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Abstract

We study spectral properties of the discrete Laplacian H on the half�space
Z
d��
� � Z

d � Z� with random boundary condition ��n���� � �V �n���n� ��� the
V �n� are independent random variables on a probability space ���F � P � and � is
the coupling constant	 It is known that if the V �n� have densities
 then on the
interval ����d
��� ��d
��� �� ��H��
 the spectrum of the Dirichlet Laplacian� the
spectrum of H is P �a	s	 absolutely continuous for all � �JL��	 Here we show that
if the random potential V satis�es the assumption of Aizenman�Molchanov �AM�

then there are constants �d and �d such that for j�j � �d and j�j � �d the spectrum
of H outside ��H�� is P �a	s	 pure point with exponentially decaying eigenfunctions	

�To appear in Commun� Math� Phys�
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� Introduction

This paper deals with the spectral theory of the discrete Laplacian on a half�space with
a random boundary condition� The history of this problem and its physical aspects are
discussed in �JMP� KP�� For some recent rigorous work on the subject we refer the reader
to �AM� BS� Gri� JM�� JM�� JMP� JL�� JL�� KP� M�� P��

In this section we introduce the model� review some known results and state our
theorems� At the end of the section we will brie�y explain the basic ideas of our proofs
and discuss some open problems�

��� The model

Let d � � be given and let Zd��
� 	
 Zd�Z�� where Z� 
 f�� �� � � �g� We denote the points

in Zd��
� by �n� x
� for n � Zd and x � Z�� Let H be the discrete Laplacian on l��Zd��

� 

with boundary condition ��n���
 
 V �n
��n� �
� When V 
 � the operator H reduces
to the Dirichlet Laplacian which we denote by H�� The operator H acts as

�H�
�n� x
 


��
�
P
jn�n�j��jx�x�j�� ��n

�� x�
 if x � ��

��n� �
 �
P
jn�n�j��� ��n

�� �
 � V �n
��n� �
 if x 
 ��

where jnj� 
 Pd
i�� jnij� Note that the operator H can be viewed as Schr�odinger operator

H 
 H� � V� ����


where the potential V acts only along the boundary �Zd��
� 
 Zd� that is� �V �
�n� x
 
 �

if x � � and �V �
�n� �
 
 V �n
��n� �
� For many purposes� it is convenient to adopt this
point of view and we will do so in the sequel� Since H� is bounded� the operator H is
properly de�ned as a self�adjoint operator� We recall that the spectrum of H� is purely
absolutely continuous and that

��H�
 
 ����d � �
� ��d� �
��
We are interested in the spectral results which hold for �almost every� boundary

potential V � More precisely� let � be the set of all boundary potentials� that is� the
functions V 	 Zd �� R� The set � can be identi�ed with

� 
 RZd 
�
Zd

R�

Let F be the ��algebra in � generated by the cylinder sets fV 	 V �n�
 � B�� � � � � V �nk
 �
Bkg� where B�� � � � � Bk are Borel subsets of R� For each n � Zd let �n be a probability
measure on R� and let P be a measure on ���F
 de�ned by

P 	
 �
n�Zd

�n�

�



Note that �n is the probability distribution of the random variable � � V �� V �n
� We say
that the random variable V �n
 has a density if the measure �n is absolutely continuous
with respect to the Lebesgue measure� Obviously� the random variables fV �n
g are
independent�� and we say that they are i�i�d� if all the measures �n are equal to �� Recall
that the topological support of �� supp�� is the complement of the largest open set B
such that ��B
 
 ��

Let U� be a given background boundary potential on Z
d� We will always assume that

U� is bounded� In this paper we will study the operators

H 
 H� � U� � �V� V � �� ����


Here� � is a real constant which measures the strength of the disorder� As usual in the
theory of random Schr�odinger operators� we are interested in the spectral properties of
H which hold P �a�s�� that is� for a set of V �s of P �measure �� For additional information
about random Schr�odinger operators we refer the reader to �CL� CFKS��

Let us brie�y summarize the known results about the model ����
�

��� For any V � the wave operators

W� 
 s� lim
t���

eitHe�itH�

exist� In particular� ��H�
 � �ac�H
� Moreover� if the random variables V �n
 have densi�
ties� then the spectrum ofH in ��H�
 is P �a�s� purely absolutely continuous� These results
are proven in �JL�� JL��� We emphasize that the �rst result is deterministic while the sec�
ond is random � there are examples of potentials V �which even satisfy limjnj�� V �n
 
 �

such that H� � V has embedded eigenvalues in ��H�
 �MV��

��� If U� 
 const� and the random variables fV �n
g are i�i�d� with distribution �� then
����
 is an ergodic family of random operators� In particular� it follows from the standard
argument that there exists a set � such that ��H
 
 � P �a�s� The set � can be computed
�see �JL��
� We set � 
 � and absorb U� in V � Let

S 	

n
E � a� a�� 	 E � ���d� �d�� a � supp� and jaj � �

o
�

Then � 
 ��H�
 	 S� Note that whenever supp� 
 �R n ���� ��
 �
 �� the set � has parts
lying outside ��H�
�

��� Assume that d 
 �� U� 
 const� and that the random variables fV �n
g are i�i�d�
with distribution �� Assume that d� 
 p�x
dx� that p � L��R
 and that the topological

�We remark that the method of Aizenman�Molchanov �and therefore of our paper� easily allows for
correlated random variables� For notational simplicity� however� we will deal only with independent
random variables�

�



boundary of supp� is a discrete set� Under these assumptions it was shown in �JM�� that
for any � the spectrum of H outside ��H�
 is P �a�s� pure point and that the correspond�
ing eigenfunctions decay faster than any polynomial in the n�variable� and exponentially
fast in the x�variable� Unfortunately� the techniques of �JM�� are sensitive to addition
of �even periodic
 background potentials U�� If however supp� is an unbounded set and
p � L��R
� then for any bounded background potential U� and all �� the spectrum of
H 
 H� � U� � �V outside ��H�
 is P �a�s� pure point and the corresponding eigenfunc�
tions decay as above� Although this last result was not explicitly stated in �JM��� it is an
easy consequence of the results proven in �JM�� JM���

��� In �AM� and �Gri� it is shown that for arbitrary dimensions we have localization away
from the edges of ��H�
� that is� 
� there exist 	��
 � � such that the spectrum of H in
the set

fE 	 jEj � ��d� �
 � 	��
g
is P �a�s� pure point with exponentially decaying eigenfunctions� Moreover� 	��
 � � as
j�j � �� Similar results hold for �xed � and large jEj� The assumption on the �n�s under
which this result is proven in �AM� is Hypothesis B�d
 below �which should hold for some
� 
 s 
 �
� In �Gri�� the assumption on the �n�s is the usual assumption of multiscale
analysis�

This work grew from our attempts to extend the results of ��
 to d � � and thus im�
prove the results of �AM� and �Gri�� More precisely� we are seeking under which conditions
on � and �n�s� the operator H has P �a�s� only pure point spectrum outside ��H�
� Such
a result and ��
 would yield that P �a�s�

�ac�H
 
 ��H�
� �pp�H
 
 ��H
 n ��H�
� �sc�H
 
 �� ����


For d 
 �� ����
 follows from ��
 and ��
 above�

��� The results

For � 
 s 
 � we set

ks�n
 	
 inf
����C

Z
�jx� �js�jx� 
js
d�n�x
Z

���jx� 
js
d�n�x

�

Ks�n
 	
 sup
��C

Z
�jxjs�jx� 
js
d�n�x
Z
���jx� 
js
d�n�x


�

����


�



and
ks 	
 lim inf

n��
ks�n
�

Ks 	
 lim sup
n��

Ks�n
�
����


We will use the conventions ��� 
�� ��� 
 ��
Certain positive constants cd�s
 will play an important role in this paper� These

constants are de�ned at the end of Section ��� by Relation �����
� We mention only that
cd�s
 is de�ned for s � d��d��
 and that �d��d��
���� s �� cd�s
 is a strictly decreasing
C� function with cd��
 
 �� We set

�d 	
 inf
�
� 	 � �

h
�cd�s
 � �d
k

��
s

i �
s for some s ��d��d� �
� ��

�
�

�d 	
 sup
n
� 	 � 
 �cd�s
Ks�

� �

s for some s ��d��d� �
� ��
o ����


where we use the convention inf � 
��
We make the following hypotheses	

Hypothesis A� For all n� the measure �n is absolutely continuous with respect to the
Lebesgue measure�

Hypothesis B�d
� ks � � for some s � �d��d� �
� ���

Hypothesis C�d
� Ks 
� for some s � �d��d� �
� ���

Hypotheses B�d
 and C�d
 ensure that �d and �d are �nite positive numbers� Note
that these hypotheses require that ks � � and Ks 
� for values of s close to �� In this
respect� our results di�er from the localization results in �A� AM��

Various conditions under which Hypotheses B�d
 and C�d
 hold are discussed in �A�
AM� Gra� M��� For example� they hold if the random variables fV �n
g are i�i�d� with any
of the following distributions	
�a
 the uniform distribution in some interval�
�b
 the Gaussian distribution�
�c
 the Cauchy distribution�
Hypotheses B�d
 and C�d
 also allow for random potentials such that V or V �� vanish at
in�nity in a suitable probabilistic sense�

We will discuss Hypotheses B�d
 and C�d
 in more detail in Section ����
Our main result is

Theorem ��� Assume that Hypotheses A and B�d
 hold� Let U� be an arbitrary bounded
background potential and H 
 H� � U� � �V � V � �� Then for any j�j � �d the
operator H has P �a�s� only pure point spectrum outside ��H�
 with exponentially decaying
eigenfunctions�

�



As we will explain in Section ���� it is not likely that Theorem ��� holds for arbitrary
� if the dimension d�� is su�ciently high� However� if the background potential is equal
to zero� we can deal with the weak coupling regime�

Theorem ��� Assume that Hypotheses A and C�d
 hold and let H 
 H� � �V � V � ��
Then for j�j 
 �d the operator H has P �a�s� only pure point spectrum outside ��H�
 with
exponentially decaying eigenfunctions�

Remark �� If �dkV k � � P �a�s� then for j�j � �d� the operator H has P �a�s� no
spectrum outside ��H�
� Thus� for bounded random variables� the above theorem could
be an empty statement� Using densities of the form

�p�x
 � ��� �
���p����x
� � � ��� ��� � � ��

one can construct a large class of i�i�d� bounded random variables for which �dkV k� � ��
In this case� for kV k��� 
 j�j 
 �d the operator H has some essential spectrum outside
��H�
� and Theorem ��� asserts that this spectrum is P �a�s� pure point with exponentially
decaying eigenfunctions�
Remark �� If the random variables fV �n
g are i�i�d� and unbounded� then for all � �
 �
the operator H has P �a�s� some essential spectrum outside ��H�
� For example� if the
random variables fV �n
g are i�i�d� with the Gaussian or Cauchy distribution� then for all
� �
 � ��H
 
 R P �a�s�� and the theorem asserts that for � su�ciently small the spectrum
of H in R n ��H�
 is P �a�s� pure point with exponentially decaying eigenfunctions�
Remark �� We will discuss below some non�i�i�d� examples for which Theorems ��� and
��� hold for all � �
 ��

��� Examples

We �rst consider the case where the fV �n
g are i�i�d� random variables with distribution
d� 
 p�x
dx� In this case the constants in ����
 are equal respectively to ks and Ks� In
this section we will use the shorthand hxi 
 p

� � x��
Hypothesis B�d
 holds for all d if p � L��R
� Moreover� there are explicit constants

cs� which depend on s only� such that

ks � cskpk�s�
�for the proof see �Gra�
�

If Z
jxj�p�x
dx 
�� ����


and p is piecewise continuous and strictly monotone for large jxj� then Ks 
 � for
s 
 min��� ���
 �see �AM�
� Thus� if in addition � � �d��d��
� C�d
 holds� In particular�
for the Gaussian distribution� C�d
 holds for all d� The above criterion fails for the Cauchy
distribution even if d 
 ��

�



If
p�x
 � Chxi����

for some � � �� then Ks 
� for s 
 min��� ���
� The proof of this result is elementary
and we will skip it� Thus� if in addition � � �d��d��
� C�d
 holds� In particular� for the
Cauchy distribution� C�d
 holds for all d�

We remark that for the Cauchy distribution the integrals in ����
 can be explicitly
evaluated �see �M��
 and one can take

Ks 
 �� cos�s���
�

irrespectively of the parameters of the distribution�
A di�erent condition under which Ks 
� has been discussed in �A�� Appendix I� The

condition of Aizenman� however� requires that s 
 ���� and is not applicable in our case�
An interesting class of non�i�i�d� examples arises as follows� Let fangn�Zd be a real

sequence with an �
 � and let fW �n
g be i�i�d� random variables with distribution d� 

p�x
dx� We denote the constants ����
 associated to W by ks�w and Ks�w� Let

V �n
 	
 anW �n
� ����


Then the distribution of V �n
 is d�n�x
 
 janj��p�a��n x
 and

ks�n
 
 janjsks�w� Ks�n
 
 janjsKs�w�

In particular� if B�d
 holds for fW �n
g and lim janj 
�� then Theorem ��� holds for all
� �
 �� If C�d
 holds for fW �n
g and lim janj 
 � then Theorem ��� holds for all ��

To illustrate these results with a concrete example� take an 
 hni� and assume that
fW �n
g has either the Cauchy or Gaussian distribution� Let V be given by ����
 and
H 
 H�� V � Then it follows from Theorems ��� and ��� that for any 
 �
 � the operator
H has P �a�s� only pure point spectrum outside ��H�
 with exponentially decaying eigen�
functions� One can show that in the case of the Cauchy distribution� �ess�H
 
 R P �a�s�
if 
 � ��d� d�� and that �ess�H
 
 ��H�
 P �a�s� if 
 �� ��d� d�� In the case of the Gaussian
distribution� �ess�H
 
 R P �a�s� if 
 � ��� d�� and �ess�H
 
 ��H�
 P �a�s� if 
 �� ��� d��
In all the above cases� the spectrum of H in ��H�
 is purely absolutely continuous P �a�s�
�JL���

The spectral properties of the Anderson model with decaying randomness have been
discussed recently in �KKO��

��� About the proofs

In this section we sketch some of the ideas involved in our proofs�
The �rst idea� which has been used in practically all work on the spectral theory of

operators ����
� is to �integrate� the x�variable and reduce the d���dimensional spectral

�



problem to a non�linear d�dimensional spectral problem� The details of the argument are
given in �JM�� and here we summarize the results which we will need in the sequel�

Let T 
 R���Z be the circle and Td the d�dimensional torus� We denote the points
in Td by � 
 ���� � � � � �d
 and by d� the usual Lebesgue measure� We set

 ��
 	
 �
dX
i��

cos�i�

For z � C n ��H�
� let ���� z
 be such that

���� z
 �
�

��z� E

�  ��
 
 z� j���� z
j 
 �� ���!


We set�

"j��� z
 
 ���� z
 �  ��
� j�n� z
 
 ���
�d
Z
Td

"j��� z
e�in�d�� �����


One can show that the function j�n� z
 decays exponentially in the variable n� Let h��z

be the operator on l��Zd
 de�ned by

�h��z
�
�n
 

X
k�Zd

j�n� k� z
��k
�

We de�ne a one�parameter family of random operators on l��Zd
 by

h�z
 
 h��z
 � U� � �V� z � C n ��H�
� V � �� �����


The key property of these operators is that 
m�n � Zd�

�	�m���j�H � z
��	�n���
 
 �	mj�h�z
� z
��	n
 �����


�for the proof see �JM�� or �JL��
� Since the set of vectors f	�n���gn�Zd is cyclic for H
�see �JL��
� the spectral properties of H are encoded by the family h�z
� In particular� it
follows from the Simon�Wol� theorem �see Section ��� for details
 that Theorems ��� and
��� follow from a suitable estimate on the matrix elements

�	mj�h�E
� E � i�
	n
� E � R n ��H�
� �����


In comparison with the usual theory of random Schr�odinger operators� the di�culties
in estimating the matrix elements �����
 stem from the fact that h��E
 is a long�range
Laplacian which depends on the energy� To study the resolvent �h�E
�E� i�
�� with the
standard techniques one needs e�cient estimates on the kernel j�n�E
 for E � Rn��H�
�

�There are typographical errors in similar formulas in �JM�	 �Relation ���
�� and �JM�	� where the
factor �����d is missing in the front of the integral�

�



Let us describe the estimates previously used in the literature and the estimate we will
use in this paper�

We set
t�n�E
 	
 ���
�d

Z
Td

����E
e�in�d�� �����


In the Fourier representation �h��E
 � E
�� acts as multiplication by �����E
 and for
any p� q � Zd�

�	pj�h��E
� E
��	q
 
 �t�p� q� E
 
 �t�q � p� E
 �����


�these relations will be used in Section �
� From the de�nition of j�n�E
 it follows that

j�n�E
 
 t�n�E
 � 	�jnj�� �����


where 	ij stands for the Kronecker symbol� To estimate t�n�E
� it is useful to note that
�see �JM�� or �JL��


t�n�E
 
 �	�����j�E �H�

��	�n���
� �����


From this identity one easily gets the estimate �see e�g� Lemma III�� in �S�


jt�n�E
j � CEe
�dE jnj�� �����


where

CE 
 �jEj � ��d� �

��� dE 
 ln

�
��d� �


jEj
�
�

A better estimate can be obtained using �����
 and the analyticity properties of ����E

�see Proposition ��� in �JM��
	

jt�n�E
j � e�a�E�jnj�� ����!


where�

a�E
 
 ln �E� and �E � ���E 
 �jEj � �
�d� �����


Either of the estimates �����
� ����!
 su�ces for the arguments in �AM� and �Gri�� How�
ever� the estimate �����
 blows up as E approaches ���d��
 while ����!
 gives the useless
bound jt�n�E
j � �� Therefore� these estimates are not useful near the edges of ��H�
�
In fact one can easily show that a uniform exponential estimate of t�n�E
 near ���d��

is not possible � otherwise� the function �������d� �

 would be analytic in �� which is
not the case� We will derive an useful bound near the edges of ��H�
 from the following
observations	

�i
 t�n�E
 
 ���
jnj�t�n��E
�

�There is another unfortunate typographical error in �JM�	� where in the second formula in ������ the
factor d is replaced with �d�

!



�ii
 The function E �� t�n�E
 is positive and strictly decreasing on ���d� �
����

�iii
 For some C� jt�n� ��d� �

j � C
Qd
i���� � jnij
�

d��

d �

From �i
��iii
 it follows that for s � d��d� �
�

sup
E ����H��

X
n�Zd

jt�n�E
js � cd�s
�

sup
E ����H��

X
n�Zd

jj�n�E
js � cd�s
 � �d�
�����


where
cd�s
 	


X
n�Zd

jt�n� ��d� �

js� �����


These estimates are su�cient to employ the method of Aizenman�Molchanov� We will
prove Theorem ��� using the second relation in �����
 and by following an elegant presen�
tation of Aizenman�Molchanov theory in �S�� In the proof of Theorem ���� which deals
with the weak coupling regime� we use the �rst relation �����
 and essentially follow the
argument of Aizenman �A��

��� Some remarks

First� we would like to remark that Theorems ��� and ��� are not simply extensions of
the results in �JM�� to higher dimension� Theorem ��� allows for a background poten�
tial� which is important in physical applications� The above two theorems also establish
exponential decay of the eigenfunctions� The method of the proof allows for correlated
random variables and can be used to prove dynamical localization outside ��H�
 �see
�A� RJLS� GD�
� None of these is covered by the method of �JM��� Moreover� the proofs
of Theorems ��� and ��� follow relatively easily from the Aizenman�Molchanov theory�
while the arguments in �JM�� are quite elaborate� On the other hand� if d 
 �� the tech�
niques of �JM�� yield localization for all � and do not require that random variables are
unbounded if � is small� Theorems ��� and ��� do not yield such a result� This brings
us to our second remark� We believe that in many cases Theorem ��� holds for all � and
d� It would be interesting to exhibit at least some classes of distributions for which this
result holds�

We �nish this section with a brief explanation of why we do not expect that Theorem
��� will hold for small ��s and arbitrary U�� Let U� be a large constant �it su�ces that
jU�j � �d��
� Then� the spectrum ofH��U� is purely absolutely continuous� and consists
of two disjoint components� ��H�
 and ���d� �d� � U� � U��

� � If physicists expectations
about the Anderson model are correct� one may expect that for d � � and � small�
the operator H will have some absolutely continuous spectrum on the second branch
���d� �d� � U� � U��

� �note however that since the dimension of our half�space is d � ��

��



d � � corresponds to the unphysical d � � � �
� This absolutely continuous spectrum
would have an interesting property � the corresponding generalized eigenfunctions would
decay exponentially fast in the x�variable and would be extended in the n�variable� Such
generalized eigenfunctions describe propagating surface states �surface waves
� see �JMP�
and �KP� for discussion� It is an interesting question as to whether propagating surface
states exist in the random models studied here� Theorems ��� and ��� yield that in many
situations all the propagating surface states with energies E �� ��H�
 �which exist if the
boundary potential is constant or periodic
 are exponentially localized by the random
�uctuations of the boundary� This is physically the most interesting consequence of our
results� Finally� we remark that although it is known that the spectrum of H in ��H�
 is
P �a�s� purely absolutely continuous� the structure of the generalized eigenfunctions is not
known� and in particular it is not known whether surface states with energies in ��H�

exist�
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� Preliminaries

��� Simon�Wol� criterion

As we have already remarked� our proofs of Theorems ��� and ��� are based on a suitable
variant of Simon�Wol� theorem� In this section we describe this variant and collect some
related technical results which will be used in the sequel�

In this section I 
 �a� b� is a �xed open interval outside ��H�
� We denote by m the
Lebesgue measure on R �the symbol a�e� without quali�cation will always mean with
respect to Lebesgue measure
�

Consider the following conditions	

Condition C��
� 
m � Zd and for P � m � a�e� �V�E
 � �� I�

lim
�	�

k�H � E � i�
��	�m���k 
�� �����


Condition C��
� 
m�n � Zd and for P � m � a�e� �V�E
 � �� I�

lim
�	�

j�	�m���j�H � E � i�
��
	�n���j � CV�E�me
�a�E�jnj�� �����


��



for some a�E
 � ��

The existence of the limit �����
 follows from monotonicity� The existence and �nite�
ness of the limit �����
 for P � m � a�e� �V�E
 follows from Fubini�s theorem and the
well�known property of Herglotz functions�

The estimate �����
 implies that for all x � ��

lim
�	�

j�	�m���j�H � E � i�
��
	�n�x�j � CV�E�me
�a�E�jnj��b�E�x� �����


where b�E
 
 sup��Td j ln����E
j �����E
 is given by ���!

� See Section � in �JM�� for
details�

Consider the following statements	

Statement S��
	 The spectrum of H in I is P �a�s� pure point�

Statement S��
	 The spectrum of H in I is P �a�s� pure point with exponentially
decaying eigenfunctions�

Theorem ��� Assume that Hypothesis A holds� Then C��
 � S��
 and C��
 � C��

� S��
�

This result follows from the Simon�Wol� theorem �SW� and the fact that the set of vectors
f	�m���gm�Zd is cyclic for H�

Our next lemma shows that changing the distributions within a �nite box does not
a�ect the condition C��
�

Lemma ��� Assume that P� and P� are measures on ���F
 of the form

P� 
 �
n�Zd

����
n � P� 
 �

n�Zd
����
n �

that ����
n 
 ����

n for jnj� � l� and that the conditions C��
 and C��
 hold for the measure
P�� Then these conditions also hold for the measure P��

Proof� We will deal with the condition C��
� A similar argument applies to the condition
C��
�

Let Bl 
 fn � Zd 	 jnj� � lg� Bl 
 fn � Zd 	 jnj� � lg�
�l 
 RBl� �l 
 RB

l�

and for i 
 �� �� let

P l
i 
 �

n�Bl

��i�
n � P l

i 
 �
n�B

l

��i�
n �

��



Obviously�

� 
 �l � �l� Pi 
 P l
i � P l

i �

and by the assumption�

P l
� 
 P l

�� �����


In what follows we view the points in � as the pairs V 
 �Vl� Vl
� Vl � �l� Vl � �l�

Since the condition C��
 holds for the measure P�� for P
l
� � P l

� � m a�e� �Vl� Vl� E
 �
�l � �l � I the estimate

lim
�	�

j�	�m���j�H � E � i�
��	�n���
j � CV�E�me
�a�E�jnj� �����


holds for all m�n � Zd� By Fubini�s theorem� there exists a set #�l � �l of full P
l
� measure

such that� for Vl � #�l� the estimate �����
 holds for P
l
� � m a�e� �Vl� E
 � �l � I� Now �x

Vl � �l� By Fubini�s theorem there exists a �Vl�dependent
 set
#�l � �l of full P

l
� measure

such that� for Vl � #�l� the estimate �����
 holds for a�e� E � I� We now �x Vl � #�l and
set V 
 �Vl� Vl
� Let W � �l be arbitrary and

HW 
 H �W�

Then

�	�m���j�HW � E � i�
��	�n���
 
 �	�m���j�H � E � i�
��	n��

��Pp�Bl

W �p
�	�m���j�HW � E � i�
��	�p���
�	�p���j�H � E � i�
��	�n���
�
�����


Since for a�e� E the limits

lim
�	�

j�	�m���j�HW � E � i�
��	�p���
j

exist and are �nite� we derive from �����
 that the estimate �����
 holds for �Vl �W�Vl

and a�e� E � I� Therefore� for Vl � #�l and all Vl � �l� the estimate �����
 holds for
a�e� E � I� By Fubini�s theorem and �����
 this estimate then also holds for P� � m a�e�
�V�E
 � �� I� and the condition C��
 holds for the measure P�� �

We now introduce a new condition� Recall that the operators h�E
 are de�ned by
�����
�

Condition C��
� 
m and for P � m � a�e� �V�E
 � �� I�

lim
�	�

k�h�E
� E � i�
��	mk 
�� ����!


Lemma ���
�i
 C��
 � C��
�
�ii
 If C��
 holds then 
m�n � Zd and for P � m a�e� �V�E
 � �� I�

lim
�	�
�	�m���j�H � E � i�
��	�n���
 
 lim

�	�
�	mj�h�E
� E � i�
	n
�

��



Proof� Part �i
 of this lemma is proven in �JM�� �Lemma ���
� In fact� a stronger result
holds	 for all �V�E
 � �� I� the limit �����
 is �nite i� the limit ����!
 is �nite�

To prove Part �ii
 we will use the relation �����
� The resolvent identity yields that

����	mj�h�E � i�
� E � i�
��	n
� �	mj�h�E
� E � i�
��	n

���

� kh��E � i�
� h��E
k k�h�E � i�
� E � i�
��	mk k�h�E
� E � i�
��	nk�
and the result follows from the estimate

k�h��E � i�
� h��E
k 
 sup
��Td

j����E � i�
� ����E
j 
 O��
�

�

Our last condition is

Condition C��
� 
m�n � Zd and for P � m � a�e� �V�E
 � �� I�

lim
�	�

j�	mj�h�E
� E � i�
��	n
j � CV�E�me
�a�E�jnj�� �����


for some a�E
 � ��
We can not guarantee a priori the existence of the limits �����
� However� by Lemma

���� if C��
 holds then the limits �����
 exist and C��
 � C��
 � C��
 � C��
�
Before we state our �nal criterion under which the statement S��
 holds� we need

Lemma ��� Let ffngn�Zd be a sequence of random variables on the probability space
���F � P 
 such that for some � 
 s 
 � and 
n�

E�jfnjs
 � Ce�djnj��

�E stands for the expectation
� Then there are �nite constants DV such that

jfn�V 
j � DV e
�djnj� P � a�s�

Proof� Let
An 


n
V � � 	 jfn�V 
j � e�djnj�

o
�

By Chebyshev�s inequality�

P �An
 � esdjnj�E�jfnjs
 � Ce����s�djnj��

Thus�
P
P �An
 
�� and the statement follows from the Borel�Cantelli lemma� �

��



Lemma ��� Assume that for some � 
 s 
 �� �� � � and a�E
 � � the relation

sup
������

E
	
j�	mj�h�E
� E � i�
��	n
js



� CEe

�a�E�jn�mj�� �����


holds for all E � I and m�n � Zd� Then the conditions C��
 and C��
 hold� In particular�
the statement S��
 holds�

Proof� We �rst establish C��
� Let m be �xed� Then�

k�h�E
� E � i�
	mk� 

X
n

j�	mj�h�E
� E � i�
��	n
j�� �����


Since for any � 
 q � � and any sequence of complex numbers xk we have���X xk
���q �X jxkjq�

�����
 yield �take q 
 s��


E�k�h�E
� E � i�
	mks
 �
X
n

E�j�	mj�h�E
� E � i�
��	n
js
�

It follows from �����
 that for any E � I�

lim
�	�

E�k�h�E
� E � i�
	mks
 
��

and by the Monotone Convergence Theorem� that

E
�
lim
�	�

k�h�E
� E � i�
	mks
�

��

This estimate and Fubini�s theorem yield C��
�
Since C��
 holds� by Part �ii
 of Lemma ���� for P � m �a�e �V�E
 � �� I the limits

lim
�	�
�	mj�h�E
� E � i�
��	n


exist and are �nite� Therefore� by Fatou�s Lemma� for a�e� E � I�

E
�
lim
�	�

j�	mj�h�E
� E � i�
��	n
js
�

� lim inf
�	�

E�j�	mj�h�E
� E � i�
��	n
js


� CEe
�a�E�jn�mj��

The condition C��
 now follows from Lemma ��� and Fubini�s theorem� �

��



��� The key estimates

In this section we collect some technical results which we will need for our proofs�
First� we need a lemma about the Dirichlet LaplacianH�� Recall that jnj� 
 Pd

i�� jnij�
Lemma ��	 Let a�n� k
 	
 �	�����jHk

� 	�n���
� where k � �� Then a�n� k
 
 � if k 
 jnj�
or k � jnj� is odd� and a�n� k
 � � if k � jnj� is even�

Proof� An elementary induction� �

We now prove the properties of the sequence t�n�E
 described in Section ���� At the
boundary of ��H�
 �E 
 ���d � �

 we de�ne �������d � �

 by the equation ���!

and the condition j�������d � �
j � �� The sequences t�n����d � �

 are de�ned by
�����
� It follows easily from �����
 that for all n� E �� t�n�E
 is a continuous function
on R n int��H�
�

Lemma ��
 For E � ��d� �
� t�n�E
 
 ���
jnj�t�n��E
�
Proof� For E � ��d� �
 it follows from �����
 and Lemma ��� that

t�n�E
 

�X
p��

�

E�p���jnj�
�	�����jH�p�jnj�

� 	�n���
� �����


and

t�n��E
 

�X
p��

���
jnj�
E�p���jnj�

�	�����jH�p�jnj�
� 	�n���
� �����


Clearly� these relations yield the statement for E � ��d��
� By the continuity of t�n�E
�
the statement also holds for E 
 ��d� �
� �

Lemma ��� The function E �� t�n�E
 is positive and strictly decreasing on ���d��
��
�

Proof� It follows from Lemma ��� and �����
 that for E � ��d� �
�

t�n�E
 � ��
d

dE
t�n�E
 
 ��

These two observations yield the result� �

Lemma ��� There exists a constant C such that

jt�n� ��d� �

j � C
dY
i��

�� � jnij
� d��

d �����


��



Proof� Let n 
 �n�� � � � � nd
� For notational simplicity� we assume that ni � �� Since
E 
 ��d� �
 is �xed� in the sequel we write ���
 for ���� ��d� �

� etc� We recall that

t�n
 
 ���
�d
Z
Td

���
e�in�d��

where

���
 

�

�

�
��d� �
�  ��
�

q
���d� �
�  ��

� � �

�
�

Since  ��
 
 �
Pd

i�� cos�i� we can write ���
 as

���
 
 $���
$���
 � $���
�

where $� and $� are C
� functions on Td and

$���
 


�
dX
i��

sin�
�i
�

��

�

�

Clearly� $� is C
� away from the point � 
 �� and it is a simple exercise to verify that

the function
����� � � � �

�d
�d
$���
� �i � ��

X
�i � d� ��

is in L��Td
� Integration by parts yields that for all j and some C � ��

jt�n
j � Cjnjj��
�

dY
i��

ni

���
�

Multiplying these relations we derive �����
� �

We are now ready to prove the key properties of the sequences t�n�E
 and j�n�E
�
Recall that the constant cd�s
 is de�ned by �����
�

Lemma ���
 If s ��d��d� �
� �� and jEj � ��d� �
 thenX
n

jt�n�E
js � cd�s
�X
n

jj�n�E
js � cd�s
 � �d�
�����


Moreover� �d��d��
���� s �� cd�s
 is a strictly decreasing C� function with cd��
 
 ��

Proof� The �rst bound in �����
 follows from Lemmas ��� and ���� The second bound
follows from the �rst� Relation �����
� and the inequality ja� bjs � jajs� jbjs� which holds
for a� b � R and � 
 s � �� The regularity properties of cd�s
 follow from Lemma ��!�
Finally� since the sequence t�n� ��d� �

 is positive�

cd��
 

X
n

t�n� ��d� �

 
 ���� ��d� �

 
 ��

��



�

Our next set of technical results concerns the Aizenman�Molchanov technique� The
next lemma is motivated by �S��

Lemma ���� Let r � l��Zd
 be a non�negative sequence and R the corresponding convo�
lution operator on l��Zd
� Assume that

P
n r�n
 
 �� Let f� g � l��Zd
 be non�negative

functions and suppose that
��� R
f � g�

Then
f � ���R
��g�

Proof� Since for any � � l��Zd
�

R��n
 

X
k

r�n� k
��k
�

the operator R is positivity preserving on l��Zd
 and has the norm
P

n r�n
� Since

��� R
�� 

�X
j��

Rj�

the operator ���R
�� is also positivity preserving on l��Zd
� This yields the statement�
�

Lemma ���� Let r � l��Zd
 be a non�negative sequence and R the corresponding convo�
lution operator on l��Zd
� Assume that

r�n
 � Ae�ajnj�

for some a � � and that
P

n r�n
 
 �� Then �� � R
�� is the operator of convolution by
the non�negative sequence s�n
 which satis�es

s�n
 � Be�bjnj�

for some b � ��

Proof� Let
"r��
 	


X
n

r�n
ein��

s�n
 	
 ���
�d
Z
Td

��� "r��

��e�in�d��

��



Since "r��
 is an analytic function on Td and � � max j"r��
j� the function ��� "r��

�� is
also analytic on Td� Thus� the sequence s�n
 decays exponentially and �� � R
�� is the
operator of convolution by s�n
� Finally� since ���R
�� is positivity preserving we derive
that s�n
 is a non�negative sequence� �

The �nal result we will need is the following well�known rank�one perturbation formula�
Let #V and m � Zd be given� Set

V 
 #V � ��	mj � 
	m�
#h�E
 
 h��E
 � #V � h�E
 
 H� � V � Then the resolvent identity yields �see e�g� �S�


Lemma ���� For any n and z�

�	nj�h�E
� z
��	m
 

�	nj�#h�E
� z
��	m


� � ��	mj�#h�E
� z
��	m

�

� The strong coupling regime

In this section we prove Theorem ����
We �x s ��d��d��
� �� such that ks � �� Let 	 ���� ks�� Since lim inf ks�n
 
 ks� there

exists an l such that for all n with jnj� � l�

ks�n
 
 ks � 	 
	 ks�	� �����


By changing the distributions �n within the box jnj� � l we may assume that �����

holds for all n� By Lemma ���� such a change does not a�ect Theorem ����

Let m � Zd and E �� ��H�
 be given� For � � � we set

G�n
 � G�m�n%E � i�
 	
 �	mj�h�E
� E � i�
��	n
� �����


and write z 
 E � i�� The function G satis�es the equationX
k

j�n� k� E
G�k
 � ��V �n
 � U��n
� z
G�n
 
 	mn�

Then�

E �j�V �n
 � U��n
� z
jsjG�n
js
 � 	mn �
X
k

jj�n� k� E
jsE�jG�k
js
� ����!


�E stands for the expectation
� It follows from Lemma ���� that

jG�n
js 
 jajs
j�V �n
 � bjs �

�!



where a and b are functions of fV �l
gl ��n� Let � 
 U��n
 � z� Averaging only over V �n

we get

Z
jajs j�V � �js

j�V � bjs d�n�V 
 
 jajsj�jsj�j�s
Z jV � ����js
jV � ���bjs d�n�V 


� ks�	jajsj�jsj�j�s
Z �

jV � ���bjsd�n�V 



 ks�	j�js
Z jajs
j�V � bjsd�n�V 
�

�����


where we used the relations ����
 and �����
� Averaging over fV �l
gl ��n we get

E �j�V �n
 � U��n
� z
jsjG�n
js
 � ks�	j�jsE�jG�n
js
�

Let
g�n
 	
 E�jG�n
js
�

Note that g � l��Zd
 �g�n
 � ���s
� Relations ����!
 and �����
 yield that

��� k��s�	 j�j�sR
g � k��s�	 j�j�s	m�

where R is the operator of convolution by jj�n�E
js� By the choice of s �recall Lemma
����
 X jj�n�E
js � cd�s
 � �d�

If � is such that
ks�	j�js � cd�s
 � �d� �����


then it follows from Lemma ���� that

g � k��s�	 j�j�s��� k��s�	 j�j�sR
��	m�

Lemma ���� and the estimate ����!
 yield that there exist constants CE and a�E
 � �
such that

g�n
 � CEe
�a�E�jn�mj��

Therefore� for all E �� ��H�
�

sup
�
�

E �jG�m�n%E � i�
js
 � CEe
�a�E�jn�mj� �

Since 	 in �����
 is arbitrary� Theorem ��� follows from Lemma ����

��



� The weak coupling regime

In this section we prove Theorem ����
We �x s ��d��d � �
� �� such that Ks 
 �� Let 	 � �� Since lim supKs�n
 
 Ks�

there exists an l such that for all n with jnj� � l�

Ks�n
 
 Ks � 	 
	 Ks�	� �����


By changing the distributions �n within the box jnj� � l we may assume that �����

holds for all n�

Let m � Zd and E �� ��H�
 be given� The resolvent identity yields that

�	mj�h�E
� E � i�
	n
 
 �	mj�h��E
� E
��	n


�Pk��V �k
� i�
�	mj�h�E
� E � i�
��	k
�	kj�h��E
� E
��	n
�
�����


Using the relation �����
 and shorthand �����
 we rewrite �����
 as

G�n
 
 �t�n�m�E
 �
X
k

��V �k
� i�
t�n� k� E
G�k
�

Then�

E�jG�n
js
 � jt�n�m�E
js �X
k

jt�n� k� E
jsE ��j�jsjV �k
js � j�js
jG�k
js
 � �����


Averaging �rst over V �k
 and then over fV �l
gl ��k� we derive from ����
� �����
 and Lemma
���� that

E �jV �k
jsjG�k
js
 � Ks�	E�jG�k
js
� �����


Let
g�n
 	
 E�jG�n
js
�
f�n
 	
 jt�n�m�E
js�

Clearly� g� f � l��Zd
 and we derive from �����
 and �����
 that

��� �j�js � j�jsKs�	
R
g � f�

where R is the operator of convolution by jt�n�E
js� By the choice of s �recall Lemma
����
 X

k

jt�n�E
js � cd�s
�

We choose � such that
j�jsKs�	 
 cd�s


���

and �� � � such that
j��js � j�jsKs�	 
 cd�s


���

��



In the sequel we assume that � 
 � 
 ��� Lemma ���� yields that

g � ��� �j�js � j�jsKs�	
R

��f�

and it follows from Lemma ���� and the estimate ����!
 that for some constants CE and
a�E
 � �

g�n
 � CEe
�a�E�jn�mj��

Therefore� for all E �� ��H�
�

sup
������

E�jG�m�n%E � i�
js
 � CEe
�a�E�jn�mj��

Since 	 in �����
 is arbitrary� Theorem ��� follows from Lemma ����

��
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