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Abstract

Let Z
d+1
+ = Z

d × Z+, let H0 be the discrete Laplacian on the Hilbert space
l2(Zd+1

+ ) with a Dirichlet boundary condition, and let V be a potential supported
on the boundary ∂Z

d+1
+ . We introduce the notions of surface states and surface

spectrum of the operator H = H0 + V and explore their properties. Our main
result is that if the potential V is random and if the disorder is either large or
small enough, then in dimension two H has no surface spectrum on σ(H0) with
probability one. To prove this result we combine Aizenman-Molchanov theory with
techniques of scattering theory.
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1 Introduction

This paper is a direct continuation of [JL1] and deals with the following model.

Let d ≥ 1 be given, and let Z
d+1
+ = Zd×Z+, where Z+ = {0, 1, · · · }. We denote the points

in Z
d+1
+ by (n, x), for n ∈ Zd and x ∈ Z+. Let H0 be the discrete (centered) Laplacian on

the Hilbert space H := l2(Zd+1
+ ) with a Dirichlet boundary condition. The operator H0

acts as

(H0ψ)(n, x) =

{ ∑
|n−n′|++|x−x′|=1 ψ(n′, x′) if x > 0

ψ(n, 1) +
∑

|n−n′|+=1 ψ(n′, 0) if x = 0,

where |n|+ =
∑d

j=1 |nj|. Let V be a potential supported on the boundary ∂Z
d+1
+ = Zd

(that is, V acts as (V ψ)(n, x) = V (n, x)ψ(n, x) and V (n, x) = 0 if x > 0) and

H = H0 + V. (1.1)

The model (1.1) and the questions we will study are motivated by the physics of disordered
surfaces (see [JMP1, KP, P]).

In the first part of the paper we propose a dynamical definition of the surface states
and surface spectrum of the operator H . We remark that there are some alternative
approaches in the literature (see, e.g., [JMP1, DS]) and they will be compared with our
proposal in [JMP2].

In the second part of the paper we consider the case where the boundary potential V is a
random process on Zd. This case is of particular physical importance. Our main result is
that if d+ 1 = 2 and if the disorder is either large or small enough, then with probability
one H has no surface spectra on σ(H0). It is known that under these conditions the
spectrum of H outside σ(H0) is (with probability one) pure point with exponentially
decaying eigenfunctions [JM2]. Thus, in particular, our result rules out the existence of
propagating surface states in dimension two if the disorder is large or small enough.

The proof of our main result (Theorems 1.4 and 1.5 below) combines Aizenman-Molchanov
theory [AM] with techniques of scattering theory. More precisely, we use Aizenman-
Molchanov theory to prove a “localization” estimate for matrix elements of the resolvent
(H − z)−1 along the boundary ∂Z

d+1
+ . Such an estimate implies that propagation of wave

packets along the boundary is suppressed. We then combine this estimate with techniques
of scattering theory to show that wave packets with energies in σ(H0) must dissolve into
the bulk and that there are thus no surface spectra on σ(H0). A perhaps surprising aspect
of our argument is that Aizenman-Molchanov theory is used to establish a result which
is in spirit opposite to “localization” of wave packets. We will comment further on this
point in Section 1.2.
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1.1 Surface states and spectra

Surface states of the model (1.1) are wave packets which remain localized near the bound-
ary ∂Z

d+1
+ for all time. This heuristic description can be made mathematically rigorous

as follows.

For R ∈ Z+ we set

ΓR :=
{
(n, x) : n ∈ Z

d, 0 ≤ x ≤ R
}
, ΓR := Z

d+1
+ \ ΓR.

We denote by 1R, 1R, the characteristic functions of the sets ΓR, ΓR, and use the same
symbols for the corresponding multiplication operators (which are orthogonal projections).
Obviously, 1 = 1R + 1R. All the results of this section hold for an arbitrary boundary
potential V .

We say that a vector ψ is a surface state of the operator H if

lim
R→∞

lim inf
T→∞

1

2T

∫ T

−T

‖1Re−itHψ‖2dt = ‖ψ‖2. (1.2)

We denote the set of all surface states by Hs(H). Condition (1.2) is equivalent to

lim
R→∞

lim sup
T→∞

1

2T

∫ T

−T

‖1Re−itHψ‖2dt = 0, (1.3)

and from (1.3) it follows easily that Hs(H) is a closed subspace of H invariant under H .

Notation. In the sequel we denote by 1Θ(H) the spectral projection of H onto a Borel
set Θ ⊂ R. We will also use the shorthand cd = 2(d+ 1), so σ(H0) = [−cd, cd].

We recall that for any V , [−cd, cd] ⊂ σ(H) (see [JL1]). The basic property of the set
Hs(H) is:

Theorem 1.1 Ran1R\(−cd,cd)(H) ⊂ Hs(H).

The surface spectrum of the operator H , σs(H), is defined by

σs(H) = σ(H|Hs).

Obviously, σs(H) is a closed set and σs(H) ⊂ σ(H). Theorem 1.1 yields that

σ(H) \ σ(H0) ⊂ σs(H).

An important question is whether or not H has some surface spectra on σ(H0). The only
known examples where this happens are periodic potentials and some special boundary
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potentials for which H has embedded eigenvalues in σ(H0) [MV]. In this paper we will
describe criteria under which H has no surface spectra on σ(H0).

In [CS, JL1] it was proven that for any boundary potential V , the wave operators

Ω± = s − lim
t→∓∞

eitHe−itH0 (1.4)

exist. Our next results identifies their ranges. We adopt the shorthand 〈t〉 = (1 + t2)
1
2 .

Let

T :=
{
ψ : ∀R, k ≥ 0, ‖1Re−itHψ‖ = O(〈t〉−k)

}

F :=

{
ψ : ∀R ≥ 0,

∫
R

‖1Re−itHψ‖2dt <∞
}
.

Clearly, T and F are linear spaces and T ⊂ F .

Theorem 1.2 Ran Ω± = T = F . Moreover, RanΩ± ⊂ Hs(H)⊥.

We recall that the wave operators Ω± are complete on a Borel set Θ ⊂ R if Ran1Θ(H) ⊂
RanΩ±. Therefore, Theorem 1.2 yields:

Corollary 1.3 If the wave operators Ω± are complete on Θ, then σs(H) ∩ Θ = ∅.

In [JL1] we have introduced the notion of resonant spectrum, R(H), and we have shown
that the wave operators Ω± are complete on σ(H)\R(H). Thus, σs(H) ⊂ R(H). Various
estimates on the location of the set R(H) are given in [JL1].

1.2 Random boundary potentials

Let Ω be the set of all boundary potentials,

Ω = R
Zd

=×
Zd

R,

let B be the Borel σ-algebra in Ω and dP a probability measure on (Ω,B) of the form

dP =×
Zd

dµ,

where dµ = p(x)dx is an absolutely continuous (w.r.t. Lebesgue measure) probability
measure on R. In what follows we use the symbol E(f) for the expectation of a random
variable f and assume that d+ 1 = 2.

The main result of this paper is:
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Theorem 1.4 Let Uper be a periodic boundary potential and H = H0+Uper+λV , V ∈ Ω,
where λ is a real constant. Assume that 〈x〉αp(x) ∈ L1(R) ∩ L∞(R) for some α > 2/3.
Then there is a constant Λ > 0 such that for |λ| > Λ, R ≥ 0 and ψ ∈ H,

lim
T→∞

1

2T

∫ T

−T

E
(
‖1Re−itH1(−cd,cd)(H)ψ‖2

)
dt = 0. (1.5)

In particular, for |λ| > Λ,

σs(H) ∩ (−cd, cd) = ∅ P − a.s. (1.6)

Remark 1. That (1.5) implies (1.6) is seen as follows. Let N be a countable, dense set
in H. Fatou’s lemma and (1.5) yield that there is a set Ω̃ ⊂ Ω of full P -measure such
that for V ∈ Ω̃ and ψ ∈ N

lim
R→∞

lim inf
T→∞

1

2T

∫ T

−T

‖1Re−itH1(−cd,cd)(H)ψ‖2dt = 0. (1.7)

Since for fixed V the set of ψ’s for which (1.7) holds is closed, (1.7) holds for V ∈ Ω̃ and
ψ ∈ N = H.
Remark 2. The constant |λ| is a measure of the disorder.
Remark 3. The operator H0 + Uper may have some surface spectra on σ(H0). For ex-
ample, if ∀n, Uper(n, 0) = a and |a| > 1, then σs(H0 + Uper) = [−2d, 2d] + a + a−1. One
can also show that this surface spectrum is stable under short-range perturbations, see
[JMP2].
Remark 4. The technical conditions of Theorem 1.4 can be relaxed in several ways. The
method of the proof allows for more general densities (non-i.i.d. and correlated random
variables), the background potential does not have to be periodic, etc. We opted for con-
ditions which cover most physically interesting situations, while allowing for a technically
simple exposition of the results and the proofs.

If the background potential Uper is equal to zero, then we can also deal with the weak
coupling regime.

Theorem 1.5 Let H = H0 + λV , V ∈ Ω, and assume that 〈x〉αp(x) is in L1(R) for
some α > 2/3 and in L∞(R) for some α > 5/3. Then there is a constant Λ > 0 such that
for |λ| < Λ, R ≥ 0 and ψ ∈ H,

lim
T→∞

1

2T

∫ T

−T

E
(
‖1Re−itH1(−cd,cd)(H)ψ‖2

)
dt = 0.

In particular, for |λ| < Λ, σs(H) ∩ (−cd, cd) = ∅ P-a.s.



6

Remark 1. If Λ‖V ‖ ≤ 1 P -a.s., then for |λ| < Λ, the wave operators (1.4) are complete
on σ(H0) P -a.s. [JL1], and by Corollary 1.3 H has P -a.s. no surface spectra on σ(H0).
Thus, for bounded random variables the above theorem could be an empty statement.
If, however, suppµ = R (for example, the random variables {V (n)} have a Cauchy or
Gaussian distribution), then it is not known whether the wave operators (1.4) are complete
for any λ 
= 0. In such situations, Theorem 1.5 is a new result.
Remark 2. The cases Uper = 0 and Uper 
= 0 may describe two very different physical
situations. See [JM2, JM3] for a discussion.

We finish this section with a brief discussion of Theorems 1.4 and 1.5.

Roughly, the physical reason why these theorems hold is that in the strong coupling
regime (with Uper possibly different from zero) and in the weak coupling regime (with
Uper = 0) the propagation of wave packets along the boundary is suppressed. This forces
wave packets with energies outside σ(H0) to turn into bound states, which is the rea-
son why we have only pure point spectrum outside σ(H0) in these regimes [JM1, JM2].
However, since the spectrum of H in σ(H0) is P -a.s. purely a.c. [JL1, JL2], wave pack-
ets with energies in that regime must propagate, and they are thus expelled into the bulk.

Notation. Throughout the paper we will use the shorthands

R(z) := (H − z)−1,

R((m, y), (n, x); z) := (δ(m,y)|(H − z)−1δ(n,x)).

The above heuristic argument can be made mathematically rigorous as follows. Let (a, b)
be given energy interval and 0 < s < 1. For m,n ∈ Zd and x ∈ Z+ let

γx(m,n) := sup
e∈(a,b),ε �=0

E (|R((m, 0), (n, x), e+ iε)|s) .

The estimate one seeks is that for all x ≥ 0 there are positive constants C and δ such
that ∀m,n,

γx(m,n) ≤ C〈n−m〉−d−δ. (1.8)

If (a, b)∩σ(H0) = ∅, then (1.8) implies that on (a, b) the operator H has P -a.s. only pure
point spectrum [JM2]. (For this result it suffices that (1.8) holds for x = 0). On the other
hand, if (a, b) ⊂ σ(H0), then (1.8) implies that relation (1.5) holds and that H has P -a.s.
no surface spectra on (a, b) (see Section 3.2).

The question remains how the estimate (1.8) can be established. Let us consider the case
x = 0. One can show that for any z ∈ C \ σ(H0) there exists an operator h0(z), which



7

acts on l2(Zd) as convolution by a sequence j(n, z),

(h0(z)ψ)(n) =
∑

k

j(n− k, z)ψ(k),

so that

(δ(m,0)|(H − z)−1δ(n,0)) = (δm|(h(z) − z)−1δn),

where h(z) = h0(z) + V . Thus, the estimate (1.8) for x = 0 is the usual localization
estimate of Aizenman-Molchanov [AM] for the operator h(z). The difficulties in estab-
lishing such an estimate stem from the fact that h0(z) is a long-range energy-dependent
Laplacian, and the existing techniques are effective only if for some δ > 0 and ∀n

t(n) := sup
e∈(a,b),ε �=0

|j(n, e+ iε)| = O(〈n〉−d−δ).

However, it turns out that t(n) ∼ 〈n〉−(d+2)/2, and we have an appropriate decay only
if d + 1 = 2. This is the reason why we are able to prove Theorems 1.4 and 1.5 only
in dimension two. We do not know whether this restriction is technical or new physical
phenomena emerge in dimensions d+ 1 > 2.

Acknowledgments. We would like to thank S. Molchanov, L. Pastur, B. Simon and B.
Vainberg for useful discussions and to A. Kelm for comments on the manuscript. VJ’s
work was partially supported by NSERC. YL’s work was partially supported by NSF
grant DMS-9801474, by an ISF grant, and by an Allon fellowship.

2 Deterministic results

2.1 Proof of Theorem 1.1

The following result will be used on several occasions in this paper.

Lemma 2.1 Let A be a bounded self-adjoint operator on H. Then, for any ψ ∈ H,

1

2T

∫ T

−T

‖Ae−itHψ‖2dt ≤ Cεmax
±

∫
R

‖AR(e± iε)ψ‖2de,

where ε = T−1 and C = e2/2π.
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Proof. The result follows from the well-known identity (see, e.g., [RS], Section XIII.7)

2π

∫
R

e−2ε|t|‖Ae−itHψ‖2dt =

∫
R

(
‖AR(e+ iε)ψ‖2 + ‖AR(e− iε)ψ‖2

)
de

and the estimate

1

2T

∫ T

−T

‖Ae−itHψ‖2dt ≤ e2ε

2

∫
R

e−2ε|t|‖Ae−itHψ‖2dt,

where ε = T−1. �

The following lemma is an immediate consequence of Proposition 3.1 of [JL1]. We use
the shorthand R0(z) = (H0 − z)−1.

Lemma 2.2 If [a, b] ∩ σ(H0) = ∅ then there exists γ > 0 such that

sup
e∈[a,b],ε �=0

‖1RR0(e+ iε)10‖ ≤ Ce−γR.

Lemma 2.3 Let Θ be a compact set such that Θ∩σ(H0) = ∅. Then there exist constants
C > 0 and γ > 0 such that for all R ≥ 0 and n ∈ Zd,

lim sup
ε→0

|ε|
∫
R

‖1RR(e+ iε)1Θ(H)δ(n,0)‖2de ≤ Ce−γR.

Proof. Let [a, b] be an interval such that Θ is properly contained in [a, b] and [a, b] ∩
σ(H0) = ∅. Then there exists a constant C1 such that ∀e ∈ R \ [a, b],

sup
ε

‖R(e+ iε)1Θ(H)‖ ≤ C1/dist(e,Θ).

Thus, it suffices to show that

lim sup
ε→0

|ε|
∫ b

a

‖1RR(e+ iε)1Θ(H)δ(n,0)‖2de ≤ Ce−γR.

Since V = 10V and

sup
ε �=0

|ε|
∫ b

a

‖VR(e+ iε)1Θ(H)δ(n,0)‖2 ≤ C2,

the result follows from the resolvent identity and Lemma 2.2. �
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We are now ready to finish:

Proof of Theorem 1.1. Let Θ be a compact set such that Θ ∩ σ(H0) = ∅. It follows
from Lemmas 2.1 and 2.3 that for any n ∈ Zd,

lim sup
T→∞

1

2T

∫ T

−T

‖1Re−itH1Θ(H)δ(n,0)‖2dt = O(e−γR).

Thus, for all n ∈ Zd, 1Θ(H)δ(n,0) ⊂ Hs(H). Since the set {δ(n,0) : n ∈ Zd} is cyclic for
H (see [JL1]), we have that Ran1R\[−cd,cd](H) ⊂ Hs(H). Finally, either 1{±cd}(H) = 0
or ±cd is an eigenvalue of H . In either case, Ran1{±cd}(H) ⊂ Hs(H) and Theorem 1.1
follows. �

2.2 Ranges of Ω±

In this section we prove Theorem 1.2.

Let

D :=
{
ψ : ∀R, k ≥ 0, ‖1Re−itH0ψ‖ = O(〈t〉−k)

}
.

Obviously, D is a linear subspace of H. Moreover, in [JL1] (Proposition 3.12) we have
shown that

D = H. (2.9)

Theorem 1.2 follows from the next three propositions.

Proposition 2.4 RanΩ± ⊂ T .

Proof. We consider the − case; a similar argument applies to the + case.

Let T be a linear operator defined by

Tδ(n,x) =




−δ(n,1) if x = 0
δ(n,0) if x = 1

0 if x > 1.
(2.10)

Note that ‖T‖ = 1 and

H10 − 10H0 = [H0, 10] = T. (2.11)
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Fix ψ ∈ D. Since

lim
t→∞

eitH10e
−itH0ψ = 0,

we have

Ω−ψ − ψ =

∫ ∞

0

d

dτ
eiτH10e

−iτH0ψdτ

= i

∫ ∞

0

eiτHT e−iτH0ψdτ.

Thus,

‖1Re−itHΩ−ψ‖2 = ‖1RΩ−e−itH0ψ‖2

≤ A(t) + 2‖1Re−itH0ψ‖2,
(2.12)

where

A(t) = 2

(∫ ∞

0

‖T e−i(τ+t)H0ψ‖dτ
)2

.

Since T = T11, it follows from the definition of D and (2.12) that for any ψ ∈ D, R ≥ 0
and k ≥ 0,

‖1Re−itHΩ−ψ‖2 = O(〈t〉−k).

Thus, Ω−D ⊂ T , and relation (2.9) yields the result. �

Proposition 2.5 F ⊂ RanΩ±.

Proof. We again consider only the − case. Obviously, to prove the statement it suffices
to show that for every ψ ∈ F the limit

lim
t→∞

eitH0e−itHψ (2.13)

exists.

First, we observe that for ψ ∈ F ,

lim
t→∞

eitH10e
−itHψ = 0. (2.14)
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Indeed, let w(t) = eitH10e
−itHψ. Then

∫
‖w(t)‖2dt < ∞, and, since [H, 10] = [H0, 10],

‖w′(t)‖ ≤ 2‖H0‖. This yields that limt→∞ w(t) = 0 (see, e.g., Exercise 6.2 in [RS]). Thus,
to prove the existence of the limit (2.13) it suffices to prove the existence of

lim
t→∞

eitH010e
−itHψ.

We fix ψ ∈ F and set

�(t) := eitH010e
−itHψ.

Let φ ∈ H be arbitrary. Then

d

dt
(φ|w(t)) = i(e−itH0φ|T e−itHψ),

where T is given by (2.10). Since T = T11 = 11T , we have that for t > s,

|(φ|�(t) − �(s))| ≤
(∫
R

‖11e
−iτH0φ‖2dτ

) 1
2
(∫ t

s

‖11e
−iτHψ‖2dτ

) 1
2

.

Since 11 is H0-smooth (see Lemma 3.7 in [JL1]), there is a constant C, independent of φ,
such that (∫

R

‖11e
−iτH0φ‖2dτ

) 1
2

≤ C‖φ‖.

Therefore,

‖�(t) − �(s)‖ ≤ C

(∫ t

s

‖11e
−iτHψ‖2dτ

) 1
2

.

If ψ ∈ F , then the integrand on the right hand side of the last equation is in L1(R).
Therefore, the sequence �(t) is Cauchy as t→ ∞ and limt→∞ �(t) exist. �

Proposition 2.6 F ⊥ Hs(H).

Proof. Let φ ∈ F and ψ ∈ Hs(H) be two normalized vectors. Then

(φ|ψ) = (1Re−itHφ|1Re−itHψ) + (1Re−itHφ|1Re−itHψ),

which yields

|(φ|ψ)| ≤ ‖1Re−itHφ‖ + ‖1Re−itHψ‖.
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Thus,

|(φ|ψ)| ≤
(

1

2T

∫ T

−T

‖1Re−itHφ‖2dt

) 1
2

+

(
1

2T

∫ T

−T

‖1Re−itHψ‖2dt

) 1
2

,

and

|(φ|ψ)| ≤ lim sup
T→∞

(
1

2T

∫ T

−T

‖1Re−itHφ‖2dt

) 1
2

+ lim
R→∞

lim sup
T→∞

(
1

2T

∫ T

−T

‖1Re−itHψ‖2dt

) 1
2

= 0.

�

3 Surface spectra in dimension two

In this section we prove Theorems 1.4 and 1.5. In what follows we assume that d+1 = 2.
We use the letter C for a generic constant which may change from estimate to estimate.

3.1 Preliminaries

In this section we collect some technical results about the model (1.1). Most of them are
similar to the results already discussed in [JL1, JM1, JM2, JM3] and we refer the reader
to any of these papers for additional information. All the results of this section, except
for Lemma 3.4, hold for an arbitrary boundary potential V .

Let T be the unit circle. We denote by φ the points in T and by dφ the usual Lebesgue
measure. Let C± = {z : ±Imz > 0} and, for z ∈ C±, let λ(φ, z) be the root of the
quadratic equation

X +X−1 + 2 cosφ = z,

which satisfies |λ(φ, z)| < 1. Explicitly, for z ∈ C±,

λ(φ, z) =
1

2

(
2 cosφ− z −

√
(2 cosφ− z)2 − 4±

)
(3.15)

where the branch of square root is fixed by

√
w± =

√
x+ iy± =

√
2

2

(√
|w| + x± i

√
|w| − x

)
, ±Imw > 0.

The function λ(φ, z) extends by continuity from T×C± to T×C±. We denote the values
of these extensions along the real axis by λ(φ, e± i0).
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Lemma 3.1 For any x ∈ Z+ there is a constant Cx such that ∀n,

sup
z∈C±

∣∣∣∣
∫
T

e−inφλ(φ, z)xdφ

∣∣∣∣ ≤ Cx〈n〉−3/2. (3.16)

Proof. In [JL1] we have shown that

(δ(0,0)|(H0 − z)−1δ(n,x)) = −(2π)−1/2

∫
T

e−inφλ(φ, z)x+1dφ. (3.17)

Moreover, the proof of Lemma 2.9 in [JM2] yields that for some Dx and all n,

sup
|e|>4

∣∣∣∣
∫
T

e−inφλ(φ, e)xdφ

∣∣∣∣ ≤ Dx〈n〉−2.

Thus, the maximum modulus principle and the standard exponential estimate on the
Green function (3.17) yield that (3.16) follows if for some Cx and all n

sup
|e|≤4

∣∣∣∣
∫
T

e−inφλ(φ, e± i0)xdφ

∣∣∣∣ ≤ Cx〈n〉−3/2.

The proof of this fact is a calculus exercise. We indicate below the main steps of this
calculation.

For notational simplicity, we consider the cases x = 1, +i0, and e ≥ 0. We need to
estimate the integral

In =

∫
T

e−inφ
√

(2 cosφ− e)2 − 4+dφ

for e ∈ [0, 4] and |n| � 1. The change of variable u = cosφ and integration by parts yield
that

|In| ≤ (An+ + An−)
/
|n|,

where

An± =

∣∣∣∣∣
∫ 1

−1

e−in cos−1 u 2(2u± e)√
(2u± e)2 − 4

+

du

∣∣∣∣∣ .
We estimate An+. Let 0 < δ � 1 and

S(δ) = {u ∈ [−1, 1] : dist(u,±1 − e/2) ≤ δ}.
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Let Ψn+ be the integrand in An+. One can easily see that∣∣∣∣
∫
S(δ)

Ψn+(u)du

∣∣∣∣ ≤ C
√
δ.

If Sc(δ) = [−1, 1] \ S(δ), then

∣∣∣∣
∫
Sc(δ)

Ψn+(u)du

∣∣∣∣ =
1

|n|

∣∣∣∣∣
∫
Sc(δ)

(
d

du
e−in cos−1 u

)√
1 − u2

2(2u+ e)√
(2u+ e)2 − 4

+

du

∣∣∣∣∣ ,
and integration by parts yields ∣∣∣∣

∫
Sc(δ)

Ψn+(u)du

∣∣∣∣ ≤ C

|n|
√
δ
.

Therefore, for some constant C independent of e,

|In| ≤
C

|n|

(√
δ +

1

|n|
√
δ

)
.

Setting δ = |n|−1, we derive the statement. �

Let

j(n, z) = (2π)−1

∫
T

e−inφ(λ(φ, z) + 2 cosφ)dφ, (3.18)

and let h0(z) be the operator of convolution by j(n, z). This operator acts on l2(Z) as
follows:

(h0(z)ψ)(n) =
∑

k

j(n− k, z)ψ(k).

Let h(z) = h0(z) + V and H = H0 + V , where V is a boundary potential. Note that h(z)
acts on l2(Z) while H acts on l2(Z2

+). Let

R̂((m, 0), (φ, x); z) = (2π)−
1
2

∑
n

R((m, 0), (n, x); z)einφ.

For the proof of the next two lemmas we refer the reader to [JL1, JM1].

Lemma 3.2 For any n,m ∈ Z and z ∈ C±,

(δ(m,0)|(H − z)−1δ(n,0)) = (δm|(h(z) − z)−1δn).
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Lemma 3.3 For any x ∈ Z+ and z ∈ C±,

R̂((m, 0), (φ, x), z) = R̂((m, 0), (φ, 0); z)λ(φ, z)x.

Our next lemma deals with a random potential V . Let (Ω,B) be as in Section 1.2 and P
be an arbitrary probability measure on (Ω,B).

Lemma 3.4 Let (a, b) be an interval such that for some 2/3 < s < 1, δ > 0 and all
m,n ∈ Z,

sup
e∈(a,b),ε �=0

E(|R((m, 0), (n, 0); e+ iε)|s) < C〈n−m〉−1−δ.

Then for all x ∈ Z+ there is a constant Cx such that

sup
e∈(a,b),ε �=0

E(|R((m, 0), (n, x); e+ iε)|s) < Cx〈n−m〉−q, (3.19)

where q = min(1 + δ, 3s/2).

Proof. Let

tx(n, z) = (2π)−1

∫
T

e−inφλ(φ, z)xdφ.

Then by Lemma 3.3,

R((m, 0), (n, x); z) =
∑

k

tx(n− k, z)R((m, 0), (k, 0); z),

and it follows that

E(|R((m, 0), (n, x); z)|s) ≤
∑

k

|tx(n− k, z)|sE(|R((m, 0), (k, 0); z)|s).

The result now follows from Lemma 3.1 and (3.19). �

The last result we will need is:

Lemma 3.5 Let δ > 0 be given. Then there is a constant C such that for l > 0 and
m,n ∈ Z ∑

k1,··· ,kl∈Z

(
〈k1 −m〉〈k2 − k1〉 . . . 〈kl − kl−1〉〈n− kl〉

)−1−δ ≤ C l〈n−m〉−1−δ.

Proof. An elementary induction. �
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3.2 The property P

Throughout this section we assume that the conditions of Theorem 1.4 hold.

Let (a, b) ⊂ (−cd, cd). We say that the property P holds on (a, b) if for all R ≥ 0 and
ψ ∈ H,

lim
T→∞

1

2T

∫ T

−T

E
(
‖1Re−itH1(a,b)(H)ψ‖2

)
dt = 0.

To prove Theorem 1.4 it suffices to show that the property P holds on every interval (a, b)
properly contained in (−cd, cd).
In what follows we fix an interval (a, b) properly contained in (−cd, cd) and s such that
2/3 < s < 1 and 〈x〉sp(x) ∈ L1(R) ∩ L∞(R). The goal of this section is to prove

Theorem 3.6 Assume that for some δ > 0 and all m,n ∈ Z,

sup
e∈(a,b),ε �=0

E(|R((m, 0), (n, 0), e+ iε)|s) ≤ C〈n−m〉−1−δ. (3.20)

Then the property P holds on (a, b).

First, we need the following result of Graf [Gr].

Lemma 3.7 Assume that (3.20) holds. Then

sup
e∈(a,b),ε �=0

|ε|E(|R((m, 0), (n, 0); e+ iε)|2) ≤ C〈n−m〉−1−δ. (3.21)

Remark. This result is not stated in [Gr] in the above form. However, it is an immediate
consequence of the proof of Lemma 3 in [Gr].

We denote by A the set of all C∞
0 -functions with support in (a, b).

Lemma 3.8 Assume that for all χ ∈ A, R ≥ 0 and n,

lim
T→∞

1

2T

∫ T

−T

E
(
‖1Re−itHχ(H)δ(n,0)‖2

)
dt = 0. (3.22)

Then the property P holds on (a, b).

Proof. The result follows from the fact that the set {δ(n,0) : n ∈ Z} is cyclic for H =
H0 + V for any V . �
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Lemma 3.9 Assume that suppχ ⊂ (a, b). Then for any φ, ψ ∈ H,

lim
T→∞

1

2T

∫ T

−T

E
(
|(φ|e−itHχ(H)ψ)|2

)
dt = 0.

Proof. By the result of [JL1], the spectrum of H is P -a.s. purely a.c. on (a, b), and it
follows from the Wiener theorem that

lim
T→∞

1

2T

∫ T

−T

|(φ|e−itHχ(H)ψ)|2dt = 0 P − a.s.

This relation and the Lebesgue dominated convergence theorem yield the statement. �

For any l ≥ 0, let 1R,l be the characteristic function of the set

{(n, x) : |n| ≥ l, 0 ≤ x ≤ R}.

We use the same notation for the corresponding multiplication operator.

Lemma 3.10 Assume that for all χ ∈ A, R ≥ 0 and n,

lim
l→∞

lim sup
ε→0

|ε|
∫
R

E
(
‖1R,lR(e+ iε)χ(H)δ(n,0)‖2

)
de = 0. (3.23)

Then the property P holds on (a, b).

Proof. Since 1R − 1R,l is a finite rank operator, by Lemma 3.9

lim
T→∞

1

2T

∫ T

−T

E
(
‖(1R − 1R,l)e

−itHχ(H)δ(n,0)‖2
)
dt = 0,

and so, by Lemma 3.8, if for all χ with suppχ ⊂ (a, b), R and n,

lim
l→∞

lim sup
T→∞

1

2T

∫ T

−T

E
(
‖1R,le

−itHχ(H)δ(n,0)‖2
)
dt = 0,

then P holds on (a, b). The result now follows from Lemma 2.1. �

We are now ready to finish:

Proof of Theorem 3.6. We will prove that relation (3.23) holds for all χ ∈ A, all R
and all n. Let χ be given and let [c, d] be an interval such that suppχ ⊂ [c, d] ⊂ (a, b).
Since for e 
∈ [c, d],

sup
ε �=0

E
(
‖1R,lR(e+ iε)χ(H)δ(n,0)‖2

)
≤ C (dist(e, suppχ))−2 ,
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to prove (3.23) it suffices to show that

lim
l→∞

lim sup
ε→0

|ε| sup
e∈(a,b)

E
(
‖1R,lR(e+ iε)χ(H)δ(n,0)‖2

)
= 0. (3.24)

Let χ̃ be an almost analytic extension of χ. (For the basic facts about almost analytic
extensions we refer the reader to [Da].) By the Helffer-Sjöstrand formula,

χ(H) =
1

π

∫
C

∂χ̃(z)

∂z
R(z)dxdy.

It follows that for any w ∈ C,

1R,lR(w)χ(H) =
1

π

∫
C

A(w, z)dxdy, (3.25)

where

A(w, z) =
∂χ̃(z)

∂z

1

z − w
1R,l(R(w) −R(z)).

We will make use of the following properties of χ̃ (see [Da]):

(a) supp χ̃ is a compact set.

(b) sup
z∈supp χ̃

∣∣∣∣∂χ̃(z)

∂z

∣∣∣∣ = O(|Imz|).

Setting w = e+ iε we derive from (3.25) that

‖1R,lR(w)χ(H)δ(n,0)‖ ≤ ‖1R,lR(w)δ(n,0)‖D1(w) +D2(w),

where

D1(w) =
1

π

∫
C

∣∣∣∣∂χ̃(z)

∂z

∣∣∣∣ 1

|w − z|dxdy,

and

D2(w) =
1

π

∫
C

∣∣∣∣∂χ̃(z)

∂z

∣∣∣∣ ‖R(z)δ(n,0)‖
|w − z| dxdy.

Now (a) and (b) yield that

sup
w∈C

D1(w) <∞, sup
w∈C

D2(w) <∞,
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and so

sup
e∈(a,b)

E
(
‖1R,lR(e+ iε)χ(H)δ(n,0)‖2

)
≤ C sup

e∈(a,b)

E
(
‖1R,lR(e+ iε)δ(n,0)‖2

)
+O(1). (3.26)

Let q = min(3s/2, 1 + δ) > 1. Using Lemma 3.4, (3.21), and (3.26), we conclude that

lim sup
ε→0

|ε| sup
e∈(a,b)

E
(
‖1R,lR(e+ iε)χ(H)δ(n,0)‖2

)
≤ C

∑
|m|>l

〈n−m〉−q

= O(l1−q),

and (3.24) follows. �

3.3 Localization estimate in the strong coupling regime

In this and the next section we use the Aizenman-Molchanov technique to show that the
key estimate (3.21) holds if the disorder is either large or small enough (we follow an
elegant presentation of Aizenman-Molchanov theory in [S], see also [JM2]). Throughout
this section we assume that the assumptions of Theorem 1.4 hold.

Theorem 3.11 For any 2/3 < s < 1 there is a constant Λs > 0 such that for |λ| > Λs

and ∀m,n ∈ Z,

sup
z∈C±

E (|R((m, 0), (n, 0); z)|s) ≤ C〈n−m〉−3s/2.

Theorem 1.4 is an immediate consequence of Theorems 3.6 and 3.11.

The rest of this section is devoted to the proof of Theorem 3.11. To simplify the notation,
we assume that m = 0 and adopt the shorthand

R(n; z) := R((0, 0), (n, 0); z). (3.27)

A similar argument applies to the other values of m. In what follows we fix s ∈ (2/3, 1).

It follows from Lemma 3.2 that the function R(n; z) satisfies the equation∑
k

j(n− k, z)R(k; z) + (Uper(n) + λV (n) − z)R(n; z) = δ0n.

Then

E (|Uper(n) + λV (n) − z|s|R(n; z)|s) ≤ δ0n +
∑

k

|j(n− k, z)|sE (|R(k; z)|s) . (3.28)
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The decoupling lemma of Aizenman-Molchanov (see [AM, AG, Gr, M, JM2]) yields that
there is a constant ks,

ks ≥ 2−(1+s)(1 − s)‖p‖−s
∞ ,

such that

ks|λ|sE(|R(n; z)|s) ≤ E (|Uper(n) + λV (n) − z|s|R(n; z)|s) . (3.29)

Let

g(n, z) := E(|R(n, z)|s),

and let g(z) be the sequence {g(n, z)}. Note that g(z) ∈ l∞(Z) (|g(n, z)| ≤ |Imz|−s).
Relations (3.28) and (3.29) yield that

(1 − k−1
s |λ|−sT (z))g(z) ≤ k−1

s |λ|−sδ0, (3.30)

where T (z) is the operator of convolution by |j(n, z)|s. It follows from Lemma 3.1 and
(3.18) that

C1 := sup
z∈C±

‖T (z)‖∞

= sup
z∈C±

∑
n

|j(n, z)|s <∞,

where ‖ · ‖∞ is the l∞ operator norm. Thus, if

ks|λ|s > C1, (3.31)

then the operator 1 − k−1
s |λ|−sT (z) is invertible,

(1 − k−1
s |λ|−sT (z))−1 =

∞∑
m=0

(k−1
s |λ|−s)mT (z)m,

and (1− k−1
s |λ|−sT (z))−1 is positivity preserving (since T (z) is). These observations and

relation (3.30) yield that

g(z) ≤ k−1
s |λ|−s(1 − k−1

s |λ|−sT (z))−1δ0,

and

g(n, z) ≤ k−1
s |λ|−s

∞∑
m=0

(k−1
s |λ|−s)m(δ0|T (z)mδn). (3.32)
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By Lemma 3.1 and (3.18), there is a constant C2 such that

sup
z∈C±

|j(n, z)|s ≤ C2〈n〉−3s/2.

Now let C3 be the constant which appears in Lemma 3.5 for 1 + δ = 3s/2. If in addition
to (3.31) we have that

ks|λ|s > C2C3,

then (3.32) and Lemma 3.5 show that for some C and all n,

sup
z∈C±

g(n, z) ≤ C〈n〉−3s/2.

This yields Theorem 3.11 with

Λs = (max(C1, C2C3)/ks)
1/s .

3.4 Localization estimate in the weak coupling regime

Throughout this section we assume that the assumptions of Theorem 1.5 hold. Let α >
5/3 be such that 〈x〉αp(x) ∈ L∞(R).

Theorem 3.12 For any s ∈ (2/3,min(1, α − 1)) there is a constant Λs > 0 such that
for |λ| < Λs and ∀m,n ∈ Z,

sup
z∈C±

E (|R((m, 0), (n, 0); z)|s) ≤ C〈n−m〉−3s/2.

Remark. The restriction on s in terms of α is a technical condition which we need
to ensure that the constant Ks in the Aizenman-Molchanov decoupling lemma (relation
(3.34) below) is finite. For some other conditions which also ensure that Ks < ∞ see
[A, AM, JM2].

Theorem 1.5 follows from Theorems 3.6 and 3.12.

The rest of this section is devoted to the proof of Theorem 3.12. We again assume that
m = 0, adopt the shorthand (3.27), and fix s ∈ (2/3,min(1, α−1)). The resolvent identity
and Lemma 3.2 yield that

R(n, z) = j(n, z) −
∑

k

j(n− k, z)V (k)R(k, z).
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Thus,

E(|R(n, z)|s) ≤ |j(n, z)|s +
∑

k

|j(n− k, z)|sE(|V (k)|s|R(k, z)|s). (3.33)

The decoupling lemma of Aizenman-Molchanov yields that there is a finite constant Ks

such that for z ∈ C±

E(|V (k)|s|R(k, z)|s) ≤ |λ|sKs E(|R(k, z)|s). (3.34)

Let g(n, z), g(z), T (z), C1, C2 and C3 be as in the previous section, and let js(z) be the
sequence {|j(n, z)|s}. Note that js(z) = T (z)δ0. Relations (3.33) and (3.34) yield that

(1 −Ks|λ|sT (z))g(z) ≤ js(z) = T (z)δ0.

Thus, if

Ks|λ|s < C−1
1 , (3.35)

then the operator 1 −Ks|λ|sT (z) is invertible on the Banach space l∞(Z) and its inverse
is positivity preserving. Hence,

g(z) ≤ (1 −Ks|λ|sT (z))−1T (z)δ0

≤ K−1
s |λ|−s(1 −Ks|λ|sT (z))−1δ0,

and

g(n, z) ≤ K−1
s |λ|−s

∞∑
m=0

(Ks|λ|s)m(δ0|T (z)mδn).

As in the previous section, if in addition to (3.35) we have that

Ks|λ|s < (C2C3)
−1,

then for some C and all n

sup
z∈C±

g(n, z) ≤ C〈n〉−3s/2.

This yields Theorem 3.12 with

Λs =
(
min(C−1

1 , (C2C3)
−1)/Ks

)1/s
.
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