
Scattering from Sparse Potentials:
a deterministic approach
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Abstract. Completeness of the wave operators has been proven for a family
of random Schrödinger operators with sparse potentials in the recent paper
[17], using a probabilistic approach. As mentioned at Voss, a deterministic
result in this direction can also be derived from a Jakšić–Last criterion of
completeness [7] and Fredholm’s theorem. We present this approach.
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1. Introduction

Since their introduction by Anderson [1], there has been considerable interest in
Schrödinger operators with random potentials. In the classical case, these operators
represent the energy of a particle affected by a random potential supported on a
lattice. They are of the form H = ∆ + λV , where ∆ is the centered, discrete
Laplacian on Zd, λ is a real parameter (the so-called disorder) and V is a random
potential on Zd. In [1], Anderson anticipated the spectral structure of H (i.e.,
the intervals of localization/delocalization) with respect to the disorder. While the
localization aspect of the Anderson conjecture has been mathematically settled in
the seminal papers [5, 4, 2, 3], practically nothing is known about the delocalization
aspect.

Several research teams have also studied various sparse models [6, 9, 10, 11,
12, 13, 14, 15, 17]. In these nonergodic models, spectral properties of H are ex-
pected to follow from various geometric constraints on the sites of the potential,
having in common that the minimal distance between two sites becomes arbitrar-
ily large when removing a finite number of them. Examples have been exhibited
where all the expected spectral properties are satisfied (almost surely), includ-
ing completeness [17] of the wave operators on the spectrum of ∆. We present a
deterministic extension of this last result.
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We consider a discrete Schrödinger operator H = ∆ + V in dimension d > 2,
where ∆ is the centered Laplacian and V is a bounded potential: for ϕ ∈ l2(Zd)
and n ∈ Zd

(Hϕ)(n) =
∑

|m−n|1=1

ϕ(m) + V (n),

where |n|1 =
∑d

j=1 |n(j)|. We assume that the support of V , which we denote by
Γ ⊂ Zd, satisfies the following sparseness assumption:

(A) There exists an ε > 0 such that
∑

m∈Γ\{n} |n−m|− 1
2+ε is finite for all n ∈ Γ

and tends to 0 when |n| → ∞ in Γ.

This is the case, for instance, if Γ = {(j4, 0, . . . , 0) ∈ Zd ; j ∈ Z}.
Recall [18] that the wave operators on a Borel set Θ ⊂ R are the strong limits

Ω±(H,∆) = limt→±∞ eitHe−it∆1Θ(∆) (if they exist); they are complete if their
range is Ran1Θ(H) (so ∆ and H are unitarily equivalent on Θ). We prove:

Theorem. Assume (A). Then, the wave operators Ω±(H,∆) exist on [−2d, 2d].
Moreover, they are complete on [−2d, 2d] minus a set of Lebesgue measure zero.

It is possible to remove the exceptional set in the above by working in the
random frame. Then {V (n)}n∈Γ is a family of independent, identically distributed,
absolutely continuous random variables whose common density is compactly sup-
ported.1 Since the essential support of the absolutely continuous spectrum of ∆ is
[−2d, 2d], and since under Assumption (A) the wave operators exist on this last
interval, the Jakšić–Last theorem [8] and the above immediately yield:

Corollary. In the random frame, Assumption (A) implies that the wave operators
exist and are complete on [−2d, 2d], almost surely.

This conclusion is stronger than the one we obtained in [17], where only com-
pleteness of the wave operators is derived. However, our present assumption is also
stronger, since unbounded potentials are discarded.

Here is the outline of the paper. In the sequel {n ∈ Zd ; infm∈Γ |n−m|1 6 1}
is denoted by Γ1, while 10 and 11 denote the projections onto l2(Γ) and l2(Γ1)
respectively. Moreover δm(n) denotes the Kronecker delta, where m,n ∈ Zd. For
z ∈ C+ we consider the following restrictions of the free and perturbed resolvents,

F1(z) = 11(∆− z)−111, F0(z) = 10(∆− z)−110,

P1(z) = 11(H − z)−111, P0(z) = 10(H − z)−110.

Our study is based the following theorem of Jakšić and Last [7]:

1Explicitly, the probability space is given by RΓ equipped with its Borel σ-algebra and a prob-
ability measure

Q
Γ µ, where µ is an absolutely continuous, compactly supported measure on R.

The variable V (n) is then the projection on the nth coordinate, for n ∈ Γ.
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Proposition 1. Let a < b. Suppose ‖F1(e + i0)‖ < ∞ and ‖P1(e + i0)‖ < ∞ for all
e ∈ [a, b]. Then, the wave operators exist and are complete on [a, b].

For [a, b] ⊂ [−2d, 2d] \ ({2d, 2d− 4, . . . ,−2d + 4,−2d} ∪ {0}) and z in the
strip S: ={e + iy ; a < e < b, 0 < y < 1}, the following a priori estimate [16] is
available:

Proposition 2. Let n = |n|ω ∈ Zd. Then, limz→e,z∈C+〈δ0 | (∆− z)−1δn〉 exists and
is O(|n|− 1

2 ) uniformly in (e, ω) ∈ [a, b]×Sd−1. More generally, 〈δ0 | (∆− z)−1δn〉 =
O(|n|− 1

2 log |n|) uniformly in (z, ω) ∈ S × Sd−1.

Therefore, sparseness will ensure that the matrix elements of F1(z) are small
except about its diagonal. By subtracting a block-diagonal to F1(z) the remaining
part will be compact. We will derive the finiteness of ‖F1(e + i0)‖ first, and then
deduce the same for ‖P1(e + i0)‖ by means of Fredholm’s theorem:

Proposition 3. Let K(z) be a function with values in the space of compact opera-
tors (endowed with the uniform topology). Suppose K(z) is continuous on S and
analytic in S. Then, either 1−K(z) is never invertible on S, or it is invertible ex-
cept on a closed set of Lebesgue measure zero whose intersection with C+ consists
of isolated points.

2. Proof of the theorem

Let us partition Γ1 as follows: for all n ∈ Γ, we select a neighborhood B(n) ⊆
{m ∈ Γ1 ; |m− n|1 6 1} containing n in such a way that

⋃
n∈Γ B(n) = Γ1 and

B(n)∩B(n′) = ∅ if n 6= n′. For all m ∈ Γ1 there exists exactly one n ∈ Γ such that
m ∈ B(n); we then set B(m) = B(n).

For n ∈ Γ1, let S(n) =
∑

m∈Γ1\B(n) supz∈S |〈δm |F1(z)δn〉|. Then,

Lemma 1. S(n) is finite for all n ∈ Γ1 and tends to 0 when |n| → ∞ in Γ1.

Proof. By Proposition 2, S(n) 6 Const
∑

m∈Γ1\B(n) |n−m|− 1
2+ε. Moreover, there

exists a C > 1 such that for B(m) 6= B(n), C−1|n−m| 6 |n−m′| 6 C|n−m| for
all m′ ∈ B(m). Since the cardinalities of the B(m) are bounded, Assumption (A)
yields the result. �

For z ∈ S let us decompose F1(z) into two summands: a block-diagonal,
D1(z) =

∑
n∈Γ1

∑
m∈B(n)〈δn |F1(z)δm〉〈δm | ·〉δn, and the other part, K1(z) =

F1(z)−D1(z). By Proposition 2, 〈δn |F1(e + i0)δm〉 exists for e ∈ [a, b]. In partic-
ular, letting F1(e):=

∑
m,n∈Γ1

〈δn |F1(e + i0)δm〉〈δm | ·〉δn, lim z→e
z∈C+

F1(z) = F1(e)

weakly. Let us define D1(e) and K1(e) in a similar way, so they are weak limits of
D1(z) and K1(z) respectively.

Lemma 2. For any e ∈ [a, b], limz→e,z∈C+ D1(z) = D1(e) uniformly.
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Proof. Let {Aj}L
j=1 be the list of all subsets of {m ∈ Zd ; |m|1 6 1} containing

0. For all n ∈ Γ there exists exactly one j, which we denote by j(n), such that
B(n)− n = Aj . Thus, by translational invariance

D1(z) =
L∑

j=1

∑
p,q∈Aj

〈δq |F1(z)δp〉
∑

j(n)=j

〈δn+p | ·〉δn+q.

The result follows. �

Lemma 3. Let ε > 0. There exists a finite-dimensional projection Pε such that,
letting Mε(z): =PεK1(z)Pε, ‖K1(z)−Mε(z)‖ 6 ε for all z ∈ S. Moreover, Mε(z)
is continuous on S (with respect to the uniform operator topology).

Proof. By Lemma 1, there exists a finite set F ⊂ Γ1 such that for all z ∈ S

sup
n∈Γ1\F

∑
m∈Γ1

|〈δn |K1(z)δm〉|+ sup
n∈F

∑
m∈Γ1\F

|〈δn |K1(z)δm〉| 6 ε. (2.1)

Let Pε be the projection onto the vector space generated by {δn}n∈F . Notice
that Mε(z) is weakly continuous and hence uniformly continuous on S. More-
over, 〈δn | (K1(z)−Mε(z))δm〉 = 〈δm | (K1(z)−Mε(z))δn〉 for all m,n ∈ Γ1, so
the equation (2.1) is equivalent to ‖K1(z)−Mε(z)‖1 = ‖K1(z)−Mε(z)‖∞ 6 ε.
Schur’s interpolation theorem then completes the proof. �

Lemma 4. For any e ∈ [a, b], limz→e,z∈C+ K1(z) = K1(e) uniformly.

Proof. Let ε > 0. For e ∈ [a, b] and z ∈ S
‖K1(z)−K1(e)‖ 6 ‖K1(z)−Mε(z)‖+ ‖K1(e)−Mε(e)‖+ ‖Mε(z)−Mε(e)‖

6 ‖Mε(z)−Mε(e)‖+ 2ε.

Since limz→e,z∈C+ Mε(z) = Mε(e) uniformly, the proof is complete. �

By Lemmas 2 and 4, F1(z) has a continuous extension on C+ ∪ [a, b], so we
have reached that ‖F1(e + i0)‖ < ∞ for all e ∈ [a, b]. Let us focus on l2(Γ). By the
previous work, F0(z) is continuous on S and analytic in S. Moreover,

Lemma 5. F0(z) is invertible in B(l2(Γ)) for all z ∈ S.

Proof. Let µϕ be the spectral measure of a unit vector ϕ ∈ l2(Γ) with respect to
∆. For a fixed z = e+iy ∈ S, =〈ϕ |F0(z)ϕ〉 = y

∫ 2d

−2d
((t− e)2 + y2)−1 dµϕ(t). This

expression is bounded away from zero when ϕ varies in the unit vectors. Thus, the
closure of the numerical range of F0(z) is included in C+. The result follows. �

Let D0(z) = 10D1(z)10 and K0(z) = 10K1(z)10. By Lemma 3, K0(z) is
a compact operator for any z ∈ S. Moreover, D0(z) is diagonal; it is indeed a
constant (times the identity on l2(Γ)) by translational invariance. By Theorem 6.1
in [16], the number infz∈S =D0(z), which we denote by I, is positive.

Lemma 6. 1 + D0(z)V is invertible in B(l2(Γ)) for any z ∈ S.
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Proof. First, (1 + D0(z)V )−1 exists, since I > 0. If2 |V (n)D0(z)| 6 1/2, then
|(1 + D0(z)V )−1(n)| 6 2. Otherwise, |(1 + D0(z)V )−1(n)| 6 2|D0(z)|/I. Hence,
(1 + D0(z)V )−1 is bounded, as claimed. �

We now transfer our result from the free resolvent to P0. Since V is bounded,
by the argument in Lemma 5, P0(z) is invertible for each z ∈ S. Moreover,

Lemma 7. There exists a closed set of Lebesgue measure zero, R ⊂ [a, b], such that
P0 has a continuous extension S \ R −→ B(l2(Γ)).

Proof. Let z ∈ S. By the resolvent identity, (1 + F0(z)V )P0(z) = F0(z). Notice
that 1 + F0(z)V is invertible, since P0(z) and F0(z) are. Thus,

P0(z) = (1 + F0(z)V )−1F0(z), (2.2)

where z ∈ S. One wonders to which extent (1 + F0(z)V )−1 is still invertible when
z ∈ ∂S. Indeed, for any z ∈ S, 1 + F0(z)V = (1 − K(z))(1 + D0(z)V ), where
K(z):= − K0(z)V (1 + D0(z)V )−1 is compact. Since for z ∈ S both 1 + D0(z)V
and 1 + F0(z)V are invertible, 1 − K(z) is. By Proposition 3, 1 − K(z) is thus
invertible in B(l2(Γ)) for all z ∈ [a, b] \ R, where R ⊂ [a, b] is a closed set of
Lebesgue measure zero. Hence, the right side in (2.2) extends continuously up to
S \ R, as desired. �

Lemma 8. There exists a closed set of Lebesgue measure zero, R ⊂ [a, b], such that
P1 has a continuous extension S \ R −→ B(l2(Γ1)).

Proof. By the resolvent identity, F1(z)10 − P1(z)10 = F1(z)V P0(z). Since F1(z)
and P0(z) extend continuously up to S \ R, P1(z)10 also does. By the resolvent
identity again, F1(z)− P1(z) = P1(z)10V F1(z). The result follows. �

In particular, ‖P1(e + i0)‖ < ∞ on [a, b]. Since the analogous relation has
been established for F1, Proposition 1, the arbitrariness of [a, b], and the absolute
continuity of the spectrum of ∆ yield the theorem.
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