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FRUMAM

Abstract. We study a class of finite dimensional quantum dynamical semigroups {etL}t≥0

whose generators L are sums of Lindbladians satisfying the detailed balance condition. Such
semigroups arise in the weak coupling (van Hove) limit of Hamiltonian dynamical systems
describing open quantum systems out of equilibrium. We prove a general entropic fluctuation
theorem for this class of semigroups by relating the cumulant generating function of entropy
transport to the spectrum of a family of deformations of the generatorL. We show that, besides
the celebrated Evans-Searles symmetry, this cumulant generating function also satisfies the
translation symmetry recently discovered by Andrieux et al., and that in the linear regime near
equilibrium these two symmetries yield Kubo’s and Onsager’s linear response relations.

Dedicated to Herbert Spohn on the occasion of his 65th birthday.

1 Introduction

Markov semigroups are widely used to model non-equilibrium phenomena in classical statistical physics.
Their non-commutative counterparts —- quantum dynamical semigroups — play the same role in quantum
statistical physics (see, e.g., [AL, Re] for pedagogical introductions to the subject). The development of the
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mathematical theory of QDS started in 1974 with the seminal works of Brian Davies [Da2, Da3, Da4] where
he showed that QDS emerge as effective dynamics of open systems weakly coupled to extended reservoirs.
These groundbreaking works were followed by the celebrated 1976 papers of Lindblad [Li1, Li2] and
Gorini, Kossakowski and Sudarshan [GKS] on the structure of the generator of QDS (see also [CE]). Her-
bert made several fundamental contributions at this early stage of development. In [Sp1, Sp2] he gave ef-
ficient criteria for the existence and uniqueness of a stationary state and approach to equilibrium. Together
with Joel Lebowitz, in [LS1] he developed a comprehensive picture of the nonequilibrium thermodynam-
ics of weakly coupled open systems. This work remains a standard reference and has been a source of
inspiration for many later developments on the subject, including the present one. Among other things, in
[LS1] Herbert and Joel introduced the central concept of entropy production, which was further discussed
in [Sp3], and developed the linear response theory for thermodynamical forces. The closely related lin-
ear response theory for weakly coupled open systems under mechanical drive was developed by Herbert
in a joint paper with Brian Davies [DS]. In another enlightening work, Herbert and R. Dümcke [DüSp]
showed that some of the generators that were (and sometimes still are) used to describe the weak coupling
limit lead to negative probabilities. Years later, Herbert came back to the subject and, with Walter As-
chbacher, showed that when properly applied to nonequilibrium situations, the algebraic criterion of [Sp2]
also ensures the strict positivity of entropy production [AS].

In 1993/4, using a new scheme to construct nonequilibrium statistical ensembles of interacting particle
systems, Evans, Cohen and Morriss discovered some universal features of the fluctuations of entropy pro-
duction in transient regimes of deterministic classical systems out of thermal equilibrium [ECM, ES]. One
year later, Gallavotti and Cohen proved that some steady states of highly chaotic dynamical systems (SRB
measures of transitive Anosov systems) display the same features [GC1, GC2]. These discoveries, nowa-
days called fluctuation relations or fluctuation theorems, triggered a large amount of works during the last
two decades (see [RM, JPR] and references therein). In particular, Kurchan showed that the fluctuation
relations hold for a Brownian particle in a force field [Ku1]. Subsequently, Herbert and Joel formulated
and proved fluctuation relations for general Markov processes [LS2] while Maes derived a local version of
the fluctuation relations from the Gibbsian nature of the path space measure associated to such processes
[Ma] (see also [MRV]). As shown by Gallavotti [Ga], the fluctuation relations can be seen as a far from
equilibrium generalization of the familiar near equilibrium fluctuation-dissipation relations (Green-Kubo
formulae, Onsager reciprocity relations).

The attempts to extend fluctuation relations to quantum domain have led to a number of surprises. The naive
quantization of the classical transient fluctuation relations fails and there is no obvious way to implement
the steady state fluctuation relations. These problems have attracted a lot of interest and generated a huge
literature which we will not try to review here. We shall only mention a few works which, in our opinion,
are relevant to the development of a mathematical understanding of the subject. The interested reader can
consult [EHM] for an exhaustive review and an extended list of references to the physics literature and
[JOPP, JP2] for recent mathematical developments.

To our knowledge, a (transient) quantum fluctuation relation based on operationally defined counting statis-
tics was first derived by Kurchan in 2000 [Ku2]. Shortly afterwards, Matsui and Tasaki obtained an appar-
ently unrelated abstract fluctuation relation for open quantum systems in terms of the spectral measure of a
relative modular operator [MT]. The connection between their result and the counting statistics of entropic
transport was established in [JOPP].

Within the framework of QDS, de Roeck and Maes [dRM] used the unraveling technique to obtain the first
complete transient fluctuation theorem (see Section 6). The relation between this Markovian approach to
fluctuations and the Hamiltonian description of the dynamics of a small system weakly coupled to an ex-
tended environment was discussed by de Roeck in [dR1] and by Dereziński, de Roeck and Maes [DdRM]
(see also Section 5). The works [dRM, dR1, DdRM] complete the program of [LS1] regarding nonequilib-
rium thermodynamics of weakly coupled open systems. The first proof of the transient fluctuation theorem
for a fully Hamiltonian system (the spin-boson model) was given by de Roeck in the important paper [dR2]
(see also [dRK1, dRK2, JPPW]). Among the non-rigorous works, we mention the important observation of
Andrieux, Gaspard, Monnai and Tasaki [AGMT] that global conservation laws (energy and charge) induce
translation symmetries in the cumulant generating function of (energy and charge) fluxes. Translation sym-
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metries and entropic fluctuation relation lead to fluctuation relations for individual fluxes and, following
the arguments of [Ga, LS2], to Green-Kubo and Onsager relations near thermal equilibrium.

This work is of a review nature and we do not prove any specific new results. The purpose of the paper is
to provide an abstract general setup for the non-equilibrium statistical mechanics of QDS and to generalize
and streamline the proof of the full fluctuation theorem of [dRM, dR1, DdRM] emphasizing (in the spirit of
[Sp3]) the minimal mathematical structure behind the result. The fluctuation theorem we discuss includes
large deviation bounds and the central limit theorem for individual entropic fluxes, as well as linear response
formulae and the fluctuation-dissipation relations near equilibrium, and applies to the weakly coupled
quantum systems studied in [LS1].1 Although the paper is mathematically self-contained, it is intended for
readers familiar with the works [Sp1, Sp2, Sp3, LS1]. This paper can be also viewed as an introduction
to [JPPW] where we discuss fluctuation relations and non-equilibrium statistical mechanics of the fully
Hamiltonian Pauli-Fierz systems.

The paper is organized as follows. In Section 2 we recall basic definitions and facts about positive maps
and QDS. In Section 3 we introduce the setup of QDS out of equilibrium, and state our main results. In
Section 4 we show that open systems weakly coupled to thermal reservoirs fit into our general setup. In
Sections 5 and 6 we relate our results to the full counting statistics of entropic transport and the unraveling
of quantum dynamical semigroups. Finally, Section 7 is devoted to the proofs.

Acknowledgment. The research of V.J. was partly supported by NSERC. The research of C.-A.P. was
partly supported by ANR (grant 09-BLAN-0098). C.-A.P. is also grateful to the Department of Mathe-
matics and Statistics at McGill University and to CRM (CNRS - UMI 3457) for hospitality and generous
support during his stay in Montreal where most of this work was done. We are grateful to J. Dereziński,
B. Landon, and A. Panati for useful comments. We also thank C. Maes and W. de Roeck for interesting
related discussions.

2 Preliminaries

Let H be a finite dimensional Hilbert space and O = B(H) the C∗-algebra of all linear operators on H
(the identity operator will be always denoted by 1). Equipped with the inner product 〈X|Y 〉 = tr(X∗Y ),
O is a Hilbert space. The adjoint and the spectrum of a linear map Φ : O → O are denoted by Φ∗ and
sp(Φ). Id denotes the identity of B(O). A subset A ⊂ O is called self-adjoint if X ∈ A ⇒ X∗ ∈ A. The
commutant of a subset A ⊂ O is A′ = {B ∈ O |AB = BA for all A ∈ A}.
We denote by O+ = {X |X ≥ 0} the cone of positive elements of O. A linear map Φ from O to another
unital C∗-algebra B is called unital if Φ(1) = 1, positive if Φ(O+) ⊂ B+, and positivity improving if
Φ(X) > 0 for all non-zero X ∈ O+. A positive linear map is automatically a ∗-map, i.e., it satisfies
Φ(X∗) = Φ(X)∗. A positive linear map Φ : O → O is called Schwartz if

Φ(X∗)Φ(X) ≤ ‖Φ‖Φ(X∗X),

for all X ∈ O. Note that if Φ is Schwartz, then ‖Φ‖ = ‖Φ(1)‖.
A state on O is a positive and unital linear map ρ : O → C. Any state ρ has the form ρ(X) = tr(DX) for
some D ∈ O+ satisfying tr(D) = 1. Such an operator D is called a density matrix. In the following, we
shall use the same symbol to denote a density matrix and the state it induces onO (hence, ρ(X) = tr(ρX),
etc.). With this convention, the set of states onO, which we denote by S, is a closed convex subset ofO+.
A state ρ is called faithful if ρ > 0, and we denote by Sf the set of faithful states. Sf is an open convex
and dense subset of S.

A linear map Φ : O → O is called completely positive (CP) if
∑
i,j B

∗
i Φ(A∗iAj)Bj ≥ 0 for any finite

families {A1, · · · , AN}, {B1, · · · , BN} ⊂ O. Equivalently, Φ is CP if Φ ⊗ Id is a positive map on
O ⊗ B(CN ) for all N ≥ 1. A CP map is automatically Schwartz. We denote by CP(O) the monoid of

1An alternative approach to fluctuation relations for quantum dynamical semigroups has recently been proposed by Chetrite and
Mallik in [CM].
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completely positive maps, and by CP1(O) the sub-monoid of unital maps. CP(O) is a convex cone and
CP1(O) is a convex set. Stinespring’s theorem [St] asserts that Φ ∈ CP(O) iff there exists a finite family
{Vj}j∈J in O such that

Φ(X) =
∑
j∈J

V ∗j XVj , (1)

for all X ∈ O. The formula (1) is called a Kraus representation of Φ. Such representation is in general not
unique.

Unital CP maps naturally arise in the quantum mechanics of open systems. Indeed, assume that the quan-
tum system S with Hilbert spaceH interacts with some environment described by the Hilbert spaceHenv.
According to the general structure of quantum mechanics, the evolution of the joint system over some
time interval is given by a unitary U on H ⊗Henv. Thus, if X is an observable of the system S, then its
Heisenberg evolution over the considered time interval is given by the map

Φ(X) = trHenv
((1⊗ ρenv)U∗(X ⊗ 1)U) ,

where trHenv
( · ) denotes the partial trace over the environment Hilbert space and ρenv is the initial state of

the environment. One easily checks that Φ is a unital CP map such that, for any state ρ of S,

tr(ρΦ(X)) = tr ((ρ⊗ ρenv)U∗(X ⊗ 1)U) .

A positive linear map Φ is called irreducible (in the sense of Davies [Da1]) if the inequality Φ(P ) ≤ λP ,
where P is a projection and λ > 0, holds only for P = 0 or P = 1. If Φ is positivity improving,
then obviously Φ is irreducible. In terms of a Kraus decomposition, irreducibility can be characterized as
follows (see, e.g., [Schr]):

Theorem 2.1 Let Φ be a CP(O) map with a Kraus decomposition (1) and let A be the subalgebra of O
generated by {Vj | j ∈ J} and 1. Then Φ is irreducible iff Aψ = H for any non-zero vector ψ ∈ H.

For reader’s convenience, we shall prove Theorem 2.1 in Section 7.2.

The adjoint Φ∗ of a linear map Φ is positive/positivity improving/CP/irreducible iff Φ is. Φ∗ is trace
preserving, i.e., tr(Φ∗(X)) = tr(X) for all X ∈ O, iff Φ is unital. In particular, Φ∗ maps S into itself
iff Φ is positive and unital. A state ρ ∈ S is called Φ-invariant if Φ∗(ρ) = ρ, which is equivalent to
ρ(Φ(X)) = ρ(X) for all X ∈ O.

Let {etL}t≥0 be a continuous semigroup of linear maps onO generated by a linear map L. This semigroup
is called unital/positive/positivity improving/CP(O)/CP1(O) iff etL is for all t > 0. A CP1(O) semigroup
is called quantum dynamical semigroup (QDS).2

Let {etL}t≥0 be a positive unital semigroup. A state ρ is called steady (or stationary) if ρ(etL(X)) = ρ(X)
for all t ≥ 0 and X ∈ O. Clearly, ρ is steady iff L∗(ρ) = 0.

A positive unital semigroup {etL}t≥0 is said to be relaxing to a steady state ρ+ if

lim
t→∞

etL
∗
(ρ) = ρ+, (2)

for all ρ ∈ S. The relaxation is exponentially fast if there exists γ > 0 such that for all states ρ,

etL
∗
(ρ) = ρ+ +O(e−γt),

as t → ∞. The relaxation to a steady state is an ergodic property that plays a fundamental role in the
statistical mechanics of QDS.

Our study of the large deviation theory of QDS will be based on the following result.

2The name quantum Markov semigroup is also used in the literature.
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Theorem 2.2 Let {etL}t≥0 be a positivity improving CP(O) semigroup and

` = max{Reλ |λ ∈ sp(L)}.

Then ` is a simple eigenvalue of L and is the only eigenvalue of L on the line Re z = `. For any state ρ on
O, one has

` = lim
t→∞

1

t
log ρ(etL(X)), (3)

for all non-zero X ∈ O+. If in addition the semigroup {etL}t≥0 is unital, then ` = 0 and the semigroup is
relaxing exponentially fast to a faithful steady state ρ+.

The proof of this theorem is based on the Perron-Frobenius theory of positive maps developed in [EHK]
and is given in Section 7.2.

It is a fundamental result of Lindblad [Li1, Li2], Gorini, Kossakowski and Sudarshan [GKS], and Chris-
tensen and Evans [CE], that {etL}t≥0 is a CP(O) semigroup iff there are K ∈ O and Φ ∈ CP(O) such
that

L(X) = K∗X +XK + Φ(X), (4)

for all X ∈ O. For short, we shall call the generator of a CP(O) semigroup a Lindbladian, and the r.h.s. of
Eq. (4) a Lindblad decomposition of L. Although the Lindblad decomposition is not unique, it can be
effectively used to characterize some important properties of the semigroup. In particular, we have:

Theorem 2.3 Let {etL}t≥0 be a CP(O) semigroup and L(X) = K∗X + XK + Φ(X) a Lindblad de-
composition. If Φ is irreducible, then the semigroup is positivity improving.

We shall prove this theorem in Section 7.2. Theorems 2.1 and 2.3 provide an effective criterion for verifying
the positivity improving assumption of Theorem 2.2 (see Section 4).

If {etL}t≥0 is a QDS, then L(1) = 0, and it follows from (4) that

L(X) = i[T,X]− 1

2
{Φ(1), X}+ Φ(X), (5)

where T is a self-adjoint element of O and Φ ∈ CP(O). We shall also refer to the r.h.s. of Eq. (5) as a
Lindblad decomposition of L.

The dissipation function of a QDS {etL}t≥0 is the sesquilinear map D : O ×O → O defined by

D(X,Y ) = L(X∗Y )− L(X∗)Y −X∗L(Y ).

If (5) is the Lindblad decomposition of L and (1) a Kraus decomposition of Φ, then

D(X,X) =
∑
j∈J

[Vj , X]∗[Vj , X].

Hence, D(X,X) ≥ 0 and D(X,X) = 0 iff X ∈ {Vj | j ∈ J}′. The dissipation function of a QDS was
introduced by Lindblad in [Li1] and has played an important role in many subsequent works on the subject.

The detailed balance condition and time-reversal invariance will play an important role in our work. Both
properties refer to a pair (ρ,L), where ρ is a faithful state and L is the generator of a QDS. Note that
any faithful state induces an inner product 〈X|Y 〉ρ = 〈Xρ1/2|Y ρ1/2〉 = tr(ρX∗Y ) on O. We call the
ρ-adjoint of a linear map Φ its adjoint Φρ w.r.t. this inner product. In particular, we say that a linear map Φ
is ρ-self-adjoint if Φρ = Φ.

Definition 2.4 Consider a pair (ρ,L), where ρ is a faithful state and L is a Lindbladian generating a QDS.

(a) The pair (ρ, L) is said satisfy the detailed balance condition if L∗(ρ) = 0 and there exists Lindblad
decomposition L = i[T, · ]− 1

2{Φ(1), · }+ Φ such that Φ is ρ-self-adjoint.
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(b) The pair (ρ,L) is said to be time-reversal invariant (TRI) if there exists an involutive anti-linear ∗-
automorphism Θ : O → O, called the time-reversal, such that Lρ ◦Θ = Θ ◦ L and Θ(ρ) = ρ.

Definition 2.4 (a) is equivalent to the definition of detailed balance given by Kossakowski, Frigerio, Gorini,
and Verri [KFGV] (see Theorem 7.2 below). The above definition, however, is technically and conceptually
more suitable for our purposes.3 The detailed balance condition is characteristic of QDS describing the
interaction of a system S with an environment at equilibrium (see [KFGV, LS1]).

For the motivation regarding the definition of time-reversal we refer the reader to Section 4 and [Ma, FU].
We recall that Θ : O → O is an involutive anti-linear ∗-automorphism iff there exists an anti-unitary
involution θ : H → H such that Θ(X) = θXθ (see Exercise 4.36 in [JOPP]), and that Θ(ρ) = ρ iff
ρ(Θ(X)) = ρ(X∗) for all X ∈ O.

3 Quantum dynamical semigroups out of equilibrium

3.1 The setup

We shall study QDS {etL}t≥0 on O = B(H), dimH <∞, satisfying the following ergodicity condition

(ER) The QDS {etL}t≥0 is positivity improving.

Furthermore, we shall focus on semigroups whose generator L has the special structure given by

(DB) There are M pairs (ρj ,Lj) satisfying the detailed balance condition such that

L =

M∑
j=1

Lj .

We shall interpret each of the M sub-Lindbladians Lj as describing the interaction of a quantum system S
with some reservoirRj . A QDS is out of equilibrium if Hypothesis (DB) holds and ρj 6= ρk for some pair
j, k (such a QDS describes the interaction of the system S with an environment

∑
j Rj out of equilibrium).

A QDS satisfying (DB) is called time-reversible if

(TR) All the pairs (ρj ,Lj) are time-reversal invariant with the same time-reversal map Θ.

Finally, we shall investigate more closely the special case where the states ρj are thermal equilibrium states
at inverse temperature βj > 0 for the same Hamiltonian.

(KMSβ) β = (β1, . . . , βM ) ∈ RM+ and there exists a self-adjoint element HS ∈ O and such
that

ρj =
e−βjHS

tr(e−βjHS )
,

for j = 1, . . . ,M .

As we shall see in Section 4, Hypotheses (ER), (DB) and (KMSβ) are naturally satisfied by the QDS
describing the weak coupling (van Hove) limit dynamics of an open quantum system S with Hilbert space
H interacting with an environment made of M thermal reservoirs. In this case, the Lindbladian Lj pertains
to the interaction of S with the jth reservoir and the state ρj is a steady state of the system coupled only to
this reservoir. If the joint dynamics of the system and reservoirs is time-reversal invariant, then Hypothesis
(TR) is also satisfied.

3Alternative definitions of detailed balance can be found in [Ag, Al].
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3.2 Main result

Suppose that a QDS {etL}t≥0 satisfies Hypothesis (DB). Our main technical result concerns the properties
of the deformations of this QDS generated by

L(α)(X) =

M∑
j=1

Lj(Xρ
−αj
j )ρ

αj
j , (6)

where α = (α1, . . . , αM ) ∈ RM . We will use the notation 1 = (1, . . . , 1) wherever the meaning is clear
within the context, e.g., 1− α = (1− α1, . . . , 1− αM ). Let

e(α) = max{Reλ |λ ∈ sp(L(α))}.

Theorem 3.1 Suppose that Hypothesis (DB) holds. Then:

(1) {etL(α)}t≥0 is a CP(O) semigroup for all α ∈ RM .

(2) For any state ρ on O, there is a Borel probability measure P tρ on RM such that

tr
(
ρetL(α)(1)

)
=

∫
RM

e−tα·ςdP tρ(ς).

We denote by 〈 · 〉ρ,t the expectation w.r.t. this measure.

In the remaining statements we assume that Hypothesis (ER) is satisfied.

(3) For all α ∈ RM the CP(O) semigroup {etL(α)}t≥0 is positivity improving. In particular, the QDS
{etL}t≥0 is relaxing exponentially fast to a steady state ρ+.

(4) For all α ∈ RM , e(α) is a simple eigenvalue of L(α) and this operator has no other eigenvalues on the
line Re z = e(α). Moreover, for any state ρ and all α ∈ RM ,

lim
t→∞

1

t
log
〈
e−tα·ς

〉
ρ,t

= e(α). (7)

(5) The function RM 3 α 7→ e(α) is real analytic and convex.

(6) Relation (7) holds for α in an open neighborhood of RM in CM .

(7) If Hypothesis (TR) is satisfied, then
e(1− α) = e(α), (8)

for all α ∈ RM .

(8) If Hypothesis (KMSβ) is satisfied, then

e(α+ λβ−1) = e(α),

for all α ∈ RM and all λ ∈ R with β−1 = (β−1
1 , . . . , β−1

M ).

Remark 1. The identity (8) is the QDS analog of the generalized Evans-Searles symmetry of time-reversal
invariant classical dynamical systems (see [ES, ECM, JPR]). However, contrary to the classical case, we
do not expect that the function

α 7→ eρ,t(α) = log tr(ρetL(α)(1)),

satisfies this symmetry for fixed finite time t. A notable exception is provided by the very special "chaotic
state" ρ = ρch = 1/dimH. Indeed, it follows from the fact that Θ ◦ L∗(α) = L(1−α) ◦Θ (see the proof of
Theorem 3.1) that eρch,t(1− α) = eρch,t(α) for all α ∈ RM and all t ≥ 0.
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Remark 2. Property (8) is a consequence of energy conservation. It was first proposed by Andrieux et
al. in the framework of Hamiltonian dynamics on the basis of a formal calculation [AGMT].

We shall call the probability measure P tρ the entropic full counting statistics (EFCS) of the QDS generated
by L (w.r.t. the specific decomposition L =

∑
j Lj). As explained in Section 5, in cases where this QDS

arises as a weak coupling limit of the dynamics of a system S coupled to M thermal reservoirs, the EFCS
is the scaling limit of a measure Ptρ which describes the mean rate of entropy exchange between the system
and the M reservoirs during the time interval [0, t] (see Eq. (38) below).

An alternative interpretation of the measures P tρ is based on the well-known unraveling technique. In
other words, these measures can be understood in terms of a classical stochastic process which provides
a coarse grained description of the dynamics of the system by so called quantum trajectories. Within this
framework, P tρ is the joint distribution of M random variables which describe the exchange of entropy
between the system and the M reservoirs (see Section 6).

3.3 Entropic fluctuations

As a direct consequence of Theorem 3.1 and the Gärtner-Ellis theorem (see, e.g., [DZ, El]), we have

Corollary 3.2 Assume that Hypotheses (DB) and (ER) hold and let

I(ς) = − inf
α∈RM

(α · ς + e(α)) .

I(ς) is the Fenchel-Legendre transform of e(−α). Then:

(1) I(ς) takes values in [0,∞] and is a convex lower-semicontinuous function with compact level sets. 4

(2) I(ς) = 0 iff ς = ς , where ς = −∇e(0). Moreover, for any ε > 0 there exists a positive constant a(ε)
such that

P tρ({ς ∈ RM | |ς − ς| ≥ ε}) ≤ e−ta(ε),

for all t > 0.

(3) The family of measures {P tρ}t≥0 satisfies the large deviation principle with rate function I . More
precisely, for any Borel set G ⊂ RM we have

− inf
ς∈int(G)

I(ς) ≤ lim inf
t→∞

1

t
logP tρ (G) ≤ lim sup

t→∞

1

t
logP tρ (G) ≤ − inf

ς∈cl(G)
I(ς), (9)

where int(G) and cl(G) denote the interior and the closure of the set G.

(4) If Hypothesis (TR) is satisfied, then the rate function satisfies

I(−ς) = 1 · ς + I(ς). (10)

(5) If Hypothesis (KMSβ) is satisfied, then I(ς) = +∞ for any ς ∈ RM such that β−1 · ς 6= 0.

Remark 1. The components of ς = (ς1, · · · , ςM ) describe the asymptotic rates of entropy transport
between the system S and the M reservoirs constituting its environment. The non-negative number

σ+ = 1 · ς =
∑
j

ςj ,

is the steady state entropy production rate of a QDS satisfying Hypotheses (ER) and (DB) (see the next
section for additional information about this important concept). If (TR) holds, then Relation (10) implies
I(−ς) = σ+ and σ+ > 0 iff ς 6= 0.

4The level sets of I are {ς | I(ς) ≤ l} where l ∈ [0,∞[.
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Remark 2. The large deviation principle (9) quantifies the exponential rate of decay of the measures P tρ
away from the asymptotic mean value ς and describes the statistics of the fluctuations of the rates of entropy
transport over large but finite periods of time. In particular, (9) implies that

P tρ({ς ∈ RM | ς ' ϕ}) ' e−tI(ϕ),

for large t. Combining Parts (2) and (3) we derive that for large t,

P tρ({ς ∈ RM | ς ' −ϕ})
P tρ({ς ∈ RM | ς ' ϕ})

' e−t1·ϕ, (11)

and in particular that
P tρ({ς ∈ RM | ς ' −ς})
P tρ({ς ∈ RM | ς ' ς})

' e−tσ+ . (12)

The identities (8) and (10), together with the resulting asymptotics (11) and (12), constitute fluctuation
relations for a QDS out of equilibrium. One important feature of the fluctuation relations is universality
(independence of the model).

Theorem 3.1 and Bryc’s theorem (see Proposition 1 in [Br] and Appendix A in [JOPP]) imply the Central
Limit Theorem for the family of measures {P tρ}t≥0.

Corollary 3.3 Assume that Hypotheses (ER) and (DB) hold. Then for any Borel set G ⊂ RM ,

lim
t→∞

P tρ

({
ς ∈ RM

∣∣√t(ς − 〈ς〉ρ,t) ∈ G}) = µD(G), (13)

where µD denotes the centered Gaussian measure on RM with covariance D given by

Dij =
∂2e(α)

∂αi∂αj

∣∣∣∣
α=0

.

Note that if Hypothesis (KMSβ) holds, then Theorem 3.1 (8) implies that the Gaussian measure µD has its
support on the hyperplane β−1 · ς = 0. This is of course related to Part (5) of Corollary 3.2 and to energy
conservation.

3.4 Thermodynamics

The von Neumann entropy of a state ρ is Ent(ρ) = −tr(ρ log ρ) and we shall call S = − log ρ the entropy
observable associated to ρ. The relative entropy of a state ν w.r.t. to another state µ is

Ent(ν|µ) =

 tr(ν(logµ− log ν)) if Ran(ν) ⊂ Ran(µ);

−∞ otherwise.

We refer the reader to the monograph of Ohya and Petz [OP] for further information on these fundamental
concepts. Following Lebowitz and Spohn [LS1, Sp3], we define the entropy production in the state ρ of a
QDS {etL}t≥0 satisfying Hypothesis (DB) by 5

σ(ρ) =
d

dt

M∑
j=1

Ent(etL
∗
j (ρ)|ρj)

∣∣∣
t=0

. (14)

We recall basic properties of the entropy production established in [LS1, Sp3].

5The derivative exists for all ρ ∈ S, see Theorem 3 in [Sp3].

9
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(a) Since ρj is a steady state of the QDS generated by Lj , we have

Ent(etL
∗
j (ρ)|ρj) = Ent(etL

∗
j (ρ)|etL

∗
j (ρj)),

and Uhlman’s monotonicity theorem ([Uh], see also [OP, JOPP]) implies that the r.h.s. of this identity
is a non-decreasing function of t. Hence,

σ(ρ) ≥ 0.

(b) An application of a theorem of Lieb [Lb] gives that the map S 3 ρ 7→ σ(ρ) is convex (see Theorem 3
in [Sp3]).

(c) Set Sj = − log ρj and Ij = Lj(Sj). An immediate consequence of (14) is the entropy balance
equation:

d

dt
Ent(etL

∗
(ρ))

∣∣∣
t=0

= σ(ρ) +

M∑
j=1

ρ(Ij). (15)

The second term on the r.h.s. of Eq. (15) describes the flux of entropy entering the system. Thus, we
can interpret the observable Ij as the entropy flux out of the jth reservoir. Note that if ρ is a steady
state, then the l.h.s. of (15) vanishes, and the entropy balance equation takes the form

σ(ρ) = −
M∑
j=1

ρ(Ij). (16)

Our next result links the function e(α) to the observables Sj and Ij .

Theorem 3.4 Let {etL}t≥0 be a QDS satisfying Hypotheses (ER) and (DB). Set Jj = Ij − ρ+(Ij). Then
the following holds:

(1)
∂e(α)

∂αj

∣∣∣∣
α=0

= ρ+(Ij).

In particular,
ρ+(Ij) = − lim

t→∞
〈ςj〉ρ,t = −ςj ,

and σ(ρ+) =
∑
j ςj .

(2)

∂2e(α)

∂αj∂αk

∣∣∣∣
α=0

= −
∫ ∞

0

ρ+

(
etL(Jj)J +

k + etL(Jk)J +
j

)
dt

+

∫ ∞
0

ρ+

(
Lk(etL(Jj)Sk) + Lj(etL(Jk)Sj)

)
dt+ δjkρ+(Dj(Sj , Sj))

= lim
t→∞

t〈(ςj − 〈ςj〉ρ,t)(ςk − 〈ςk〉ρ,t)〉ρ,t,

where J +
j = Lρ+j (Sj) = L∗j (Sjρ+)ρ−1

+ and Dj(A,B) = Lj(A∗B) − Lj(A∗)B − A∗Lj(B) is the
dissipation function of the jth Lindbladian.

Remark. Under the assumptions of the theorem the semigroup {etL}t≥0 is relaxing exponentially fast to
ρ+. Since ρ+(Jj) = 0, this implies that the operators etL(Jj) are exponentially decaying as t → ∞, and
so the time integrals in Part (2) are absolutely convergent.
Remark 2. We shall make use of Part (2) in Section 3.6 where we discuss linear response theory.
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3.5 Energy fluxes

The Hypothesis (KMSβ) allows us to relate entropy fluxes to energy fluxes by simple rescaling and to
restate our main results in terms of energy transport. As a preparation for the discussion of the linear
response theory, in this section we briefly discuss how this restating is carried out. Until the end of this
section we shall assume that Hypotheses (ER), (DB), and (KMSβ) hold.

The observable describing the energy flux out of the jth reservoir is Fj = Lj(HS) (see [LS1]). Note
that Ij = βjFj . If in addition (TR) holds, then Θ(HS) = HS and it follows from Parts (1) and (2) of
Theorem 7.1 that Lρjj (HS) = Lj(HS). Hence,

Θ(Fj) = Lρjj (Θ(HS)) = Fj .

The steady state energy fluxes are
φj = ρ+(Fj).

Obviously, ςj = −βjφj , and Eq. (16) takes the form

σ(ρ+) = −
M∑
j=1

βjφj ≥ 0. (17)

This relation expresses the second law of thermodynamics for QDS satisfying our assumptions. The rela-
tion L∗(ρ+) = 0 yields the first law (conservation of energy):

M∑
j=1

φj = 0. (18)

The energetic full counting statistics of the system is the probability measure Qtρ on RM given by

Qtρ(φ) = P tρ(−βφ),

where βφ = (β1φ1, · · · , βMφM ). In particular,

tr(ρetL(α/β)(1)) =

∫
RM

etα·φdQtρ(φ),

where α/β = (α1/β1, · · · , αM/βM ). Hence, for α ∈ RM ,

χ(α) = lim
t→∞

1

t
log

∫
RM

etα·φdQtρ(φ) = e(−α/β),

and in particular,

∂χ(α)

∂αj

∣∣∣∣
α=0

= φj ,
∂2χ(α)

∂αj∂αk

∣∣∣∣
α=0

=
1

βjβk

∂2e(α)

∂αj∂αk

∣∣∣∣
α=0

. (19)

Note that the translation symmetry of e(α) (described in Part (8) of Theorem 3.1) implies that

χ(α) = χ(α+ λ1), (20)

for all α ∈ RM , λ ∈ R. If (TRI) holds, then the Evans-Searles symmetry takes the form

χ(α) = χ(−β − α). (21)

The large t fluctuations of Qtρ are described by obvious reformulations of Corollaries 3.2 and 3.3.

Finally, we discuss briefly the equilibrium case where βj = β0 for j = 1, · · · ,M . In this case

ρj = ρ0 =
e−β0HS

tr(e−β0HS )
,

11
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and L∗j (ρ0) = 0 for all j. It follows that L∗(ρ0) = 0 and hence that ρ+ = ρ0 and φj = 0 for all j.
Combining Parts (1) and (2) of Theorem 7.1 with Theorem 3.4 (2) one easily derives that J +

j = Jj =
Ij = β0Fj , and that

∂2χ(α)

∂αj∂αk

∣∣∣∣
α=0

= −
∫ ∞

0

ρ0

(
etL(Fj)Fk + etL(Fk)Fj

)
dt+ δjkρ0(Dj(HS , HS)). (22)

If the pair (ρ0,L) is TRI, then

ρ0(etL(Fj)Fk) = ρ0(Θ(FketL(Fj))) = ρ0(FketL
ρ0

(Fj)) = ρ0(etL(Fk)Fj). (23)

3.6 Linear response theory

Our last result concerns linear response to thermodynamical forces. We consider a small system S coupled
to M thermal reservoirs Rj in equilibrium at inverse temperatures βj where each βj is close to some
common equilibrium value β0 > 0. The purpose of linear response theory is to study the behavior of
various physical quantities to first order in the thermodynamical forces ζj = β0−βj . It is therefore natural
to parametrize β = (β1, . . . , βM ) by ζ = (ζ1, · · · , ζM ) so that ζ = 0 corresponds to the equilibrium
situation β = βeq = (β0, . . . , β0). The precise setup is as follows.

Let (Lζ)ζ∈U be a family of Lindbladians indexed by an open neighborhood U of 0 in RM and such that
each Lζ satisfies Hypotheses (ER) and (TR). Moreover, we assume Hypotheses (DB) and (KMSβ) in the
following form: for each ζ ∈ U ,

Lζ =

M∑
j=1

Lζ,j ,

where Lζ,j depends only on ζj and satisfies the detailed balance condition w.r.t. the state

ρζj =
e−(β0−ζj)HS

tr(e−(β0−ζj)HS )
,

for some ζ-independent self-adjoint HS ∈ O. We shall also assume the following regularity in ζ:

(RE) The map ζ 7→ Lζ is continuously differentiable at ζ = 0.

In what follows we shall indicate explicitly the dependence on ζ by writing Lζ,(α), e(ζ, α), χ(ζ, α), Fζ,j ,
φζ,j , etc. Our assumptions imply that all partial derivatives ofLζ,(α) w.r.t. α are continuously differentiable
w.r.t. ζ at ζ = 0.

For all α ∈ RM and ζ ∈ U , e(ζ, α) is a simple eigenvalue of Lζ,(α). The perturbation theory of isolated
eigenvalues (see the proof of Theorem 3.4) implies that all partial derivatives of e(ζ, α) w.r.t. α are also
continuously differentiable w.r.t. ζ at ζ = 0 and the same holds for the function χ(ζ, α). In particular, the
maps ζ 7→ φζ,j are continuously differentiable at ζ = 0.

Combining (17) and (18) yields the following expressions of the first and second laws of thermodynamics

M∑
j=1

φζ,j = 0,

M∑
j=1

ζjφζ,j ≥ 0.

The kinetic transport coefficients are defined by

Ljk =
∂φζ,j
∂ζk

∣∣∣
ζ=0

.

It follows from the first law that
M∑
j=1

Ljk = 0, (24)

12
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while the second law implies that the real quadratic form determined by the matrix [Ljk] is positive defi-
nite.6 It further follows from the first relation in (19) that

Ljk =
∂2χ(ζ, α)

∂ζk∂αj

∣∣∣∣
ζ=α=0

.

In terms of the variable ζ, the Evans-Searles symmetry (21) takes the form χ(ζ, α) = χ(ζ,−βeq + ζ −α),
while the translation symmetry (20) reads χ(ζ, α) = χ(ζ, α+ λ1). Since βeq = β01, combining these two
symmetries we derive

χ(ζ, α) = χ(ζ, ζ − α). (25)

This relation and the chain rule (see Lemma 4.4 in [JPR]) yield

Ljk =
∂2χ(ζ, α)

∂ζk∂αj

∣∣∣∣
ζ=α=0

= −1

2

∂2χ(ζ, α)

∂αk∂αj

∣∣∣∣
ζ=α=0

. (26)

The equality of mixed partial derivatives ∂αk∂αjχ = ∂αj∂αkχ implies the Onsager reciprocity relations
Ljk = Lkj . Relations (22), (23), and Corollary 3.3 complete the linear response theory. We summarize:

Theorem 3.5 Under the Hypotheses formulated at the beginning of this section the following statements
hold.

(1) The Green-Kubo formulae:

Ljk =

∫ ∞
0

ρ0(etL0(F0,j)F0,k)dt− 1

2
δjkρ0(D0,j(HS , HS)),

where D0,j denotes the dissipation function of L0,j .

(2) The Onsager reciprocity relations:
Ljk = Lkj .

(3) The Fluctuation-Dissipation Theorem: for a state ρ on O let Qteq,ρ be the energetic full counting
statistics of the equilibrium system, i.e.,

tr(ρetL0,(α/β0)(1)) =

∫
RM

etα·φdQteq,ρ(φ).

and let 〈 · 〉eq,ρ,t denote the expectation w.r.t. the measure Qteq,ρ. For any Borel set G ⊂ RM ,

lim
t→∞

Qteq,ρ

({
φ ∈ RM

∣∣√t(φ− 〈φ〉eq,ρ,t) ∈ G
})

= µD(G),

where µD is the centered Gaussian measure on RM with covariance D given by

Djk = 2Ljk.

Remark 1. Concerning the diagonal transport coefficients Ljj , the terms ρ0(D0,j(HS , HS)) are non-
negative, and are strictly positive if S is effectively coupled to the jth-reservoir (see Section 4). Parts
(1)-(2) of Theorem 7.1 imply that ρ0(D0,j(HS , HS)) = −2ρ0(HSF0,j).
Remark 2. In the absence of time-reversal, Part (3) holds with

Djk =

∫ ∞
0

ρ0(etL0(F0,j)F0,k + etL0(F0,k)F0,j)dt− δjkρ0(D0,j(HS , HS)).

6This does not imply that Ljk = Lkj .
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Remark 3. Parts (1) and (2) of Theorem 3.5 were first proven in [LS1] by a different method. For
comparison purposes we sketch the proof of [LS1]. Since L∗ζ,k(ρζk) = 0,

dL∗ζ,k
dζk

(ρζk) = −L∗ζ,k
(

dρζk
dζk

)
= L∗ζ,k(HSρζk) = Fζ,kρζk ,

where the last equality follows from Parts (1) and (2) of Theorem 7.1. Hypotheses (ER) and (RE) imply
that the map ζ 7→ ρζ,+ is continuously differentiable at ζ = 0. Differentiating L∗ζ(ρζ,+) = 0 w.r.t. ζk at
ζ = 0, we get

dL∗ζ,k
dζk

∣∣∣
ζ=0

(ρ0) = −L∗0
(
∂ρζ,+
∂ζk

∣∣∣
ζ=0

)
.

The last two relations give

L∗0
(
∂ρζ,+
∂ζk

∣∣∣
ζ=0

)
= −F0,kρ0. (27)

Since

lim
t→∞

etL
∗
0 (F0,kρ0) = ρ0(F0,k)ρ0 = 0, (28)

the operators etL
∗
0 (F0,kρ0) are exponentially decaying as t→∞, and we deduce from (27) that there is a

constant c such that
∂ρζ,+
∂ζk

∣∣∣
ζ=0

= cρ0 +

∫ ∞
0

etL
∗
0 (F0,kρ0)dt.

If j 6= k then Fζ,j = Lζ,j(HS) does not depend on ζk and it follows that

Ljk = tr

(
F0,j

∂ρζ,+
∂ζk

∣∣∣
ζ=0

)
=

∫ ∞
0

ρ0(etL0(F0,j)F0,k)dt.

The conservation law (24), the limit (28) and the last formula in Remark 1 yield

Lkk = −
∑
j:j 6=k

Ljk =

∫ ∞
0

ρ0(etL0(F0,k)F0,k − etL0(L0(HS))F0,k)dt

=

∫ ∞
0

ρ0(etL0(F0,k)F0,k)dt−
∫ ∞

0

d

dt
tr(etL

∗
0 (F0,kρ0)HS)dt

=

∫ ∞
0

ρ0(etL0(F0,k)F0,k)dt+ ρ0(HSF0,k)

=

∫ ∞
0

ρ0(etL0(F0,k)F0,k)dt− 1

2
ρ0(D0,k(HS , HS)).

Note that the above argument did not make use of Hypothesis (TR) and so Part (1) of Theorem 3.5 holds
without time-reversal assumption (in fact, Lebowitz and Spohn do not discuss time-reversal at all in [LS1]).
However, if the pair (ρ0,L0) is time-reversal invariant, then Part (1) and Relation (23) yield the Onsager
reciprocity relations.

In contrast to the direct argument of [LS1], the proof described in this section exploits fundamentally the
symmetry (25). The advantage of this derivation in context of a QDS out of equilibrium is conceptual. The
fluctuation relations are structural model independent features of non-equilibrium statistical mechanics.
As observed by Gallavotti [Ga], in the linear regime near equilibrium the fluctuation relations reduce to
familiar fluctuation-dissipation formulae, and this structural model independent view of linear response
theory is of fundamental conceptual importance (see [LS2, JPR, JOPP] for a pedagogical discussion of this
point). Our proof shows how a QDS out of equilibrium fit into this general picture and complements the
derivation of [LS1] from the conceptual point of view.
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4 Weakly coupled open quantum systems

We consider a small quantum system S, described by the Hamiltonian HS acting on the finite dimensional
Hilbert space HS . To induce a dissipative dynamics on S, we couple this system to several infinitely
extended thermal reservoirs R1, . . . ,RM . Each reservoir Rj is initially in a thermal equilibrium state at
inverse temperature βj > 0.7 By passing to the GNS representations induced by these states, each Rj is
described by a Hilbert space Hj , a W ∗-algebra Oj ⊂ B(Hj) of observables, and a self-adjoint operator
Lj (the Liouvillean) acting on Hj , such that the Heisenberg dynamics τ tj (A) = eitLjAe−itLj leaves Oj
invariant. The initial state ofRj is given by Oj 3 A 7→ ωj(A) = 〈ξj |Aξj〉, where ξj ∈ Hj is a unit vector
such that Ljξj = 0. Moreover, the state ωj satisfies the KMS boundary condition: for all A,B ∈ Oj ,

ωj(Aτ
t
j (B)) = ωj(τ

t−iβj
j (B)A). (29)

The Hilbert space of the joint system S +R1 + · · · +RM is H = HS ⊗ H1 ⊗ · · · ⊗ HM and we shall
denote HS ⊗ 1⊗ · · · ⊗ 1, 1⊗H1 ⊗ · · · ⊗ 1, . . . simply by HS , H1,. . .

The interaction between the system S and the reservoirRj is described by the Hamiltonian

HSRj =

nj∑
k=1

Q
(k)
j ⊗R

(k)
j ,

where each Q(k)
j is a self-adjoint operator on HS and each R(k)

j is a self-adjoint element of Oj such that

ωj(R
(k)
j ) = 0.8 The full Hamiltonian (more precisely the semi-standard Liouvillean in the terminology of

[DJP]) of the coupled system is

Lλ = HS +

M∑
j=1

(
Lj + λHSRj

)
,

where λ is a coupling constant. The effective dynamics of the system S is then defined by the family of
linear map {T tλ}t∈R on B(HS) determined by

〈ψ|T tλ (X)ψ〉 = 〈ψ ⊗ ξ|eitLλ(X ⊗ 1)e−itLλψ ⊗ ξ〉,

where X ∈ B(HS), ψ ∈ HS , and ξ = ξ1 ⊗ · · · ⊗ ξM .

Except in trivial cases, {T tλ}t≥0 is not a semigroup. However, under appropriate conditions on the decay of
the multi-time correlation functions ωj(τ t1j (R

(k1)
j ) · · · τ tnj (R

(kn)
j )), Davies has shown (see Theorem 2.3 in

[Da2]) that there exists a Lindbladian L generating a QDS such that L commutes with LS(X) = i[HS , X],
and

lim
λ→0

sup
λ2t∈I

‖T tλ − et(LS+λ2L)‖ = 0,

holds for any compact interval I = [0, τ ] ⊂ R. In other words, in the limit of small coupling λ → 0 and
for times of the order λ−2 the effective dynamics of S is well approximated by the quantum dynamical
semigroup generated by LS + λ2L. This theory is well-known and we refer the reader to the in depth
exposition of [LS1, DF] for further details. To write down the explicit form of the generatorL, we introduce
the functions

h
(kl)
j (ω) =

∫ ∞
−∞

e−iωt〈ξj |R(k)
j τ tj (R

(l)
j )ξj〉dt = 2π〈R(k)

j ξj |δ(Lj − ω)R
(l)
j ξj〉,

7Here, we could also consider conserved charges and introduce associated chemical potentials. We refrain to do so in order to
keep notation as simple as possible.

8In some models (like the spin-boson system) the operators R(k)
j are unbounded and only affiliated to the W ∗-algebra Oj . With

some additional technicalities the discussions of this and the next three section easily extend to such cases, see any of the references
[DF, DJP, dR2, JPPW, LS1].
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and their Hilbert transforms

s
(kl)
j (ω) = P

∫ ∞
−∞

h
(kl)
j (ν)

ν − ω
dν

2π
= 〈R(k)

j ξj |P(Lj − ω)−1R
(l)
j ξj〉,

where P denotes Cauchy’s principal value (the hypotheses of the above mentioned theorem of Davies
ensure the existence of these integrals). Note that the nj × nj-matrices

hj(ω) = [h
(kl)
j (ω)], sj(ω) = [s

(kl)
j (ω)],

are respectively positive and self-adjoint and that the KMS condition (29) implies the relation

h
(kl)
j (−ω) = e−βjωh

(lk)
j (ω). (30)

We denote by Pµ the spectral projection of HS associated to the eigenvalue µ ∈ sp(HS), and for

ω ∈ Ω = {µ− ν |µ, ν ∈ sp(HS)},

we define
V

(k)
j (ω) =

∑
µ−ν=ω

PνQ
(k)
j Pµ = V

(k)∗
j (−ω). (31)

Obviously,
eαHSV

(k)
j (ω)e−αHS = e−αωV

(k)
j (ω), (32)

for all α ∈ C.

The generator L has the Lindblad form (5), with the self-adjoint operator T given by

T =

M∑
j=1

Tj , Tj =

nj∑
k,l=1

∑
ω∈Ω

s
(kl)
j (ω)V

(k)∗
j (ω)V

(l)
j (ω),

and the CP map Φ given by

Φ(X) =

M∑
j=1

Φj(X), Φj(X) =

nj∑
k,l=1

∑
ω∈Ω

h
(kl)
j (ω)V

(k)∗
j (ω)XV

(l)
j (ω).

A Kraus decomposition of Φj is constructed as follows. Denote by uj(ω) = [u
(kl)
j (ω)] a unitary matrix

which diagonalize the positive matrix hj(ω),

uj(ω)∗hj(ω)uj(ω) = [δklg
(k)
j (ω)].

Setting W (k)
j (ω) =

√
g

(k)
j (ω)

∑
l u

(kl)
j (ω)V

(l)
j (ω), we obtain

Φj(X) =

nj∑
k=1

∑
ω∈Ω

W
(k)∗
j (ω)XW

(k)
j (ω).

Note that L can be written as the sum of the Lindbladians

Lj(X) = i[Tj , X]− 1

2
{Φj(1), X}+ Φj(X),

where Lj describes the interaction of the small system S with a single reservoir Rj . Using (30) and (32)
one easily verifies that Lj satisfies the detailed balance condition w.r.t. the faithful state

ρj =
e−βjHS

tr(e−βjHS )
. (33)

Thus, Hypotheses (DB) and (KMSβ) are automatically satisfied by the weak coupling Lindbladian L.

Regarding time-reversibility, assuming that
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(a) each reservoir is time-reversal invariant, i.e., there exists antiunitary involution θj acting on Hj such
that Ljθj = θjLj and θjξj = ξj ;

(b) the small system S is time-reversal invariant, i.e., there is an antiunitary involution θS onHS such that
θSHS = HSθS ;

(c) θjR
(k)
j = R

(k)
j θj and θSQ

(k)
j = Q

(k)
j θS for all j, k,

we easily conclude that h(kl)
j (ω) = h

(lk)
j (ω), s(kl)

j (ω) = s
(lk)
j (ω), and θSV

(k)
j (ω) = V

(k)
j (ω)θS . It

immediately follows that θSTj = TjθS and Φj(θSXθS) = θSΦj(X)θS . Hence, Hypothesis (TR) is
satisfied with Θ(X) = θSXθS .

We now turn to the ergodicity Hypothesis (ER). Clearly, {Q(k)
j }′j,k ∩ {HS}′ ⊂ KerL and the condition

{Q(k)
j }

′
j,k ∩ {HS}′ = C1, (34)

is obviously necessary for (ER) to hold. On the other hand, assuming that the matrices hj(ω) are strictly
positive for all 1 ≤ j ≤ M and ω ∈ Ω, the construction of the Kraus family {W (k)

j (ω)}j,k,ω shows that

its linear span coincides with the linear span of the family V = {V (k)
j (ω)}j,k,ω . By Eq. (31), the family

V is self-adjoint, and von Neumann’s bicommutant theorem implies that the smallest subalgebra of O
containing V is the bicommutant V ′′. As shown by Spohn (see Theorem 3 in [Sp2]), the condition V ′′ = O
is equivalent to (34). Hence, assuming strict positivity of the matrices hj(ω) for all j and ω, Theorems 2.1
and 2.3 imply that the Spohn condition (34) is also sufficient for Hypothesis (ER) to hold.

Note that

σ(ρ) =

M∑
j=1

σj(ρ),

where σj(ρ) is the entropy production of the system S interacting only with the reservoir Rj via the
Lindbladian Lj . If the matrix hj(ω) is strictly positive and

{Q(k)
j }

′
k ∩ {HS}′ = C1, (35)

then, as discussed above, the QDS {etLj}t≥0 is positivity improving. Moreover, L∗j (ρ) = 0 iff ρ =

e−βjHS/tr(e−βjHS ).9 Hence, we arrive at the following elegant condition (see [LS1, AS]) which ensures
that σ(ρ) > 0 for all states ρ: there exists a pair j1, j2 such that βj1 6= βj2 , the relation (35) holds for
j = j1, j2, and the matrix hj(ω) is strictly positive for all ω and j = j1, j2.

In conclusion, under very general and natural conditions the class of weak coupling limit QDS introduced
in [LS1] satisfies Hypotheses (ER), (DB), (TR), (KMSβ), and has strictly positive entropy production.10

Starting with the seminal paper [LS1], such semigroups have been one of the basic paradigms of non-
equilibrium quantum statistical mechanics.

5 Full counting statistics

In this section, we elucidate the physical meaning of the measure P tρ introduced in Theorem 3.1 in cases
where the Lindbladian L describes a weakly coupled open quantum system as discussed in the preceding
section. We shall keep our presentation at a formal level; the interested reader should consult Section 5
of [JOPP] for a more detailed discussion as well as [DdRM, dRK1, dRK2, JPPW] for a mathematically
rigorous treatment of some specific models.

9The same conditions ensure that the terms ρβ0 (Dj(HS , HS)) in Theorem 3.5 (1) are strictly positive, providing of course that
HS 6∈ C1.

10At the current level of generality, the verification of Hypothesis (RE) requires supplementing Davies’ conditions with additional
regularity assumptions which we shall not discuss for reasons of space. In practice, i.e. in the context of concrete models, the
verification of (RE) is typically an easy exercise.
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Jakšić, Pillet, Westrich

We start with the open system described in Section 4, but we assume now that the reservoirsRj are confined
to finite boxes. More precisely, working in the Schrödinger representation, we assume that the reservoir
Hamiltonians Hj have purely discrete spectrum and that the operators e−βHj are trace class for all β > 0.
The initial state of the combined system is ρ = ρS ⊗ ρR, where

ρR = ρR1
⊗ · · · ⊗ ρRM , ρRj =

e−βjHj

tr(e−βjHj )
,

and ρS is the initial state of the small system S.

The full counting statistics of the entropy fluxes across the system S is defined as follows. Set S =
(S1, · · · , SM ) with Sj = βjHj . The observables Sj commute and hence can be simultaneously measured.
Let Πs denote the joint spectral projection of S associated to the eigenvalue s ∈ sp(S). Two successive
measurements of S at time t0 and at time t0 + t are described by the positive map valued measure (PMVM)
(see, e.g., [Da5]) which, to any subset A ∈ sp(S)× sp(S), associate the CP map

EA(X) =
∑

(s,s′)∈A

Πs′e
−itHλΠsXΠse

itHλΠs′ .

Indeed, if ρt0 denotes the state of the system at time t0, one easily checks that, according to the usual rules
of projective measurements,

tr E{(s,s′)}(ρt0),

is the joint probability for the first measurement to yield the result s and for the second one to yield the
result s′. Hence, the probability distribution of ς = (s′ − s)/t, the mean rate of entropy transport from the
system S to the M reservoirs over the time interval [0, t], is given in terms of the initial state ρS by the
formula

PtρS (ς) = tr E{s′−s=tς}(ρS ⊗ ρR).

The atomic probability measure PtρS on RM is the full counting statistics of the energy/entropy flow. An
elementary calculation shows that the Laplace transform of this measure is given by

`tρS (α) =

∫
RM

e−tα·ςdPtρS (ς) = tr
(
(ρS ⊗ ρR)ρ−αR eitHλραRe−itHλ

)
,

where, for α = (α1, . . . , αM ) ∈ RM , we have set

ραR = 1⊗ ρα1

R1
⊗ · · · ⊗ ραMRM .

Assuming that the operators

τ
isβj/2
j (R

(k)
j ) = e−sβjHj/2R

(k)
j esβjHj/2,

are entire analytic functions of s, we can define the deformed Hamiltonian

Hλ,α = ρ
α/2
R Hλρ

−α/2
R = HS +

M∑
j=1

(
Hj + λ2

nj∑
k=1

Q
(k)
j ⊗ τ

iαjβj/2
j (R

(k)
j )

)
,

and write
`tρS (α) = tr

(
(ρS ⊗ ρR) eitH∗λ,α1e−itHλ,α

)
. (36)

At this point, one can pass to the GNS representation of the reservoirs and perform a thermodynamic limit,
letting the size of the confining boxes become infinite. If the deformed operators τ iαjβj/2

j (R
(k)
j ) remain

well defined elements of the W ∗-algebras Oj in this limit, then we can define the effective deformed
dynamics of the open system with infinitely extended reservoirs

〈ψ|T tλ,α(X)ψ〉 = 〈ψ ⊗ ξ|eitL∗λ,α(X ⊗ 1)e−itLλ,αψ ⊗ ξ〉, (37)
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with the deformed semi-standard Liouvillean

Lλ,α = HS +

M∑
j=1

(
Lj +

nj∑
k=1

Q
(k)
j ⊗ τ

iαjβj/2
j (R

(k)
j )

)
.

Assuming that the thermodynamic limit

TD− lim tr
(

(|ψ〉〈ψ| ⊗ ρR) eitH∗λ,α(X ⊗ 1)e−itHλ,α
)

= 〈ψ|T tλ,α(X)ψ〉,

exists for any ψ ∈ HS , X ∈ B(HS), and α ∈ RM , we conclude that the Laplace transform `tρS (α) of the
full counting statistics PtρS has a well defined thermodynamic limit

TD− lim `tρS (α) = tr
(
ρST tλ,α(1)

)
,

for all α ∈ RM . Then one can show that, as the size of the reservoir increases, the full counting statistics
PtρS converges weakly to a Borel probability measure which we again denote by PtρS which satisfies∫

RM
e−tα·ςdPtρS (ς) = tr

(
ρST tλ,α(1)

)
,

(see Proposition 4.1 in [JOPS]). We call the limiting measure PtρS the full counting statistics of the open
system S coupled to the infinitely extended reservoirs R1, . . . ,RM . Note that since infinitely extended
reservoirs have an infinite energy, it is not possible to implement directly the successive measurement
procedure we have described to this model, and that one is forced to invoke the thermodynamic limit to
construct its full counting statistics.

Applying the Davies procedure to extract the weak coupling limit of the deformed effective dynamics leads
to

lim
λ→0

sup
λ2t∈I

‖T tλ,α − et(LS+λ2K(α))‖ = 0,

where K(α) is a deformed generator commuting with LS . An explicit calculation shows that the only
difference between K(α) and the undeformed Lindbladian L = K0 is that the functions h(kl)

j are replaced
with (recall that Ljξj = 0),

h
(kl)
j,αj

(ω) = 2π〈τ iαjβj/2
j (R

(k)
j )ξj |δ(Lj − ω)τ

iαjβj/2
j (R

(l)
j )ξj〉

= 2π〈e−αjβjLj/2R(k)
j ξj |δ(Lj − ω)e−αjβjLj/2R

(l)
j ξj〉

= e−αjβjωh
(kl)
j (ω).

Using Eq. (32), one finally concludes that, with the ρj defined in Eq. (33),

K(α)(X) =

M∑
j=1

Lj(Xρ
−αj
j )ρ

αj
j ,

and so K(α) coincides with the deformed Lindbladian L(α). We conclude that if [HS , ρS ] = 0, then the
measure P tρ introduced in Theorem 3.1 is related to the full counting statistics PtρS through the scaling limit

lim
λ→0

∫
f(λ−2ς)dPt/λ

2

ρS (ς) =

∫
f(ς)dP tρS (ς). (38)

We note that in the weak coupling regime, the energy/entropy fluxes are of order λ2 so the scaling λ−2ς
which appears on the left hand side of the last identity is natural. The measure P tρS thus describes the
rescaled mean energy/entropy fluxes at the Van Hove time scale t/λ2. To the best of our knowledge, this
observation is due to de Roeck [dR1].
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For some specific models it is possible to show that

lim
λ→0

sup
t>0
‖T tλ,α − et(LS+λ2Kα)‖ = 0,

(see [dR2, dRK1, dRK2, JPPW]), and in such cases one can relate the large deviation principle of Corol-
lary 3.2 to the large deviation principle of the full counting statistics PtρS .

The link between full counting statistics and deformations of the semi-standard Liouvillean (relations (36)
and (37)) goes back to [dR1]. The link between full counting statistics and deformations of the standard
Liouvillean can be traced back to [JP1, MT, DJ], was fully elaborated in [JOPP], and plays the key role in
the work [JPPW]. The second link relates full counting statistics to modular theory of operator algebras
and deformed Lindbladians L(α) to Fermi Golden Rule for spectral resonances of the deformed standard
Liouvilleans. This point is discussed in detail in [JPPW] and we refer the reader to this work for additional
information.

6 Unraveling of the deformed semigroup etL(α)

In this section we follow [dRM] and present an alternative and more general interpretation of the measure
P tρ based on the standard unraveling technique. As a byproduct of this construction, we shall get a proof of
Parts (1) and (2) of Theorem 3.1. We shall assume that Hypothesis (DB) holds throughout the section and
use the elementary properties of Lindbladians summarized in Theorem 7.1.

Let Lj(X) = i[Tj , X]− 1
2{Φj(1), X}+ Φj(X) denote a Lindblad decomposition of Lj and set

K(X) = −K∗X −XK, K =

M∑
j=1

Kj , Kj =
1

2
Φj(1) + iTj .

By Theorem 7.1, Kj commutes with ρj and Φj admits a decomposition

Φj =
∑
ω∈Ωj

Φj,ω,

where Ωj = {µ− ν |µ, ν ∈ sp(log ρj)} and Φj,ω ∈ CP(O) satisfies Φj,ω(Xρ
−αj
j )ρ

αj
j = e−αjωΦj,ω(X).

It follows that

L(α) = K +

M∑
j=1

∑
ω∈Ωj

e−αjωΦj,ω, (39)

is of the Lindblad form (4) for α ∈ RM , which proves Part (1) of Theorem 3.1. Using the Dyson expansion
of the cocycle Γtα = e−tK ◦ etL(α) , we obtain the representation

〈ρ|etL(α)(1)〉 = 〈etK
∗
(ρ)|Γtα(1)〉 = 〈ρt|1〉 (40)

+
∑
N≥1

∑
(j1,...,jN )∈{1,...,M}N

(ω1,...,ωN )∈Ωj1×···×ΩjN

e−
∑N
k=1 αjkωk

∫
0≤s1≤···≤sN≤t

〈ρt|ΦjN ,ωN ,sN ◦ · · · ◦ Φj1,ω1,s1(1)〉ds1 · · · dsN ,

where ρt = etK
∗
(ρ) and Φj,ω,s = e−sK ◦ Φj,ω ◦ esK.

Unraveling consists of rewriting this expression in terms of a probability measure µtρ on a set Ξt of quantum
trajectories defined as follows. For N ≥ 1, let

ΞtN = {ξ = [ξ1, . . . , ξN ] | ξk = (jk, ωk, sk), jk ∈ {1, . . . ,M}, ωk ∈ Ωjk , 0 ≤ s1 ≤ · · · ≤ sN ≤ t},

and set Ξt0 = {∅}. On the disjoint union
Ξt =

⊔
N≥0

ΞtN ,
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one defines the positive measure µtρ by∫
Ξt
f(ξ) dµtρ(ξ) = f({∅})〈ρt|1〉+

∑
N≥1

∑
(j1,...,jN )∈{1,...,M}N

(ω1,...,ωN )∈Ωj1×···×ΩjN∫
0≤s1≤···≤sN≤t

f([(j1, ω1, s1), . . . , (jN , ωN , sN )])〈ρt|ΦjN ,ωN ,sN ◦ · · · ◦ Φj1,ω1,s1(1)〉ds1 · · · dsN .

Comparison with Eq. (40) shows that∫
Ξt

dµtρ(ξ) = 〈ρt|Γt0(1)〉 = 〈ρ|etL(1)〉 = 1,

and hence µtρ is a probability measure. An element ξ ∈ Ξt is a quantum trajectory which represent the
history of the system during the time interval [0, t]. Observe that the system can exchange entropy with the
reservoir Rj only in quanta of the form ω ∈ sp(Sj) − sp(Sj) = Ωj where Sj = − log ρj . An element
ξ = [ξ1, . . . , ξN ] of Ξt is a chronologically ordered list of elementary events ξk = (jk, ωk, sk) which we
interpret in the following way: at time sk the system has exchanged an entropy quantum ωk with reservoir
Rjk . According to this interpretation, the random variable

ςj(ξ) =
1

t

∑
k:jk=j

ωk,

represents the mean rate of entropy exchange of the system with reservoirRj during the time interval [0, t].
It follows that one can rewrite the expansion (40) as

〈ρ|etL(α)(1)〉 =

∫
Ξt

e−t
∑M
j=1 αjςj(ξ) dµtρ(ξ).

This proves Part (2) of Theorem 3.1 and identifies the measure P tρ as the law of the random variable
ς(ξ) = (ς1(ξ), . . . , ςM (ξ)) induced by the measure µtρ.

7 Proofs

7.1 Detailed balance

To a faithful state ρ, we associate two groups of transformations of O, the modular group ∆z
ρ(X) =

ρzXρ−z , and the group Rzρ(X) = ρzXρz , z ∈ C. ∆1
ρ = ∆ρ is the modular operator of the state ρ. Note

that ∆iα
ρ ∈ CP1(O) andRαρ ∈ CP(O) for α ∈ R.

Theorem 7.1 Let ρ be a faithful state on O and L = i[T, · ]− 1
2{Φ(1), · }+ Φ a Lindbladian generating

a QDS. Suppose that L∗(ρ) = 0 and Φρ = Φ. Then:

(1) The Hermitian and anti-Hermitian parts of L w.r.t. the inner product induced by ρ are given by

L(d)(X) =
1

2
(L+ Lρ)(X) = −1

2
{Φ(1), X}+ Φ(X),

L(h)(X) =
1

2
(L − Lρ)(X) = i[T,X].

They are also called dissipative and Hamiltonian parts of L.

(2) L, L(h), L(d) and Φ commute with the modular operator ∆ρ. In particular, T and Φ(1) commute with
ρ and L(d)∗(ρ) = L(h)∗(ρ) = 0.
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(3) The CP map Φ admits a decomposition

Φ =
∑

ω∈sp(log ∆ρ)

Φω,

where Φω ∈ CP(O) satisfies Φω(Xρ−α)ρα = e−αωΦω(X), Φρω = Φ−ω and Φ∗ω = eωΦ−ω .

(4) For α ∈ C define Lα = Rα/2ρ ◦ L ◦ R−α/2ρ . Then

Lα(X) = L(Xρ−α)ρα = i[T,X]− 1

2
{Φ(1), X}+

∑
ω∈sp(log ∆ρ)

e−αωΦω(X), (41)

holds for all X ∈ O. Moreover, {etLα}t≥0 is a CP(O) semigroup for α ∈ R.

(5) If the pair (ρ,L) is time-reversible with time-reversal Θ, then for all α ∈ R

Θ ◦ L∗α = L1−α ◦Θ.

Remark. The proofs of Parts (1)-(3) can be found in [Al, KFGV]. For the readers convenience we provide
a complete proof below.

Proof. We start with the simple remarks that L∗(X) = −i[T,X] − 1
2{Φ(1), X} + Φ∗(X) and that

Mρ(X) =M∗(Xρ)ρ−1 for any linear mapM on O. We recall thatM is a ∗-map ifM(X∗) =M(X)∗

for all X ∈ O. The maps L and L∗, as generators of positive semigroups, and Φ as a positive map, are all
∗-maps.

The fact that Φ is ρ-self-adjoint implies Φ∗(Xρ) = Φ(X)ρ for all X ∈ O and in particular that Φ∗(ρ) =
Φ(1)ρ. Thus, since T , Φ(1) and ρ are self-adjoint, it follows from

0 = L∗(ρ) = −i[T, ρ] + Φ∗(ρ)− 1

2
{Φ(1), ρ} =

1

2
[Φ(1)− 2iT, ρ],

that ρ commutes with T and Φ(1). A simple calculation yields

Lρ(X) = −i[T,X] + Φ(X)− 1

2
{Φ(1), X}, (42)

and Part (1) follows.

The formula (42) implies that Lρ is a ∗-map. Thus, one can write

Lρ(∆ρ(X)) = L∗(ρX)ρ−1 = L∗((X∗ρ)∗)ρ−1 = L∗(X∗ρ)∗ρ−1

= (Lρ(X∗)ρ)∗ρ−1 = ∆ρ(Lρ(X)).
(43)

It follows that [Lρ,∆ρ] = 0 and, since ∆ρ is ρ-self-adjoint, that [L,∆ρ] = 0. Clearly, [T, ρ] = 0 implies
that [L(h),∆ρ] = 0 and L(h)∗(ρ) = 0. Thus, one also has [L(d),∆ρ] = 0 and

L(d)∗(ρ) = L∗(ρ)− L(h)∗(ρ) = 0.

Finally, [Φ(1), ρ] = 0 implies [Φ,∆ρ] = 0, which concludes the proof of Part (2).

Denote by log ρ =
∑
λ λPλ the spectral representation of log ρ. The operator log ∆ρ = [log ρ, · ] is

self-adjoint on O, with spectrum sp(log ∆ρ) = sp(log ρ) − sp(log ρ). Its spectral representation is given
by

log ∆ρ =
∑

ω∈sp(log ∆ρ)

ωPω, Pω(X) =
∑

λ−µ=ω

PλXPµ.

Since Φ commutes with ∆ρ, it commutes with each of the spectral projection Pω , and in particular one has
Pω ◦ Φ ◦ Pω = Pω ◦ Φ. Thus, setting

Φω(X) =
∑

λ−µ=ω
λ′−µ′=ω

PµΦ(PλXPλ′)Pµ′ ,
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we have ∑
ω∈sp(log ∆ρ)

Φω(X) =
∑

λ−µ=λ′−µ′
PµΦ(PλXPλ′)Pµ′ =

∑
λ−λ′=µ−µ′

PµΦ(PλXPλ′)Pµ′

=
∑

ω∈sp(log ∆ρ)

Pω(Φ(Pω(X))) =
∑

ω∈sp(log ∆ρ)

Pω(Φ(X)) = Φ(X).

Moreover, since Φ is completely positive, it follows from the identity∑
i,j

B∗i Φω(A∗iAj)Bj =
∑

(i,λ),(j,µ)

B∗i,λΦ(A∗i,λAj,µ)Bj,µ,

where Ai,λ = AiPλ and Bi,λ = Pλ−ωBi, that Φω is completely positive. Next, note that the identity

PµΦ(PλXρ
−αPλ′)Pµ′ρ

α = PµΦ(PλXPλ′)Pµ′e
−α(λ′−µ′),

implies
Φω(Xρ−α)ρα = e−αωΦω(X). (44)

The identity Φ∗(X) = Φ(Xρ−1)ρ and a simple calculation yield

Φ∗ω(X) =
∑

λ−µ=ω
λ′−µ′=ω

PλΦ∗(PµXPµ′)Pλ′ =
∑

λ−µ=ω
λ′−µ′=ω

PλΦ(PµXPµ′ρ
−1)ρPλ′

=
∑

λ−µ=ω
λ′−µ′=ω

PλΦ(PµXPµ′)Pλ′e
λ′−µ′ = eωΦ−ω(X).

The last identity combined with Eq. (44) gives

Φρω(X) = Φ∗ω(Xρ)ρ−1 = eωΦ−ω(Xρ)ρ−1 = Φ−ω(X),

and Part (3) follows.

To prove Part (4), note that since L commutes with ∆ρ, one has

Lα(X) = Rα/2ρ ◦ L ◦ R−α/2ρ (X) = Rα/2ρ ◦∆−α/2ρ ◦ L ◦∆α/2
ρ ◦ R−α/2ρ (X)

= ρα/2ρ−α/2L(ρα/2ρ−α/2Xρ−α/2ρ−α/2)ρα/2ρα/2 = L(Xρ−α)ρα.

The formula (41) follows from the relation Lα(X) = L(Xρ−α)ρα, the fact that ρ commutes with T and
Φ(1) and Eq. (44). Since etLα = Rα/2ρ ◦ etL ◦ R−α/2ρ , {etLα}t≥0 is a CP(O) semigroup for all α ∈ R,
and Part (4) follows.

It remains to prove Part (5). Define L(d)
α (X) = L(d)(Xρ−α)ρα. A simple calculation gives

L(d)∗
α (X) = L(d)∗(Xρα)ρ−α,

and Part (1) implies
L(d)∗(X) = L(d)ρ(Xρ−1)ρ = L(d)(Xρ−1)ρ.

Hence,
L(d)∗
α = L(d)

1−α.

Since Θ is involutive, the relation Lρ ◦ Θ = Θ ◦ L implies L ◦ Θ = Θ ◦ Lρ. It follows from Part (1) that
L(h) ◦ Θ = −Θ ◦ L(h) and L(d) ◦ Θ = Θ ◦ L(d). Moreover, Θ(ρα) = ρα implies L(d)

α ◦ Θ = Θ ◦ L(d)
α .

Thus, one has
L∗α = L(h)∗ + L(d)∗

α = −L(h) + L(d)
1−α,

and
Θ ◦ L∗α = (L(h) + L(d)

1−α) ◦Θ = L1−α ◦Θ.

�

We finish this section with:
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Theorem 7.2 Let ρ be a faithful state and L a Lindbladian onO generating a QDS. Suppose that L∗(ρ) =
0. Then the following statements are equivalent:

(1) There exist a self-adjoint T ∈ O such that the Hermitian part of L w.r.t. the inner product induced by
ρ has the form

L(h)(X) =
1

2
(L − Lρ)(X) = i[T,X].

(2) There exists a Lindblad decomposition L = i[T, · ]− 1
2{Φ(1), · }+ Φ such that Φρ = Φ.

Remark. This theorem establishes that Definition 2.4 (a) is equivalent to the definition of detailed balance
given in [KFGV] (see also Section IV in [LS1]). Although we shall not make use of this result in the sequel,
we include the proof for reader’s convenience.

Proof. The implication (2) ⇒ (1) follows from Part (1) of Theorem 7.1. To prove the implication (1) ⇒
(2), note first that (1) implies that

L(d) =
1

2
(L+ Lρ),

is a Lindbladian generating a QDS. Since L(d) is ρ-self-adjoint, arguing as in (43) one deduces that
[∆ρ,L(d)] = 0. Let now L = i[S, · ]− 1

2{Ψ(1), · }+ Ψ be a Lindblad decomposition. Since

L(d) = lim
T→∞

1

T

∫ T

0

∆it
ρ ◦ L(d) ◦∆−it

ρ dt,

setting

M = lim
T→∞

1

T

∫ T

0

ρitSρ−itdt, Ξ = lim
T→∞

1

T

∫ T

0

∆it
ρ ◦Ψ ◦∆−it

ρ dt,

we deduce that

L(d) = i[M, · ]− 1

2
{Ξ(1), · }+ Ξ,

is also a Lindblad decomposition. Clearly, [∆ρ,Ξ] = 0, [M,ρ] = 0, [Ξ(1), ρ] = 0. Hence,

L(d)ρ = −i[M, · ]− 1

2
{Ξ(1), · }+ Ξρ,

Ξρ(X) = ρ−1/2Ξ∗(ρ1/2Xρ1/2)ρ−1/2,

and we derive that Ξρ(1) = Ξ(1) + L(d)ρ(1) = Ξ(1) + L(d)(1) = Ξ(1). Setting

Φ =
1

2
(Ξ + Ξρ),

we get

L(d) =
1

2
(L(d) + L(d)ρ) = −1

2
{Φ(1), · }+ Φ,

where Φ is CP and Φρ = Φ. Hence, L = i[T, · ]− 1
2{Φ(1), · }+ Φ is a Lindblad decomposition of L with

Φρ = Φ. �

7.2 Irreducibility and positivity improving

We start with the following observation of [Schr]:

Proposition 7.3 A positive linear map Φ : O → O is irreducible iff etΦ is positivity improving for some
(and hence all) t > 0.
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Proof. If Φ is irreducible, then it follows from Lemma 2.1 in [EHK] that

(Id + Φ)dimH−1,

is positivity improving, and so etΦ is positivity improving for all t > 0. To prove the converse, suppose
that etΦ is positivity improving and that Φ(P ) ≤ λP , where λ > 0 and P 6= 0 is a projection. Then
Φn(P ) ≤ λnP for all n, and so 0 < etΦ(P ) ≤ eλtP . The last relation implies that P = 1. �

Proof of Theorem 2.1. We follow [Schr]. Let ϕ,ψ ∈ H be non-zero vectors and t > 0. Expanding etΦ
∗

into a power series, we get

〈ϕ|etΦ
∗
(|ψ〉〈ψ|)ϕ〉 = |〈ϕ|ψ〉|2 +

∞∑
n=1

tn

n!

∑
j1,··· ,jn

|〈ϕ|Vj1 · · ·Vjnψ〉|2.

Hence, 〈ϕ|etΦ∗(|ψ〉〈ψ|)ϕ〉 = 0 iff ϕ ⊥ Aψ, and we deduce that etΦ
∗

is positivity improving iff Aψ = H
for all non-zero vectors ψ ∈ H. Since etΦ

∗
is positivity improving iff etΦ is, the result follows from

Proposition 7.3. �

Proof of Theorem 2.2. The proof of based on Perron-Frobenius theory of positive maps developed in
[EHK]. Let t > 0 be given. The map etL is positive and its spectral radius is et`. It follows from
Theorem 2.5 in [EHK] that et` is an eigenvalue of etL, and that there exists a non-zero M ∈ O+ such that

etL(M) = et`M.

Since the map etL is positivity improving, M > 0. Define

Ψ(X) = M−1/2et(L−`)(M1/2XM1/2)M−1/2.

The map Ψ is unital, completely positive (hence Schwartz), and positivity improving (hence irreducible).
The same holds for Ψn , n ≥ 1, and it follows from Theorem 4.2 in [EHK] that 1 is a simple eigenvalue of
Ψ and that Ψ has no other eigenvalues on the unit circle |z| = 1. Hence, L has a simple eigenvalue at ` and
no other eigenvalues on the line Re z = `.

Denote by µ the eigenvector of L∗ associated to the eigenvalue `. Since etL
∗

is positivity improving by
duality, one can chose µ > 0 and normalize it by 〈µ|M〉 = 1. Let δ > 0 be the distance from sp(L) \ {`}
to the line Re z = `. Then, for any ε > 0,

〈ρ|etL(X)〉 = et`
(
〈ρ|M〉〈µ|X〉+O

(
e−t(δ−ε)

))
, (45)

holds for all states ρ and all X ∈ O. Since 〈ρ|M〉 > 0 and 〈µ|X〉 > 0 for non-zero X ∈ O+, Eq. (3)
follows.

If L(1) = 0, then etL(1) = 1 and since ‖etL‖ = ‖etL(1)‖ = 1, it follows that ` = 0 and M = 1. By
duality, (45) yields

etL
∗
(ρ) = µ+O(e−t(δ−ε)),

and the semigroup {etL}t≥0 is relaxing exponentially fast to the faithful state ρ+ = µ. �

Proof of Theorem 2.3. Note that K0 : X 7→ K∗X + XK generates a continuous group of completely
positive maps on O, namely etK0(X) = etK

∗
XetK . Denoting Γt = e−tK0 ◦ etK, it is sufficient to show

that 〈ϕ|Γt(|ψ〉〈ψ|)ϕ〉 > 0 for any non-zero vectors ϕ,ψ ∈ H and all t > 0. To prove this claim, let us
assume that 〈ϕ|Γt0(|ψ〉〈ψ|)ϕ〉 = 0 for some t0 > 0. The Dyson expansion for Γt0 gives

Γt0 = Id +

∞∑
n=1

∫
∆n

Φns ds,

where
∆n = {s = (s1, . . . , sn) ∈ Rn | 0 ≤ s1 ≤ · · · ≤ sn ≤ t0},
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Φs = e−sK0 ◦ Φ ◦ esK0 for s ∈ R, and Φns = Φs1 ◦ Φs2 ◦ · · · ◦ Φsn for s ∈ ∆n. It follows that

〈ϕ|Γt0(|ψ〉〈ψ|)ϕ〉 = |〈ϕ|ψ〉|2 +

∞∑
n=1

∫
∆n

〈ϕ|Φns (|ψ〉〈ψ|)ϕ〉ds = 0.

Since the functions s 7→ 〈ϕ|Φns (|ψ〉〈ψ|)ϕ〉 are continuous and non-negative, we infer that 〈ϕ|Φns (|ψ〉〈ψ|)ϕ〉 =
0 for all n and all s ∈ ∆n, and in particular that 〈ϕ|Φn(|ψ〉〈ψ|)ϕ〉 = 0 for all n. Hence, 〈ϕ|etΦ(|ψ〉〈ψ|)ϕ〉 =
0 for all t ≥ 0, and Proposition 7.3 implies that ϕ = 0 or ψ = 0. �

For later reference, we mention the following simple fact:

Proposition 7.4 Let Φj , j = 1, · · · , n, be positive linear maps such that
∑
j Φj is irreducible. If λ1, . . . , λn

are strictly positive then
∑
j λjΦj is irreducible.

Proof. The result follows from the obvious inequality

min
i
λi
∑
j

Φj ≤
∑
j

λjΦj ≤ max
i
λi
∑
j

Φj .

�

7.3 Proof of Theorem 3.1

(1)-(2) were already proven in Section 6.

(3)-(4) By Eq. (39), Proposition 7.4, and Theorem 2.3, the CP semigroup {etL(α)}t≥0 is positivity improv-
ing for all α ∈ RM , and the statement follows from Theorem 2.2.

(5) Note that the map CM 3 α 7→ L(α) is entire analytic. Since e(α) is a simple eigenvalue of L(α) for all
α ∈ RM , the regular perturbation theory implies that e(α) is a real analytic function of α. Property (2) and
Hölder’s inequality yield that e(α) is a convex function of α.

(6) This part also follows from regular perturbation theory. Fix α0 ∈ RM and set

δ =
1

2
min{e(α0)− Re z | z ∈ sp(L(α0)) \ {e(α0)}} > 0.

If ε is small enough and α ∈ Dε = {z ∈ CM | |α− α0| < ε}, one has

〈ρ|etL(α)(1)〉 = ete(α)
(
〈ρ|Mα〉〈µα|1〉+O

(
et(−δ+O(ε))

))
,

where e(α), Mα and µα are analytic functions of α such that 〈ρ|Mα〉〈µα|1〉 − 〈ρ|Mα0
〉〈µα0

|1〉 = O(ε)
and 〈ρ|Mα0

〉〈µα0
|1〉 > 0. It follows that there exists ε > 0 such that for α ∈ Dε,

lim
t→∞

1

t
log〈ρ|etL(α)(1)〉 = e(α).

(7) Let Θ be the time-reversal map. By Property (5) of Theorem 7.1 one has

Θ ◦ L∗(α) = L(1−α) ◦Θ,

for all α ∈ RM . It follows that sp(L(α)) = sp(L(1−α)) and hence e(α) = e(1− α).

(8) If Hypothesis (KMSβ) is satisfied, then ρj = Z−1
j νβj with ν = e−HS and Zj = tr(νβj ). Hence,

Rαjρj = Z
−2αj
j Rαjβjν and Part (4) of Theorem 7.1 yields

L(α) =

M∑
j=1

Rαjβj/2ν ◦ Lj ◦ R−αjβj/2ν .

It follows that
L(α+λβ−1) = Rλ/2ν ◦ L(α) ◦ R−λ/2ν ,

and so sp(L(α+λβ−1)) = sp(L(α)). In particular, e(α+ λβ−1) = e(α).
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7.4 Proof of Theorem 3.4

(1) At α = 0, the spectral projection of L(α) = L associated to its dominant eigenvalue 1 is |1〉〈ρ+|. Thus,
for α sufficiently close to 0 ∈ RM , e(α) = E1(α)/E0(α) where

En(α) =

∮
Γ

zn〈ρ+|(z − L(α))
−1(1)〉 dz

2πi
,

and Γ is a small circle centred at 1 such that no other point of sp(L) is on or inside Γ. Since (z−L)−1(1) =
z−1, one has E1(0) = 0 and E0(0) = 1 and hence (∂αje)(0) = (∂αjE1)(0). An elementary calculation
yields

(∂αjEn)(0) =

∮
Γ

zn〈ρ+|(z − L)−1 ◦ L;αj ◦ (z − L)−1(1)〉 dz

2πi
,

where
L;αj (X) = ∂αjL(α)(X)

∣∣
α=0

= Lj(XSj)− Lj(X)Sj . (46)

The identities
L;αj ◦ (z − L)−1(1) = z−1L;αj (1) = z−1Ij ,

〈ρ+|(z − L)−1 = z−1〈ρ+|,
yield

(∂αjE0)(0) = 0, (∂αjE1)(0) = ρ+(Ij),
and the statement follows.

(2) From the previous calculation, we easily infer

(∂αk∂αje)(0) = (∂αk∂αjE1)(0)

=

∮
Γ

1

z
〈ρ+|L;αk ◦ (z − L)−1(Ij) + L;αj ◦ (z − L)−1(Ik) + L;αkαj (1)〉 dz

2πi
, (47)

where
L;αkαj (1) = ∂αk∂αjL(α)(1)

∣∣
α=0

= δkj(Lj(S2
j )− 2Lj(Sj)Sj).

Theorem 7.1 (2) implies
Lj(etSjXe−tSj ) = etSjLj(X)e−tSj ,

and hence Lj([Sj , X]) = [Sj ,Lj(X)]. It follows that [Sj ,Lj(Sj)] = 0 and L;αkαj (1) = δkjDj(Sj , Sj).
Using the fact that∮

Γ

1

z
〈ρ+|L;αk ◦ (z − L)−1(ρ+(Ij))〉

dz

2πi
=

∮
Γ

1

z2
ρ+(Ik)ρ+(Ij)

dz

2πi
= 0,

we can replace Ij/k with Jj/k = Ij/k − ρ+(Ij/k) in Eq. (47). Since ρ+(Jj) = 0, the meromorphic
function (z − L)−1(Jj) is regular at z = 0 and one has

lim
z→0

(z − L)−1(Jj) =

∫ ∞
0

etL(Jj) dt,

the integral on the r.h.s. being absolutely convergent. We therefore have

(∂αk∂αje)(0) =

∫ ∞
0

ρ+(L;αk(etL(Jj)) + L;αj (e
tL(Jk))) dt+ δkjρ+(Dj(Sj , Sj)).

The relation

∂2e(α)

∂αj∂αk

∣∣∣∣
α=0

= −
∫ ∞

0

ρ+

(
etL(Jj)J +

k + etL(Jk)J +
j

)
dt

+

∫ ∞
0

ρ+

(
Lk(etL(Jj)Sk) + Lj(etL(Jk)Sj)

)
dt+ δjkρ+(Dj(Sj , Sj)),
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now follows from Eq. (46) and the identity

ρ+(Lk(etL(Jj))Sk) = 〈Lk(etL(Jj))|Sk〉ρ+ = 〈etL(Jj)|Lρ+k (Sk)〉ρ+ = ρ+(etL(Jj)J +
k ).

Finally, an application of Vitali’s convergence theorem (see Appendix B in [JOPP]) gives

∂2e(α)

∂αj∂αk

∣∣∣∣
α=0

= lim
t→∞

t〈(ςj − 〈ςj〉ρ,t)(ςk − 〈ςk〉ρ,t)〉ρ,t.
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[JP2] Jakšić, V., and Pillet C.-A.: Entropic functionals in quantum statistical mechanics. To appear in
Proceedings of the XVIIth International Congress of Mathematical Physics, Aalborg, Denmark,
2012.
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