 

Z
J�
p�x�dx � ��

Also� by possibly reducing 
� we may assume that p�  �� p� � p� � �


We are now ready to apply the probabilistic reduction of Section �
 Let s � S be an event
for which the conclusions of Proposition �
� hold
 According to Theorem �
� to establish
��
�� it su�ces to show that for each such s� the relation

lim
���

k�h��E�� E � i����	�k ��

holds for a
e
 �E� �� � I� � � with respect to the measure m� Ps
 We are now in position
to use Theorem �
�
 Consider the random Schr�odinger operator h��E� � V� on ���F � Ps�

It follows from ��
�� that Hypothesis �A� of Theorem �
� is satis�ed
 Estimate ��
��� Propo�
sition �
� and translation invariance yield that all the other conditions of Theorem �
� are
satis�ed� and the result follows
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