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Abstract

We study scattering properties of the discrete Laplacian H on the half-space
Z4+! = 77 x Z, with the boundary condition ¢)(n, —1) = A tan(ra - n + 6)(n, 0),
where a € [0,1]%. We denote by Hy the Dirichlet Laplacian on Zi“. Khoruzenko
and Pastur [KP] have shown that if « has typical Diophantine properties then the
spectrum of H on R\ o(Hy) is pure point and that corresponding eigenfunctions
decay exponentially. In [JM1] it was shown that for every « independent over
rationals the spectrum of H on o(Hy) is purely absolutely continuous. In this paper,
we continue the analysis of H on o(Hj) and prove that whenever « is independent
over rationals, the wave operators Q% (H, Hy) exist and are complete on o(Hjp).
Moreover, we show that under the same conditions H has no surface states on
J(HO) .



1 Introduction

This work is a continuation of our series of papers [JM1, JM2, JM3] which deals with
spectral and scattering theory of the discrete Laplacian on the half-space with a quasi-
periodic or random boundary condition. This program was initiated in [JMP], and its
principal goal is to understand the formation and the propagation properties of surface
states in regions with corrugated boundaries. The history of this problem and its physical
aspects are discussed in [JMP, KP]. For some recent rigorous work on the subject we
refer the reader to [AM, BS, G, JM1, JM2, JM3, JMP, JL1, JL2, KP, M1, P].

Let us recall the model. Let d > 1 be given and let Z := Z¢ x Z,, where Z, =
{0,1,...}. We denote the points in Z%™ by n = (n,z), n € Z% = € Zy. Let H be the
discrete Laplacian on H := [*(Z4*") with the boundary condition ¢(n, —1) = V(n)4(n, 0).
When V' = 0 the operator H reduces to the Dirichlet Laplacian which we denote by Hj.
The operator H acts as

Z\nfn’|++\xfx’\:l %b(n', xl) if x > 0,

(Hw) (n7 x) B { gb(n, 1) + E\nfn'|+:1 l/}(n,v 0) + V(n)v,b(n, 0) if 2 =0,

where |n|y = E;l:l |n;|. Note that operator H can be viewed as the Schrodinger operator
H=H,+V, (1.1)

where the potential V acts only along the boundary 90Z4*! = Z¢, that is, (V¢))(n,z) = 0
if z >0 and (V4)(n,0) =V (n)(n,0). For many purposes it is convenient to adopt this
point of view and we will do so in the sequel. We recall that the spectrum of Hy is purely
absolutely continuous and that

o(Hy) =[-2(d+1),2(d + 1)].

The starting point of this paper is the following result proven in [JL1]: For any bound-

ary potential V' the wave operators
QF :=5— lim e"He 1tHo (1.2)

t—JF 00

exist. An obvious question is: under what conditions on V are the wave operators QF
complete on o(Hy)? In this paper we answer this question if V' is the Maryland potential.
Some physical implications of the completeness of the wave operators are discussed below.
Before we introduce the surface Maryland model let us briefly recall the usual Mary-

land model. Let a = (o, ...,aq) € [0,1]¢ and 6 € [0, 7] be given. The Maryland potential
on Z% is the function

Vag(n) = tan(ra - n + 60), n €z’ (1.3)



To avoid singular cases, we will always assume that for a given «, # is chosen so that Vn,
ma-n+60#0 modnm/2. (1.4)

We remark that 6 is an auxiliary parameter which will play little role in what follows.
The results described and proven in this paper hold for all # which satisfy (1.4).

The usual Maryland model is a family of operators on lz(Zd) of the form h) 49 = ho +
AV, where )\ is a real parameter and hg the discrete Laplacian on [?(Z¢). This model has
been extensively studied in [FP, FGP, FGP1, PRF, S1, S2|. We say that o = (a, ..., @)
is independent over rationals if for any choice of rational numbers rq,...,7; € Q,

> v € Q.

We say that « has typical Diophantine properties if there exist constants C',k > 0 such
that

In-a—m| > C|n|™, (1.5)

for all n € Z¢ and m € Z. The set of a’s in [0,1]? for which (1.5) holds has Lebesgue
measure 1. If a has typical Diophantine properties then for all A # 0, o(hyras) = R,
the spectrum is pure point, the eigenvalues of h),y are simple and the corresponding
eigenfunctions decay exponentially. (See [CFKS, FP].) Thus, in any dimension and for
typical a, the potential (1.3) is strongly localizing.

The surface Maryland model is the family of operators on l2(fo’1) defined by

H)\,aﬂ = Hy + )\Va,g, (16)

where V, 4 acts only along the boundary 8Zi+1 = Z?. Tt follows from the existence of
wave operators (1.2) that for any A and «, 0(Hp) C 0ac(Hx np)-
Notation. In the sequel, we use the shorthand c¢; = 2(d 4 1), so o(Hy) = [—cq, cq]-

To the best of our knowledge, the model (1.6) was first studied in [KP], where the
following result was proven.

Theorem 1.1 Assume that o has typical Diophantine properties. Then, for all X # 0,
0(Hya9) = R and the spectrum of H on the set R\ (—cq, cq) is pure point. On this set,
the eigenvalues are simple and the corresponding eigenfunctions decay exponentially.

In [JM1] we have proven the following result

Theorem 1.2 Assume that a € [0,1]? is independent over rationals. Then, for all X,
the spectrum of Hy g on (—cg,cq) is purely absolutely continuous.

We now turn to the subject of this paper, namely the scattering theory for H, ,¢ on
o(Hy). We first recall some basic facts. Let A and B be self-adjoint operators on a Hilbert



space $. We denote by 1g(A) the spectral projection of A onto the Borel set ©. Assume
that for a given Borel set © the wave operators
e itB —itA
W= :=s tLu%lOOe e “1g(A) (1.7)
exist. Note that for any real s, e*BW* = W*el*4, which yields that for any bounded
Borel function f, f(B)W* = W*f(A). In particular, RanW* C Ranlg(B). The wave
operators W+ are complete on © if RanW* = Ranle(B). One can easily show that the
wave operators W* are complete on O iff the wave operators
= I itA_—itB
Ur:=s tkglooe e "Ple(B) (1.8)
exist.
As we have already remarked, it is known that the wave operators
Q:I: =g — hm eitH)\,a,Ge_itHO
) t—Foo ’
exist for all A and «. If « is not independent over rationals, V, ¢ is periodic and the wave
operators QF in general are not complete on o(Hy) — an additional scattering channel
associated to the surface states may overlap o(Hy). The simplest case where this happens

is @« = 0. Then, V,4(n) = tan6 is a constant boundary potential and the operator Hy 4
is easily diagonalized by separation of variables. Set a := Atan6. If |a| > 1 then

H = %ac(H)\,U,é') - %;(3}:) D 7-[2(1%)7
where both subspaces H{) and H? are invariant under H and

o(Hl,w) = o(Ho), (1.9)

Hie

o(H|, ) =[-2d,2d]+ a+a ", (1.10)
The generalized eigenfunctions associated to the channel (1.9) do not decay in any direc-
tion (bulk waves) while the generalized eigenfunctions associated to the channel (1.10)
decay exponentially in the z-direction (surface waves). Moreover,

Ran0F = HW),

ac

Thus if the channels (1.9) and (1.10) overlap then the wave operators QF are not complete
on o(Hy).

If « is independent over rationals, the natural question is whether there exists a non-
trivial scattering channel on o(Hy). Our first result is

Theorem 1.3 Assume that « is independent over rationals, Then, for all X, the wave
operators QF are complete on (—cy, cg).



Theorem 1.3 implies that for the surface Maryland model the non-trivial scattering
channel on o(Hy) may exist only in the periodic case. It also suggests that the surface
states with energies in o(Hy) may exists only in the periodic case, and we turn to this
question now.

Physically, the surface states are wave packets which are concentrated near the surface
of the medium for all time. The bulk states are the wave packets which propagate away
from the surface of the medium. There are obviously many different ways to make these
heuristic notions mathematically precise (see e.g. [JMP, DS] for alternative definitions).
We adopt the definition proposed in [JL2]. Let R > 0 be a positive integer and

= {(nz)€Z :0<z <R}

We denote by 1 the characteristic function of the set I'r and we use the same symbol
for the corresponding multiplication operator.
Let V be an arbitrary boundary potential and H = Hy + V. For any ¢ € H we set

PRT ) = o [ [tae ] ar

The above heuristic description of the bulk and surface states can be quantified as follows:
We say that the vector 1 is a bulk state if

VR, 711—I>Iolo P(R,T,¢) =0. (1.11)
and that it is a surface state if
. . . _ 2
Aim lim inf P(R, T’ ¢) = [[¢]°.
We denote by Hy, the set of all bulk states, and by Hg the set of all surface states of the
operator H. These sets have the following properties:

Proposition 1.4 Let V be an arbitrary boundary potential and H = Hy+ V. Then,
(1) Hp and Hs are closed subspaces invariant under H.

(i) Hp L Hs.

(iii) Raan\a(Ho)(H) C Hs, Hy, C RanlU(HO)(H).

This proposition is proven in [JL2]. We remark that Proposition 1.4 will not be used in
the sequel, except for the obvious fact that #y, is a closed set.
With the above preliminaries, we can state our second result.

Theorem 1.5 Assume that « is independent over rationals. Then, for all X, there exists
a set D, dense in Ranl(_., .,)(Hxap), such that for ¢ € D,

/R |Lre ey dt < oo. (1.12)

In particular, Ranl(_., ., (Hxa9) C Hp.



Remark 1. The estimate (1.12) is the main technical result of this paper. It immedi-
ately implies the absence of surface states with energies in (—cg, ¢g). Also, we will prove
Theorem 1.3 using this estimate and Kato’s theory of smooth perturbations.
Remark 2. The estimate (1.12) is a stronger property then (1.11). For the various
refinements of the notion of the bulk state we refer the reader to [JL2].

Theorems 1.1, 1.2, 1.3 and 1.5 complete the program of [JMP] for the surface Maryland
model.

Acknowledgments. We are grateful to Y. Last, L. Pastur and B. Simon for many
discussions on the subject of this paper. The research of the first author was supported
in part by NSERC and of the second by NSF. Part of this work was done during the visit
of the second author to University of Ottawa which was supported by NSERC.

2 The key estimate

Notation. In the sequel, whenever the meaning is clear within the context, we will drop
the subscripts A, a and 0. Thus, we write V' for V, 9, H for H) , g etc. We will also use
the shorthand R(z) := (H — z) '

The goal of this section is to prove

Theorem 2.1 Assume that « is independent over rationals and that [a,b] C (—cg,cq).
Then, for allm € Z4, X\ and R > 0,

sup  ||[1rR(e + i€)d(m0)|| < oo.
e#£0,e€[a,b]

For n,m € Z4™ we set
R(m,n;2) = (6pm|(H — 2) '6y).
We first note that

sip [[LaR(e+i105mol = swp 3 [R(m,0)me+iof  (213)
e#0,e€[a,b] e#0,e€[a,b] nery

Let T = R/2nZ be the unit circle and T?¢ the d-dimensional torus. We denote the
points in T by ¢ = (¢1,...,d4) and by d¢ the usual Lebesgue measure. Let Cy = {2 :
+Imz > 0}, ®(¢) = 234_, cos ¢r, and, for z € Cy, let 7(¢, z) be the root of the quadratic
equation

X+X1+0(¢) =z, (2.14)



which satisfies |7(¢, z)| < 1. One easily verifies that z € CL = +Imr(¢, z) < 0. Explicitly,
for z € Cy, (¢, 2) is given by

g2 =5 (200) 2 = @@ — 27 4, ) (2.15)

where the branch of the square root is fixed by

2
\/Ei:,/x+iy:§<\/|w|—|—:[;ii\/|w|—x>, +Imw > 0.

Obviously, (¢, z) has a well-defined continuous extension from T¢ x C to T? x C.. The
values of these extensions along the real axis we denote by r(¢, e & i0).

We denote the other root of the equation (2.14) by 7(¢, z). Clearly, 7(¢, z) = 1/r(¢, 2),
+Im7 (¢, z) > 0 for z € Cy etc.

Let

R((m,0), (¢,2);2) := (2m) 7 3 R((m,0), (n,x); 2)e™".

nezd

Lemma 2.2 Assume that z € Cy. Then for any x > 0,

R((m,0), (¢,2); 2) = R((m,0), (¢,0); 2)r(¢, 2)". (2.16)

In particular, Theorem 2.1 holds if and only if for all m € Z% and X,

sup R ((m,0), (,0); e +i€)|*dg < oo

€#0,e€(a,b] Y T¢

Proof. The proof of Relation (2.16) is elementary, see e.g. [JM2] or [JL1]. Clearly,
> IR((m.0),m;2)2 > 2m) " [ [R((m,0), (,0);2)dg,
nel'p T
and since |r(¢, z)| < 1, the relation (2.16) yields
R+1 5
. 2 . 2
> [R((m,0),m ) < g [ 1R((m,0),(6,0); )

nelp

These relations and (2.13) yield the second part of the lemma. O
In the sequel we adopt the shorthand

Rin(;2) 1= R((m, 0), ($,0); 2).

The following result also follows from a simple computation. For the proof we refer the
reader to [JM2] or [JL1].



Proposition 2.3 Assume that A\ = 0. Then, for all m € Z¢,

~

Ron($,2) = —(2m) "5 r (¢, 2).
In particular, for A =0 Theorem 2.1 holds.

In the sequel we will assume that A # 0.

We remark that all the results described so far are valid for an arbitrary boundary
potential V. To proceed, we have to use the particular structure of the Maryland potential.
Let

hm(¢) — (27T)7%eim¢(1 + e—i(20+27ra))‘

The following lemma was proven in [JM1].

Lemma 2.4 Assume that z € C.. Then, for ¢ € TY,

e R, (¢ — 2ma; 2) (i — (¢ — 21, 2)) — Ron (5 2)(Ni + 7(9, 2)) = hn(4).  (2.17)

In what follows we distinguish two cases, depending whether A and Imz have the same
sign or not:

Case 1. £X >0, z € C..

Case 2. £ >0, z € C4.

We set
Ron(¢3 2) := Ron( 2) (AL £ 7(6, 2)) ,
and N T (6, 2)
V(¢, 2) == m’
where we take += = + in the Case 1 and + = — in the Case 2. The signs are chosen so
that for A # 0 and z € C_,
(¢, 2)| < 1.

It follows from Lemma 2.4 that in the Case 1,
e R, (¢ — 2ma; 2)y(d — 21, 2) — Ron(d; 2) = hun(9), (2.18)
and that in the Case 2,
e R (¢ — 2max; 2) = Ron (95 2)7(6, 2) = hn(9). (2.19)

These two equations will play a key role in what follows.



Lemma 2.5 Assume that for all m € Z% and X\ # 0

sup IR (¢ € + i€)|2dg < oco.
e£0,e€la,b] / T¢

Then Theorem 2.1 holds.
Proof. It follows from the definition of R,, that
R (6, 2)] < AR (6, 2)]-

This observation and Lemma 2.5 yield the statement. O

For e € R and 0 > 0 we set
D(e,0) :={z:Rez € (e—0,e+9),0 < |Imz| < 1}.
We will need

Lemma 2.6 Let eg € (—cy,cq) be given. Then there exist & > 0 and an open set O C T¢,
such that

sup [v(¢, 2)| <1, (2.20)

where supremum is taken over ¢ € O and z € D(eg, ).
Proof. It follows from the definition of v(¢, z) that it suffices to show that
inf [Im7 (¢, z)| > 0, (2.21)

where the infimum is taken as in (2.20). Note that it follows from (2.15) that for any
eo € (—cq,cq) there exists ¢y € T such that,

Since the function 7 is continuous on the sets T¢ x CL, the estimate (2.21) follows from
(2.22). O

In the sequel we fix m € Z% and A # 0. Our next result is an improvement of the key
estimate in [JM1].

Proposition 2.7 Let eg € (—cq,cq) be given and assume that o is independent over
rationals. Then there exist 0 > 0 such that

sup [ [Ron(6:2)ldg < oo,

where the supremum is taken over z € D(eq,0).



Remark. This proposition (see [JM1]), implies that the spectrum of H on (—cg4,¢g) is
purely absolutely continuous.

Proof. We will consider the Case 1. One argues similarly in the Case 2. It follows from
the equation (2.18) that for all z € C,

|7~€m(¢, z)| < 2(27r)_% + |y(¢ — 27ma, z)||7€m(¢ — 2y 2)|.

Integrating over T we derive
L Ranld:2)1d0 < Co+ [ 116, )] [Run(65 )]0, (2.23)

where Cy = 2(27)2. Now let § and O be as in Lemma 2.6. Splitting the integrals in (2.23)
over O and T?\ O we derive

Jo(1 = |7(¢5 2) [ Ron(¢ 2)|dd < Co + Jo(Iy(¢; 2)| — 1)|Ron(; 2)|dgb
S 007

where we used that |y(¢,2)| < 1. It now follows from Lemma 2.6 that there exists a
constant C' such that
Sup/ Ron($: 2)|de < C, (2.24)

where the supremum is taken over z € D(eg,0).

Let T, : T? — T be the translation map T, (¢) = ¢ + 27ra. We set O = TF(O). Tt
follows from the equation (2.18) and the estimate (2.24) that

sup/o IR (¢ 2)|dep < Co + C, (2.25)
1
and inductively that for any k,

sup / 2 < kCy + C, (2.26)

where the supremums are taken over z € D(eg,0). Since « is independent over rationals,
the translation 7T, is an ergodic map, and the open sets O, cover T¢. Picking a finite
subcover, we obtain the statement. O

We are now able to prove

Proposition 2.8 Let ey € (—cq,cq) be given. Then there exists § > 0 such that
sup/d IR (¢ 2)?d¢p < o0, (2.27)
T

where supremum is taken over z € D(eg,0).

10



Proof. We again consider the Case 1. It follows from the equation (2.18) that

L R < 4+ 40m)F [ 1y(92)[Rn(9:2)1dg + [ 17(62)FIRm(9:2) P,

It follows from Proposition 2.7 that there exist 6 > 0 and a constant C', independent of
z, such that for z € D(ep, d),

/ R (6 2)] d¢<0+/ 2) PR (¢ 2) Pdep.

From this point the proof follows line by line the proof of Proposition 2.7. O

We are now ready to finish the
Proof of Theorem 2.1. It follows from Proposition 2.8 that for any e € [a,b] we can
find 6 > 0 so that the estimate (2.27) holds. Clearly, the open sets (e — d,e + &) cover
[a, b]. Picking a finite subcover, we derive the statement from Proposition 2.5. O

3 Dynamics

In this section we establish some dynamical consequences of Theorem 2.1 and prove
Theorem 1.5. In the sequel we assume that the conditions of Theorem 2.1 are satisfied
and we fix R >0, m € Z%, X and a.

Proposition 3.1 Let x € C§°(R) be such that suppx C (—cq, cq). Then

sup ||1RR(6 + 16)X(H)5(m,0)||2d€ < 00.
eZ£0

Proof. Let [a,b] be an interval such that suppx C [a,b] C (—cq4,cq), where the first
inclusion is proper. Then there is a constant C' such that Ve € R\ [a, ],

s%) |1LrR(e +i€)x (H)d(m,0)|| < C/dist(e,suppx).

Thus, it suffices to show that

sup  ||[LgR(e +i€)x (H)dm,0)|| < 0.
e£0,e€[a,b]

Let x be an almost analytic extension of x. By the Helffer-Sjostrand formula,

X(H) = %/C af;(;)R(z)dxdy.

11



For the basic facts about almost analytic extensions and the Helffer-Sjostrand formula we
refer the reader to [Da]. It follows that for any w € C.,

mnmuwwmm:%LAmﬂmm% (3.28)
where R
A@h@:zg%glziungawy—R@». (3.29)

In deriving (3.28) we used the resolvent identity and that

/C ||A(w7 Z)5(m,0)||dxdy < 0.

We recall that by the construction of the almost analytic extensions, suppy is a compact
set and x(z) = 0 for Rez ¢ suppx. We denote by B(z,r) the ball of center z, and radius
r. If e € [a,b] and € # 0, we derive from (3.28), (3.29) and Theorem 2.1 that there exist
constants C' and r, independent of e and ¢, so that

1
1xR (e + i€) x (H)8(m <C’/ — dudy.
LR (e +OXH)o)| < C [ edady
This inequality yields
1

drdy < oo.
B(zor) |2]

sup  ||[LrR(e +i€) X (H)d(m,0)|| < sup
e£0,e€a,b] 20

O

Proposition 3.2 Let x € C§°(R) be such that suppx C (—cq,cq). Then,

/R H1RGFitHX(H)(S(m,())H2 dt < 0.

Proof. Let € > 0 be given. By the well-known identity (see e.g. [RS], Section XIII.7),
o / e 2|1 pe T\ (H) 6 0)||Pdt = Y / 11rR (e £ i€)x(H)dm,0||*de. (3.30)
R — /r

The result follows from this identity, Proposition 3.1 and the Monotone convergence
theorem.

Proof of Theorem 1.5. It is shown in [JL1] that the set {d(y,0) : m € Z%} is cyclic for
H. Let D be the linear span of the set

{X(H)d(my) : m € Z% x € C°(R),suppx C (—cq,¢q)}-
The set D is dense in Ranl(_., ., (H), and for ¢ € D the relation
/ HlRe’itH@/)H2dt < 00,
R
holds by Proposition 3.2. O

12



4 Wave operators

In this section we prove Theorem 1.3. In the sequel we assume that the conditions of this
theorem are satisfied and we fix A and «.

The proof of Theorem 1.3 is based on Kato’s theory of smooth perturbations. We refer
the reader to [RS], Section XIIL.7, for basic notions and results concerning this theory.

Lemma 4.1 If the wave operators

OF =5~ lim e 1 (H) (4.31)

t—Foo
exist then the wave operators QF are complete on (—cg,cq).

The proof of this lemma is elementary.
Lemma 4.2 For any v € Ranl(_, ., (H),
|t1‘133>0 Toe ) = 0. (4.32)
Proof. Let D be as in Theorem 1.5 and ¢ € D. Let
w(t) := ™ 1ge Hy,

By Theorem 1.5, [ |Jw(t)|?dt < oco. Moreover, since [H,1g] = [Ho, 1o], [[w/'(t)|| <
2||Hol|. This yields that limyy_,. w(t) = 0 (see Exercise 62 in [RS]). Since D is dense in
Ranl(_., ., (H) the statement follows. O

We will also make use of the following elementary result (for the proof see [JL1])

Lemma 4.3 For all R > 0 the projection 1g is Hy-smooth. In particular, there are
constants C'g such that for all 1) € H,

| Itre oy |2t < Crlly* (4.33)

In the sequel we use the shorthand 15 := 1 — 1. Let T be a linear operator defined
by

—(5(n71) ifz =0
T(S(nw) = 5(,1,0) ife=1
0 if x> 1.

The next result we need is

13



Lemma 4.4 Hyly—15H =1

Proof. Since 15V = 0, we have to show that [Hy, 15] = 7. This relation follows by direct
computation. O

Proof of Theorem 1.3 It follows from Lemmas 4.1 and 4.2 that to prove the statement
it suffices to show that for a set of vectors 1) dense in Ranl y(H), the limits

—Cd»Cd

lim e"fo15e1Hy) (4.34)

t—Foo

exist. The proof of this fact follows closely Theorem XIII1.24 in [RS].
Let D be as in Theorem 1.5 and ¢ € D. Let

() = 15y,
and let ¢ € H be arbitrary. Then, the function t — (¢|w(t)v) is differentiable and
d [ —itH —itH
< (0lu(0) = (e o Te ),
where we used Lemma 4.4. Therefore, if ¢t > s,
[(Plw(t) —w(s)] <[
1

< (f ILie g 2ar)* (fF e mHy|Par)

(11e7 70| T 110~y | dr

where we used that T = 1;71; and ||T|| = 1. It follows from Lemma 4.3 that for some
constant C,

() = wiol < € ([ e pipar)

Since ¢ € D, by Theorem 1.5 the integrand on the right-hand side of the last equation is
in L'(R). Therefore the sequence w(t) is Cauchy as ¢ — oo or ¢ — —oo. Since D is dense
in Ranl(_, ., (H), this yields the statement. O
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