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Abstract

We study spectral properties of the discrete Laplacian H on the half-space
Zi“ = Z% x Z, with random boundary condition ¢(n, —1) = AV (n)i(n,0); the
V(n) are independent random variables on a probability space (2, F, P) and X is
the coupling constant. It is known that if the V(n) have densities, then on the
interval [—2(d+1),2(d+ 1)] (= o(Hy), the spectrum of the Dirichlet Laplacian) the
spectrum of H is P-a.s. absolutely continuous for all A [JL1]. Here we show that
if the random potential V satisfies the assumption of Aizenman-Molchanov [AM],
then there are constants Ay and A4 such that for |A\| < Ag and |A| > A4 the spectrum
of H outside o(Hj) is P-a.s. pure point with exponentially decaying eigenfunctions.

*To appear in Commun. Math. Phys.



1 Introduction

This paper deals with the spectral theory of the discrete Laplacian on a half-space with
a random boundary condition. The history of this problem and its physical aspects are
discussed in [JMP, KP]. For some recent rigorous work on the subject we refer the reader
to [AM, BS, Gri, JM1, JM2, JMP, JL1, JL2, KP, M1, P|.

In this section we introduce the model, review some known results and state our
theorems. At the end of the section we will briefly explain the basic ideas of our proofs
and discuss some open problems.

1.1 The model

Let d > 1 be given and let ZT™ := Z? x Z, where Z; = {0,1,...}. We denote the points
in Z4* by (n,z), for n € Z% and « € Z,. Let H be the discrete Laplacian on [*(Z4™)
with boundary condition 1 (n, —1) = V(n)y(n,0). When V = 0 the operator H reduces
to the Dirichlet Laplacian which we denote by Hy. The operator H acts as

Z\nfn’|++\x7$’\:l %b(n', xl) if x>0,

(Hw) (n7 x) B { gb(n, 1) + E\nfn'|+:1 l/}(n,v 0) + V(n)v,b(n, 0) if 2 =0,

where |n|; = %, |n;|. Note that the operator H can be viewed as Schrédinger operator
H=H,+7V, (1.1)

where the potential V acts only along the boundary 0Z4+! = Z¢, that is, (V¢))(n,z) = 0
if z > 0 and (V)(n,0) = V(n)y(n,0). For many purposes, it is convenient to adopt this
point of view and we will do so in the sequel. Since Hj is bounded, the operator H is
properly defined as a self-adjoint operator. We recall that the spectrum of Hy is purely
absolutely continuous and that

o(Hy) = [-2(d+1),2(d + 1)].

We are interested in the spectral results which hold for “almost every” boundary
potential V. More precisely, let 2 be the set of all boundary potentials, that is, the
functions V : Z? — R. The set Q can be identified with

Q=R% = XR.
7Zd
Let F be the o-algebra in  generated by the cylinder sets {V : V(ny) € By,...,V(ng) €

By}, where By, ..., By, are Borel subsets of R. For each n € Z¢ let p, be a probability
measure on R, and let P be a measure on (£2, F) defined by

P:= X pu,.

nezd



Note that p, is the probability distribution of the random variable Q 3 V' +— V' (n). We say
that the random variable V' (n) has a density if the measure p, is absolutely continuous
with respect to the Lebesgue measure. Obviously, the random variables {V(n)} are
independent!, and we say that they are i.i.d. if all the measures p,, are equal to . Recall
that the topological support of u, suppu, is the complement of the largest open set B
such that p(B) = 0.

Let Uy be a given background boundary potential on Z¢. We will always assume that
Uy is bounded. In this paper we will study the operators

H=Hy+Uy+\V, Veq. (1.2)

Here, X is a real constant which measures the strength of the disorder. As usual in the
theory of random Schrodinger operators, we are interested in the spectral properties of
H which hold P-a.s., that is, for a set of V's of P-measure 1. For additional information
about random Schrddinger operators we refer the reader to [CL, CFKS].

Let us briefly summarize the known results about the model (1.2).

(1) For any V, the wave operators

W* =s— lim etfeitHo
t—Foo
exist. In particular, o(Hy) C 0, (H). Moreover, if the random variables V' (n) have densi-
ties, then the spectrum of H in o(H,) is P-a.s. purely absolutely continuous. These results
are proven in [JL1, JL2]. We emphasize that the first result is deterministic while the sec-

ond is random — there are examples of potentials V' (which even satisfy limy,|,o V' (n) = 0)
such that Hy + V has embedded eigenvalues in o(Hy) [MV].

(2) If Uy = const. and the random variables {V(n)} are i.i.d. with distribution g, then
(1.2) is an ergodic family of random operators. In particular, it follows from the standard
argument that there exists a set ¥ such that o(H) = ¥ P-a.s. The set ¥ can be computed
(see [JL1]). We set A = 1 and absorb Uy in V. Let

S = {E+a—l—a’1 : E € [—-2d,2d], a € suppp and |a| > 1}.

Then ¥ = o(Hy) US. Note that whenever suppu N (R \ [—1, 1]) # 0, the set ¥ has parts
lying outside o(Hy).

(3) Assume that d = 1, Uy = const. and that the random variables {V'(n)} are i.i.d.
with distribution p. Assume that dp = p(x)dx, that p € L>*(R) and that the topological

'We remark that the method of Aizenman-Molchanov (and therefore of our paper) easily allows for
correlated random variables. For notational simplicity, however, we will deal only with independent
random variables.



boundary of suppy is a discrete set. Under these assumptions it was shown in [JM1] that
for any A the spectrum of H outside o(Hy) is P-a.s. pure point and that the correspond-
ing eigenfunctions decay faster than any polynomial in the n-variable, and exponentially
fast in the z-variable. Unfortunately, the techniques of [JM1] are sensitive to addition
of (even periodic) background potentials Uy. If however suppy is an unbounded set and
p € L*(R), then for any bounded background potential Uy and all A, the spectrum of
H = Hy + Uy + \V outside o(Hp) is P-a.s. pure point and the corresponding eigenfunc-
tions decay as above. Although this last result was not explicitly stated in [JM1], it is an
easy consequence of the results proven in [JM1, JM4].

(4) In [AM] and [Gri] it is shown that for arbitrary dimensions we have localization away
from the edges of o(Hy), that is, YA there exist 6(A) > 0 such that the spectrum of H in
the set

{E:|E|>2(d+1)+d6AN)}

is P-a.s. pure point with exponentially decaying eigenfunctions. Moreover, d(A) | 0 as
|A| T co. Similar results hold for fixed A and large |E|. The assumption on the y,’s under
which this result is proven in [AM] is Hypothesis B(d) below (which should hold for some
0 < s < 1). In [Gri], the assumption on the p,’s is the usual assumption of multiscale
analysis.

This work grew from our attempts to extend the results of (3) to d > 1 and thus im-
prove the results of [AM] and [Gri]. More precisely, we are seeking under which conditions
on A and p,’s, the operator H has P-a.s. only pure point spectrum outside o(Hy). Such
a result and (1) would yield that P-a.s.

Oac(H) = 0(Ho),  opp(H) =0o(H)\o(Hy),  ow(H)=0. (1.3)

For d =1, (1.3) follows from (1) and (3) above.

1.2 The results

For 0 < s < 1 we set

) e g L0 B (e)
e [l - B dpn ()

(1.4)
[t/ ke = B1)dgun ()
Kg(n) :=sup ,
e [(1/lz = BI)dpa(x)




and
ks :=liminfks(n),

K, :=limsup K(n).

n—r00
We will use the conventions 0~ = 0o, co™! = 0.

Certain positive constants cy(s) will play an important role in this paper. These
constants are defined at the end of Section 1.4 by Relation (1.22). We mention only that
ca(s) is defined for s > d/(d+1) and that |d/(d+1),00[> s > cqa(s) is a strictly decreasing
C* function with ¢4(1) = 1. We set

Ay = inf{)\ tA > [(cd(s) + 2d)k;1F for some s €|d/(d + 1), 1] },
(1.6)
Ag =sup {)\ tA < [cd(s)Ks]_% for some s €]d/(d + 1), 1[}

where we use the convention inf () = oco.
We make the following hypotheses:

Hypothesis A. For all n, the measure p, is absolutely continuous with respect to the
Lebesgue measure.

Hypothesis B(d). ks > 0 for some s €]d/(d + 1), 1].
Hypothesis C(d). K, < oo for some s € ]d/(d + 1), 1][.

Hypotheses B(d) and C(d) ensure that A\; and A, are finite positive numbers. Note
that these hypotheses require that £, > 0 and K, < oo for values of s close to 1. In this
respect, our results differ from the localization results in [A, AM].

Various conditions under which Hypotheses B(d) and C(d) hold are discussed in [A,
AM, Gra, M1]. For example, they hold if the random variables {V'(n)} are i.i.d. with any
of the following distributions:

(a) the uniform distribution in some interval,

(b) the Gaussian distribution,

(c) the Cauchy distribution.

Hypotheses B(d) and C(d) also allow for random potentials such that V' or V! vanish at
infinity in a suitable probabilistic sense.

We will discuss Hypotheses B(d) and C(d) in more detail in Section 1.3.

Our main result is

Theorem 1.1 Assume that Hypotheses A and B(d) hold. Let Uy be an arbitrary bounded
background potential and H = Hy + Uy + AV, V. € Q. Then for any |\ > A4 the
operator H has P-a.s. only pure point spectrum outside o(Hy) with exponentially decaying
etgenfunctions.



As we will explain in Section 1.5, it is not likely that Theorem 1.1 holds for arbitrary
A if the dimension d + 1 is sufficiently high. However, if the background potential is equal
to zero, we can deal with the weak coupling regime.

Theorem 1.2 Assume that Hypotheses A and C(d) hold and let H = Hy+ AV, V € Q.
Then for || < Aq the operator H has P-a.s. only pure point spectrum outside o(Hy) with
exponentially decaying eigenfunctions.

Remark 1. If A\y||V|| < 1 P-as. then for |A\| < A4, the operator H has P-a.s. no
spectrum outside o(Hy). Thus, for bounded random variables, the above theorem could
be an empty statement. Using densities of the form

ap(z) + (1 — a)l~tp(l~ ), a€]0,1], ¢£>0,

one can construct a large class of i.i.d. bounded random variables for which A4||V|» > 1.
In this case, for ||Vt < |A\| < Ag the operator H has some essential spectrum outside
o(Hp), and Theorem 1.2 asserts that this spectrum is P-a.s. pure point with exponentially
decaying eigenfunctions.

Remark 2. If the random variables {V'(n)} are i.i.d. and unbounded, then for all A # 0
the operator H has P-a.s. some essential spectrum outside o(Hp). For example, if the
random variables {V'(n)} are i.i.d. with the Gaussian or Cauchy distribution, then for all
A#00(H) =R P-as., and the theorem asserts that for A sufficiently small the spectrum
of H in R\ o(H,) is P-a.s. pure point with exponentially decaying eigenfunctions.
Remark 3. We will discuss below some non-i.i.d. examples for which Theorems 1.1 and
1.2 hold for all X # 0.

1.3 Examples

We first consider the case where the {V(n)} are i.i.d. random variables with distribution
dp = p(z)dx. In this case the constants in (1.4) are equal respectively to ks and K. In
this section we will use the shorthand (z) = /1 + 2.

Hypothesis B(d) holds for all d if p € L>(R). Moreover, there are explicit constants
¢s, which depend on s only, such that

ks > CSHp“(;OS

(for the proof see [Gral).
If

/|x|7p(x)dx < 0, (1.7)

and p is piecewise continuous and strictly monotone for large |z|, then K, < oo for
s < min(1,vy/2) (see [AM]). Thus, if in addition v > 2d/(d+1), C(d) holds. In particular,
for the Gaussian distribution, C(d) holds for all d. The above criterion fails for the Cauchy
distribution even if d = 1.



If
plr) < Cfz)= "

for some o > 0, then K, < oo for s < min(1, a/2). The proof of this result is elementary
and we will skip it. Thus, if in addition o > 2d/(d + 1), C(d) holds. In particular, for the
Cauchy distribution, C(d) holds for all d.

We remark that for the Cauchy distribution the integrals in (1.4) can be explicitly
evaluated (see [M2]) and one can take

K =1/cos(sm/2),

irrespectively of the parameters of the distribution.
A different condition under which K; < oo has been discussed in [A], Appendix I. The
condition of Aizenman, however, requires that s < 1/3, and is not applicable in our case.
An interesting class of non-i.i.d. examples arises as follows. Let {a,},czs¢ be a real
sequence with a, # 0 and let {WW(n)} be i.i.d. random variables with distribution du =
p(x)dz. We denote the constants (1.4) associated to W by k;,, and K. Let

Vin) = a,¥ (n). 18)
Then the distribution of V' (n) is dpy,(z) = |a,| *p(a,*r) and
ks(n) = |an|sks,w7 Ks(n) - |an|sKs7w.

In particular, if B(d) holds for {W(n)} and lim|a,| = oo, then Theorem 1.1 holds for all
A # 0. If C(d) holds for {W(n)} and lim |a,| = 0 then Theorem 1.2 holds for all .

To illustrate these results with a concrete example, take a, = (n)” and assume that
{W(n)} has either the Cauchy or Gaussian distribution. Let V' be given by (1.8) and
H = Hy+ V. Then it follows from Theorems 1.1 and 1.2 that for any § # 0 the operator
H has P-a.s. only pure point spectrum outside o(Hy) with exponentially decaying eigen-
functions. One can show that in the case of the Cauchy distribution, oess(H) = R P-a.s.
if p € [—d,d], and that oe(H) = 0(Hy) P-a.s. if § ¢ [—d, d]. In the case of the Gaussian
distribution, oes(H) = R P-a.s. if f € [0,d], and oes(H) = 0(Hy) P-a.s. if & [0,d].
In all the above cases, the spectrum of H in o(H,) is purely absolutely continuous P-a.s.
[JL1].

The spectral properties of the Anderson model with decaying randomness have been
discussed recently in [KKO].

1.4 About the proofs

In this section we sketch some of the ideas involved in our proofs.
The first idea, which has been used in practically all work on the spectral theory of
operators (1.1), is to “integrate” the z-variable and reduce the d + 1-dimensional spectral



problem to a non-linear d-dimensional spectral problem. The details of the argument are
given in [JM1] and here we summarize the results which we will need in the sequel.

Let T = R/27Z be the circle and T? the d-dimensional torus. We denote the points
in T? by ¢ = (¢1,...,¢4) and by d¢ the usual Lebesgue measure. We set

O(p) :=2 Zd: oS ;.
i=1

For z € C\ o(Hy), let A(¢, z) be such that

A, z) + + O(p) = 2, IA(¢, 2)| < 1. (1.9)

Az E)

We set?
§(6.2) = N6 ) +9(9).  jn.2) = @m)" [ (@ )e g (110)

One can show that the function j(n, z) decays exponentially in the variable n. Let hy(z)
be the operator on [?(Z%) defined by

(ho(2)9)(n) = >_ J(n — K, 2)3(k).

keZd

We define a one-parameter family of random operators on [?(Z¢) by
h(z) = ho(z) + U+ AV,  z€C\a(Hy), VeQ. (1.11)

The key property of these operators is that VYm,n € Z9,

(Omo) | (H = 2) 7 0(n0) = (Oml((2) — 2)7"dn) (1.12)
(for the proof see [JM1] or [JL1]). Since the set of vectors {0(n,0)}neze is cyclic for H
(see [JL1]), the spectral properties of H are encoded by the family hA(z). In particular, it
follows from the Simon-Wolff theorem (see Section 2.1 for details) that Theorems 1.1 and
1.2 follow from a suitable estimate on the matrix elements

(6| (R(E) — E —ie)s,),  EcR\o(H). (1.13)

In comparison with the usual theory of random Schrédinger operators, the difficulties
in estimating the matrix elements (1.13) stem from the fact that ho(E) is a long-range
Laplacian which depends on the energy. To study the resolvent (h(E)—E —ic) ! with the
standard techniques one needs efficient estimates on the kernel j(n, E) for E € R\ o(Hy).

2There are typographical errors in similar formulas in [JM1] (Relation (1.5)) and [JM2], where the
factor (2)~¢ is missing in the front of the integral.



Let us describe the estimates previously used in the literature and the estimate we will
use in this paper.
We set

t(n, E) == (2m) /Td Ao, E)e m¢dg. (1.14)

In the Fourier representation (ho(E) — E)~! acts as multiplication by —\(¢, E) and for
any p,q € Z°,

(0pl(ho(E) — E)™10,) = —t(p — ¢, B) = —t(q — p, E) (1.15)
(these relations will be used in Section 4). From the definition of j(n, F') it follows that
j(n, E) =t(n, E) —|—51‘n|+, (1.16)

where ¢;; stands for the Kronecker symbol. To estimate t(n, E), it is useful to note that
(see [JM1] or [JL1])
t(n, E) = ((5(070)|(E - HO)_I(S(n,U)). (1.17)

From this identity one easily gets the estimate (see e.g. Lemma III.4 in [S])
t(n, E)| < Cge~enl+, (1.18)

where

_ 2(d+1
Cp=(|E] —2(d+ 1)), dE:ln< (|E| )>
A better estimate can be obtained using (1.14) and the analyticity properties of A(¢, E)
(see Proposition 2.2 in [JM1]):

t(n, EB)| < e @Bk (1.19)

where?
a(E) = Inyg, and  yp+7yg = (|E| —2)/d. (1.20)

Either of the estimates (1.18), (1.19) suffices for the arguments in [AM] and [Gri]. How-
ever, the estimate (1.18) blows up as E approaches +2(d+ 1) while (1.19) gives the useless
bound |t(n, E)| < 1. Therefore, these estimates are not useful near the edges of o(Hy).
In fact one can easily show that a uniform exponential estimate of ¢(n, E') near +2(d+ 1)
is not possible — otherwise, the function A(¢, £2(d + 1)) would be analytic in ¢, which is
not the case. We will derive an useful bound near the edges of o(Hy) from the following
observations:

(i) t(n, EB) = (=1)P+t(n, —F).

3There is another unfortunate typographical error in [JM1], where in the second formula in (1.20) the
factor d is replaced with 2d.



(ii) The function E + t(n, F) is positive and strictly decreasing on [2(d + 1), ool.

d+1
d

(iii) For some C, [t(n,2(d +1))| < CTI, (1 + |n|)~
From (i)-(iii) it follows that for s > d/(d + 1),

sup Z [t(n, E)|* < cq(s),

E¢o(Ho) nezd

sup Y |j(n, B)]® < cqls) + 2d,
E¢o(Ho) pezd

(1.21)

where

ca(s) == Y [t(n,2(d + 1)) (1.22)

neZd

These estimates are sufficient to employ the method of Aizenman-Molchanov. We will
prove Theorem 1.1 using the second relation in (1.21) and by following an elegant presen-
tation of Aizenman-Molchanov theory in [S]. In the proof of Theorem 1.2, which deals
with the weak coupling regime, we use the first relation (1.21) and essentially follow the
argument of Aizenman [A].

1.5 Some remarks

First, we would like to remark that Theorems 1.1 and 1.2 are not simply extensions of
the results in [JM1] to higher dimension. Theorem 1.1 allows for a background poten-
tial, which is important in physical applications. The above two theorems also establish
exponential decay of the eigenfunctions. The method of the proof allows for correlated
random variables and can be used to prove dynamical localization outside o(H,) (see
[A, RJLS, GDJ). None of these is covered by the method of [JM1]. Moreover, the proofs
of Theorems 1.1 and 1.2 follow relatively easily from the Aizenman-Molchanov theory,
while the arguments in [JM1] are quite elaborate. On the other hand, if d = 1, the tech-
niques of [JM1] yield localization for all A and do not require that random variables are
unbounded if A is small. Theorems 1.1 and 1.2 do not yield such a result. This brings
us to our second remark. We believe that in many cases Theorem 1.2 holds for all A and
d. It would be interesting to exhibit at least some classes of distributions for which this
result holds.

We finish this section with a brief explanation of why we do not expect that Theorem
1.1 will hold for small A’s and arbitrary Uy. Let U, be a large constant (it suffices that
|Up| > 4d+2). Then, the spectrum of Hy+Uj is purely absolutely continuous, and consists
of two disjoint components, o(Hy) and [—2d, 2d] + Uy + Uy *. If physicists expectations
about the Anderson model are correct, one may expect that for d > 3 and A small,
the operator H will have some absolutely continuous spectrum on the second branch
[—2d,2d] + Uy + Uy * (note however that since the dimension of our half-space is d + 1,

10



d > 3 corresponds to the unphysical d + 1 > 4). This absolutely continuous spectrum
would have an interesting property — the corresponding generalized eigenfunctions would
decay exponentially fast in the x-variable and would be extended in the n-variable. Such
generalized eigenfunctions describe propagating surface states (surface waves), see [JMP]
and [KP] for discussion. It is an interesting question as to whether propagating surface
states exist in the random models studied here. Theorems 1.1 and 1.2 yield that in many
situations all the propagating surface states with energies E ¢ o(Hy) (which exist if the
boundary potential is constant or periodic) are exponentially localized by the random
fluctuations of the boundary. This is physically the most interesting consequence of our
results. Finally, we remark that although it is known that the spectrum of H in o(Hy) is
P-a.s. purely absolutely continuous, the structure of the generalized eigenfunctions is not
known, and in particular it is not known whether surface states with energies in o (Hy)
exist.

Acknowledgments. We are grateful to Y. Last, L. Pastur and B. Simon for many
discussions on the subject of this paper and to W. Burgess, B. Jesup, L. Langsetmo,
D. Macdonald and the referee for helpful remarks. The research of the first author was
supported in part by NSERC and of the second by NSF. Part of this work was done
during the visit of the second author to the University of Ottawa, which was supported
by NSERC.

2 Preliminaries

2.1 Simon-Wolff criterion

As we have already remarked, our proofs of Theorems 1.1 and 1.2 are based on a suitable
variant of Simon-Wolff theorem. In this section we describe this variant and collect some
related technical results which will be used in the sequel.

In this section I =]a,b[ is a fixed open interval outside o(Hy). We denote by m the
Lebesgue measure on R (the symbol a.e. without qualification will always mean with
respect to Lebesgue measure).

Consider the following conditions:

Condition C(1). Vm € Z¢ and for P x m - a.e. (V,E) € Q x I,
hﬂ)l |(H — E —ig) "m0l < oo (2.23)

Condition C(2). Vm,n € Z? and for P x m - a.e. (V,E) € Q x I,
lim |(8m0y|(H — E —ie) )0 < Cygme BN+ (2.24)

11



for some a(E) > 0.

The existence of the limit (2.23) follows from monotonicity. The existence and finite-
ness of the limit (2.23) for P x m - a.e. (V,E) follows from Fubini’s theorem and the
well-known property of Herglotz functions.

The estimate (2.24) implies that for all z > 0,

lim |(8m0)|(H — E —ie) ™)) < Ovpme “Enk—bE (2.25)

where b(E) = supyeqa | In A(, E)| (A(¢, E) is given by (1.9)). See Section 2 in [JM1] for
details.
Consider the following statements:

Statement S(1): The spectrum of H in [ is P-a.s. pure point.

Statement S(2): The spectrum of H in [ is P-a.s. pure point with exponentially
decaying eigenfunctions.

Theorem 2.1 Assume that Hypothesis A holds. Then C(1) < S(1) and C(1) + C(2)
= 5(2).

This result follows from the Simon-Wolff theorem [SW] and the fact that the set of vectors
{0(m,0) }meza is cyclic for H.

Our next lemma shows that changing the distributions within a finite box does not
affect the condition C(2).

Lemma 2.2 Assume that Py and Py are measures on (2, F) of the form

Py = X M(]l)’ Py = X Mg)v

nezd nezd

that M) = p(? for |n|, > 1, and that the conditions C(1) and C(2) hold for the measure
Py. Then these conditions also hold for the measure Ps.

Proof. We will deal with the condition C(2). A similar argument applies to the condition
C(1).
Let Bi={n€Z":|n|, <1}, B;={n€Z": |n|y >},
Q, =R5, Q; = R,

and for 7 =1, 2, let )
Pl= X ud  pl= X .

12



Obviously, )
Q=Y xQ,  P=P xP,
and by the assumption, ) )
Pl = P.. (2.26)
In what follows we view the points in Q as the pairs V = (V},V}), V; € Q;, V; € Oy

Since the condition C(2) holds for the measure Py, for P! x Pl x m a.e. (V,V;, E) €
4 x Q7 x I the estimate

lim |(8m,0)|(H — E — ie) o(n0))| < Oy e *E)ml (2.27)
holds for all m,n € ~Zd. By Fubini’s theorem, there exists a set Qg C )7 of full Pli measure
such that, for 1 € (;, the estimate (2.27) holds for P{ x m a.e. (V;, E) € ; x I. Now fix
V; € Q7. By Fubini’s theorem there exists a (V-dependent) set €, C € of full P} measure

such that, for V; € €, the estimate (2.27) holds for a.e. E € I. We now fix V; € ; and
set V = (V,V;). Let W € () be arbitrary and

Hy =H+W.
Then
(Om,0)|(Hw — E — ie)_lé(nvo)) = (O(m0)[(H — E — ie)™10,.0)
=AY e, WD) (Om,o)|(Hw — E — ie) 1 0(p0)) (Op.0y | (H — E — ie) ™10 0))-

Since for a.e. FE the limits

(2.28)

tim |(0gm,0) | (Hw — B — i) 4,0

exist and are finite, we derive from (2.28) that the estimate (2.27) holds for (V; + W, V})
and a.e. B € I. Therefore, for Vs € Q7 and all Vi € €, the estimate (2.27) holds for
a.e. E/ € I. By Fubini’s theorem and (2.26) this estimate then also holds for P» x m a.e.
(V,E) € Q x I, and the condition C(2) holds for the measure P,. O

We now introduce a new condition. Recall that the operators h(FE) are defined by
(1.11).
Condition C(3). Vm and for P x m - a.e. (V,E) € Q x I,
hfoa |(W(E) — E —ig)™'0,,]] < 0. (2.29)
Lemma 2.3

(i) C(1) & C(3).
(ii) If C(3) holds then Ym,n € Z? and for P x m a.e. (V,E) € Q2 x I,

lan (8 | (= B = i) 601) = (G| (h(E) — B = ie)3).
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Proof. Part (i) of this lemma is proven in [JM1] (Lemma 2.1). In fact, a stronger result
holds: for all (V, E) € Q x I, the limit (2.23) is finite iff the limit (2.29) is finite.
To prove Part (ii) we will use the relation (1.12). The resolvent identity yields that

(Gl (W(E +ie) — E —ie) 16,) — (8| (h(E) — E —ie) '4,)
< |[[ho(E +1ie) — ho(E)|| |(M(E +ie) — E —ie) " ou|| [[(R(E) — E —ie) o,

and the result follows from the estimate
[(ho(E + i) — ho(E)|| = sup |[A(¢, E +ic) — X(¢, E)| = O(e).

peTd

Our last condition is

Condition C(4). Vm,n € Z% and for P x m - a.e. (V,E) € Q x I,

1%1 (6| (R(E) — E —ie)~10,)| < Cyp e B+ (2.30)

for some a(E) > 0.

We can not guarantee a priori the existence of the limits (2.30). However, by Lemma
2.3, if C(3) holds then the limits (2.30) exist and C(3) + C(4) = C(1) + C(2).

Before we state our final criterion under which the statement S(2) holds, we need

Lemma 2.4 Let {f,},cze be a sequence of random variables on the probability space
(Q, F, P) such that for some 0 < s <1 and Vn,

E(|fu|") < Ce .
(E stands for the expectation). Then there are finite constants Dy such that

|£,(V)| < Dyednl+ P —a.s.

Proof. Let
Ay ={VeQ:|fu(V)|>e ]

By Chebyshev’s inequality,
P(An) < esd|n\+E(|fn|s) < Cef(lfs)d\nh_‘

Thus, 3 P(A,) < oo, and the statement follows from the Borel-Cantelli lemma. O
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Lemma 2.5 Assume that for some 0 < s <1, ¢9 > 0 and a(E) > 0 the relation

sup E (|(0m|(A(E) — E —ig)'6,)|) < Cge=Fn=mls, (2.31)

0<e<eg

holds for all E € I and m,n € Z%. Then the conditions C(3) and C(4) hold. In particular,
the statement S(2) holds.

Proof. We first establish C(3). Let m be fixed. Then,

I(W(E) — E —ie)6n|)* = Z| (6| (R —ie)1,) % (2.32)

Since for any 0 < ¢ < 1 and any sequence of complex numbers z; we have
q
> | < fale,
(2.32) yield (take ¢ = s/2)

E([[(M(E) = E —ig)dn[") < > E( E) - E —ie) *0,)|").

n

It follows from (2.31) that for any E € I,

lli(I)lE(H(h(E) — FE —ie)opn|°) < o0
and by the Monotone Convergence Theorem, that

E@mm() E—M%W><m

cl0

This estimate and Fubini’s theorem yield C(3).
Since C(3) holds, by Part (ii) of Lemma 2.3, for P x m -a.e (V, E) € Q x I the limits

hgl((smuh(E) - F- 18)_1(5n)
exist and are finite. Therefore, by Fatou’s Lemma, for a.e. £ € I,

E (L (0l (h(E) ~ = i6)5,)|*) - < liminf E( (6| (8(E) — B — i) 6,
< CpeE)n-mly.

The condition C(4) now follows from Lemma 2.4 and Fubini’s theorem. O
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2.2 The key estimates

In this section we collect some technical results which we will need for our proofs.
First, we need a lemma about the Dirichlet Laplacian Hy. Recall that ||, = 2%, |ny).

Lemma 2.6 Let a(n, k) := (6(0,0)|Hy0(n0)), where k > 0. Then a(n,k) = 0 if k < |n|4
or k — |n|y is odd, and a(n,k) > 0 if k — |n|y is even.
Proof. An elementary induction. O

We now prove the properties of the sequence t(n, F) described in Section 1.4. At the
boundary of o(Hy) (E = £2(d + 1)) we define A(¢, +2(d + 1)) by the equation (1.9)
and the condition |[A(¢,+2(d + 1)] < 1. The sequences t(n, £2(d + 1)) are defined by
(1.14). Tt follows easily from (1.14) that for all n, E — t(n, E) is a continuous function
on R\ int o(Hy).

Lemma 2.7 For E >2(d+1), t(n, E) = (=1)"Ft(n, —F).
Proof. For E > 2(d + 1) it follows from (1.17) and Lemma 2.6 that

> 1

2 n
t(n,E’) == Z m(5(070)|ﬂ-0p+| ‘+(5(n70)), (233)
p=0
and ( )| ‘
> —1)m= 2p+|n
tn,~F) = 32 gzt oo | B " 60) (2.34)
p:

Clearly, these relations yield the statement for £ > 2(d+1). By the continuity of t(n, E),
the statement also holds for £ =2(d+1). O

Lemma 2.8 The function E — t(n, E) is positive and strictly decreasing on [2(d+1), 00).

Proof. It follows from Lemma 2.6 and (2.33) that for £ > 2(d + 1),

d
E — E .
t(n,E) >0, dEt(n, ) <0

These two observations yield the result. O
Lemma 2.9 There exists a constant C such that

d+1

t(n,2(d+1))] < C 1:[1(1 + |ng|) "4 (2.35)

16



Proof. Let n = (ny,...,ng). For notational simplicity, we assume that n; > 0. Since
E =2(d+1) is fixed, in the sequel we write A(¢p) for A(¢,2(d + 1)), etc. We recall that

tn) = (2m) " [ A(g)e " dg,

where

\6) = 5 (2d+1) - 2(9) - o+ 1) —2()2 — 1)
Since ®(¢) = 23L, cos ¢;, we can write A(¢) as
A(@) = W1(¢)W2(e) + Vs(4),

where U5 and U5 are C'™ functions on T? and

d N
Uy (¢) = (Z:sinz %) :

Clearly, ¥, is C'™° away from the point ¢ = 0, and it is a simple exercise to verify that
the function
Ol 0500 (9), >0, Y o <d+1,

is in L'(T?). Integration by parts yields that for all j and some C' > 0,

-1

()] < Oy (ﬁ o)

i=1
Multiplying these relations we derive (2.35). O

We are now ready to prove the key properties of the sequences t(n, E) and j(n, E).
Recall that the constant c4(s) is defined by (1.22).

Lemma 2.10 If s €]d/(d+1),1] and |E| > 2(d + 1) then
Z |t(nv E)|S < Cd(s)a

S B < cals) + 2d. (2:36)

Moreover, |d/(d+1),00[ > s+ cq(s) is a strictly decreasing C™ function with cq(1) = 1.

Proof. The first bound in (2.36) follows from Lemmas 2.7 and 2.8. The second bound
follows from the first, Relation (1.16), and the inequality |a +b|* < |a|* 4 |b|*, which holds
for a,b € R and 0 < s < 1. The regularity properties of c4(s) follow from Lemma 2.9.
Finally, since the sequence t(n,2(d + 1)) is positive,

ca(1) = t(n,2(d+ 1)) = A(0,2(d + 1)) = 1.
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O

Our next set of technical results concerns the Aizenman-Molchanov technique. The
next lemma is motivated by [S].

Lemma 2.11 Let r € I}(Z%) be a non-negative sequence and R the corresponding convo-
lution operator on [®°(Z%). Assume that 3, r(n) < 1. Let f, g € I°°(Z?) be non-negative
functions and suppose that

(I-R)f<g.
Then
f< (=R

Proof. Since for any 1 € loo(zd),

Rip(n) = Y r(n — K)yp(k),
[
the operator R is positivity preserving on [*°(Z?) and has the norm ¥, 7(n). Since
(1-R)'=> R,
=0

the operator (1 — R) ! is also positivity preserving on [>°(Z?). This yields the statement.
]

Lemma 2.12 Let r € I1(Z%) be a non-negative sequence and R the corresponding convo-
lution operator on [*(Z%). Assume that
r(n) < Ae~nl+

for some a > 0 and that 3, r(n) < 1. Then (1 — R)™! is the operator of convolution by
the non-negative sequence s(n) which satisfies

s(n) < Be U+
for some b > 0.

Proof. Let )
() ::Zr(n)elw,

s(n) = (2m) ¢ / (1— #(¢)) e dg.

Td
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Since 7(¢) is an analytic function on T? and 1 > max |#(¢)], the function (1 — #(¢)) ! is
also analytic on T?. Thus, the sequence s(n) decays exponentially and (1 — R)™! is the
operator of convolution by s(n). Finally, since (1 — R) ! is positivity preserving we derive

that s(n) is a non-negative sequence. O

The final result we will need is the following well-known rank-one perturbation formula.

Let V and m € Z? be given. Set

V=V +a(bn])om,

hE) = ho(E)+V, h(E) = Hy + V. Then the resolvent identity yields (see e.g. [J])

Lemma 2.13 For any n and z,

(On|

(h
1+ a(dy,

(0n| (A(E) = 2) "0m) =

(E) = 2)"0m)
|(R(E) = 2)76m)

3 The strong coupling regime

In this section we prove Theorem 1.1.

We fix s €]d/(d+ 1), 1] such that ks > 0. Let § €]0, ky[. Since liminf ky(n) = k, there

exists an [ such that for all n with |n|, > [,

ks(n) <ks—0= k&(j.

(3.37)

By changing the distributions p, within the box |n|y < [ we may assume that (3.37)

holds for all n. By Lemma 2.2, such a change does not affect Theorem 2.1.
Let m € Z% and E ¢ o(H,) be given. For ¢ > 0 we set

G(n) = G(m,n; E +i¢) == (6| (R(E) — E —ie)™'4,),
and write z = F + ie. The function G satisfies the equation

;j(n — ky, B)G(E) + (AV(n) + Up(n) — 2)G(n) = G

Then,

E (|AV(n) + Us(n) = 2)P"|G(n)[*) < dn + Ek: 7(n =k, E)E(|G(K)])-

(E stands for the expectation). It follows from Lemma 2.13 that

o’

|G(n)]” = m7

19
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where a and b are functions of {V(I)};+,. Let a = Uy(n) — z. Averaging only over V' (n)
we get

|)\V—i—a| s [ IVH+XTaf
S — S)\S )\ 8/ d n
[l g (V) = el AN g dim ()

S S —S 1
> kyslal? AP /mdun(m (3.40)

pn(V),

where we used the relations (1.4) and (3.37). Averaging over {V (I)};z, we get
E (]AV(n) + Uo(n) = 2)°|G(n)[°) = ks s|AE(|G(n) ).
Let

a(n) == E(|G(n)]).
Note that g € [°(Z?) (g(n) < 1/¢%). Relations (3.39) and (3.40) yield that

(1= kA *R)g < ki 5|\l %00,

where R is the operator of convolution by |j(n, E)|*. By the choice of s (recall Lemma
2.10)

S lin, B)® < ca(s) + 2d.

If X is such that
ks s| A > ca(s) + 2d, (3.41)

then it follows from Lemma 2.11 that
g < kAT = kAT R) T

Lemma 2.12 and the estimate (1.19) yield that there exist constants Cr and a(E) > 0
such that
a(n) < Cpe “ENn—mls

Therefore, for all E & o(H,y),

sup E (|G(m,n; E +i¢)|*) < Cge~oBIn=ml+,
>0

Since 0 in (3.37) is arbitrary, Theorem 1.1 follows from Lemma 2.5.
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4 The weak coupling regime

In this section we prove Theorem 1.2.
We fix s €]d/(d + 1), 1] such that Ky < co. Let 6 > 0. Since limsup K (n) = K,
there exists an [ such that for all n with |n|, > 1,

K,(n) < K, +6 = K, . (4.42)

By changing the distributions p, within the box |n|y < [ we may assume that (4.42)
holds for all n.

Let m € Z? and E ¢ o(H,) be given. The resolvent identity yields that
(Om|(h(E) — E —ie)d,) = (0m|(ho(E) — E) 'd,)
— Ex(AWV (k) — ie) (0| (W(E) — B — ie) 7 01) (6k| (ho(E) — E)~'dn).
Using the relation (1.15) and shorthand (3.38) we rewrite (4.43) as

(4.43)

G(n) = —t(n —m, E) + zk:()\V(k) —ie)t(n — k, E)G(k).

Then,

E(|G(n)]°) < |t(n —m, E)[" + Ek: t(n =k, E)PE((AP[V(R)]” + [e)|G(R)F) . (4.44)

Averaging first over V (k) and then over {V ({) };x, we derive from (1.4), (4.42) and Lemma
2.13 that
E(V(B)PIGE)]) < K sE(GR)[). (4.45)

Let
g(n) =E(G(n)]"),

f(n) = t(n —m, E)[".
Clearly, g, f € [*(Z%) and we derive from (4.44) and (4.45) that
(1= (lel” + [A"Kss)R)a < f,

where R is the operator of convolution by |t(n, E)|°. By the choice of s (recall Lemma
2.10)

St )" < cals)

[

We choose A such that
A K5 < cd(s)’l,

and g9 > 0 such that
leol® + AP K, < ca(s) L.
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In the sequel we assume that 0 < ¢ < gg. Lemma 2.11 yields that
0 < (L= (el +\"Es)R) ™,

and it follows from Lemma 2.12 and the estimate (1.19) that for some constants Cr and
a(E) >0

Therefore, for all E & o(H,),

sup E(|G(m,n; E +ig)|*) < Cge @B)n=mls
0<e<eo

Since 0 in (4.42) is arbitrary, Theorem 1.2 follows from Lemma 2.5.
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